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Abstract. 

We consider the problem of finding the symmetric positive definite preconditioner M of a given form 
- e.g., having nonzero elements only in specified positions - which minimizes the ratio of the largest to 
smallest eigenvalue of M-IA,  for a given symmetric positive definitive matrix A. We show how this 
problem can be expressed as one of minimizing a convex function and how an optimization code can be 
used to solve the problem numerically. Results are presented showing optimal preconditioners of various 
sparsity patterns and comparing these to preconditioners that have been proposed in the literature. 
Several conjectures are made, based on results from the optimization code. 

AMS Classification: 65F10. 

1 .  I n t r o d u c t i o n .  

In recent years much research has focused on the problem of finding efficqent 
preconditioners to use with various iterative methods for solving linear systems. 
Examples of preconditioners, or of iterative methods that can be viewed as using 
special preconditioners, include the incomplete Cholesky factorization [27], the 
SSOR preconditioner [33], multigrid methods [5], domain decomposition tech- 
niques [4], and many, many more. 

An efficient preconditioner M for a matrix A must possess two properties: 
1) Linear systems with coefficient matrix M must be relatively easy to solve; and 
2) The matrix M-1A must "approximate" the identity. 

Many of the preconditioners that have been proposed are easy to solve because of 
their sparsity or because they are products of known lower and upper triangular 
matrices with simple sparsity patterns. 
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The sense in which M-1A should "approximate" the identity differs according 
to the iterative method to be used. For simple iterative refinement methods 
(x  k = x k -  * + M - ~(b - A x  k -  1)), the asymptotic convergence rate is determined by 
the spectral radius 

p(I  - M -  ~ A). 

For fast asymptotic convergence, this quantity should be small. 
When the matrices A and M are symmetric and positive definite, this basic 

iterative method can be accelerated through use of the Chebyshev or conjugate 
gradient iteration. For the Chebyshev or conjugate gradient methods, the ratio 

/c(M- 1A) = 5[max(M- 1A)/)~min(M- IA)  

of the largest to the smallest eigenvalue of M -  ~A enters into an upper bound for the 
error 

tlektlA/lle°ll A < 2[(/t21/2 -- 1)/(/g 1/2 + 1)] k 

where the A-norm of the error, frekfla, is defined as ( e  t, A e k )  1/2. To make this bound 
small, K should be close to 1. This bound is sharp for the Chebyshev method, in the 
sense that there is an initial guess for which the bound will be attained at every step. 
It is not sharp for the conjugate gradient method. A sharp error bound for the 
conjugate gradient method is more complicated [18], involving the distribution of 
all eigenvalues of M -  *A, but a condition number* ~:(M- 1A) close to 1 is suff icient to 
ensure fast convergence of this algorithm as well, even when the effects of finite 
precision arithmetic are taken into account [19]. Therefore, we will define "optimal- 
ity" in terms of the condition number ~:(M-XA) and minimization of this quantity 
will be our goal. 

It is well-known that the largest eigenvalue of a symmetric matrix S is a convex 
function of the elements of S. Although the function is not differentiable at points 
where eigenvalues coalesce, (and one usually expects the minimum to occur at such 
a point), the problem of minimizing this function can be handled numerically using 
optimization techniques. If the elements of S are affine functions of a vector x of 
unknowns 

S(x)  = So + ~ S~,xk 
k=l  

then the largest eigenvalue of S(x)  will be a convex function of x. Given the matrices 
S k, k = O, 1 . . . .  , m an algorithm due to M, Overton [28] can be used to find the 
vector x for which the spectral radius of S(x)  is minimal. The algorithm is asympt- 
otically quadratically convergent and second derivatives are not required to obtain 

1 When referring to the condition number ~c(M- 1A), we actually mean the ratio of largest to smallest 
eigenvalue of M - I A ,  or, the condition number in the 2-norm of M-I/aAM-l/z. Since the matrices we 
consider are all symmetric and positive definite, this should cause no confusion. 
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this quadra t ic  convergence rate in m a n y  cases. The  code uses a var iant  of  Newton ' s  
me thod  to minimize a related nonl inear  but  essentially differentiable function. In 
this paper ,  we repor t  results using the Over ton  opt imizat ion  code to find op t imal  
precondi t ioners  of  a given sparsi ty  pattern.  

To  see how the precondi t ioning p rob lem can fit into this f ramework,  we will need 
a few simple results. Given  a symmetr ic  posit ive definite matr ix  A and a sparsi ty 

pa t te rn  for the symmetr ic  precondi t ioner  M, we would like to find the mat r ix  M of 
the given form which minimizes p(I - M -  1A) or K(M-  1A), as explained above.  The  
mat r ix  I - M - ~ A  is not  symmetric ,  and its elements are not  affine functions of  the 
elements  of  M, but  the following theorem relates the minimiza t ion  of p(I - M -  1A) 

to the minimiza t ion  of the largest eigenvalue o f / -  L- ~ M L  r, where L L  r is a factor- 

ization (e.g., the Cholesky factorization) of  A. We start  with the following simple 

lemma.  

LEMMA 1. For a given matrix Q with real nonnegative eigenvalues, the scalar c 

which minimizes p(I  - cQ) is 

c = 1/}~a(Q), ),-a(Q) =- ½()~min(Q) + :~m,x(O)), 

where 2mi.(Q) is the smallest and 2m.x(Q) the largest eigenvalue o f  Q, and 2.(Q) is the 

arithmetic mean o f  these two. 

PRoov: For  c as defined above,  the spectral  radius of I - cQ is given by 

p(I - cQ) = t - C,~m~.(Q) = c2m.x(Q) - l. 

For  any other  scalar c' ~- c, one of the following two inequalities mus t  hold: 

c' < c --+ 1 - c'~.min(Q) > t - C,~min(Q), or c' > c ~ C'2max(Q) - 1 > C2m.x(Q) - 1, 

and so the spectral  radius of I - c'Q must  satisfy 

p(I - c'Q) > p(I - c Q ) .  • 

THEOREM 1. Let  A = L L  r be a factorization o f  the symmetric positive definite 

matrix A, and let M1 and M z be two symmetric positive definite matrices such that 

p(I - c l L - t M 1 L  - r )  < p(I  - c2L-1MzL-T),  where ci = t /2 , (L-1MiL-T) ,  i = 1,2. 

Then 

(t.1) p(I - k I M ~ I A )  < p(I - ~ 2 M z l A ) ,  where ci = t/2a(M~-IA), i = 1,2, 

and 

(1.2) x ( M [ 1 A )  < ~c(MylA) • 

PROOF: Because of  the choice of  c~ and  cz, we have 

p(l  - cil5-1MiL- r) = 2max(L " 1MiL- T) _ _  2min(L- 1Mi L- T) 
2max(L- 1Mi U T) --~ ,~min( L- 1MiL- T),  i = 1,2. 
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The eigenvalues of g-lMi L- T i = 1,2, are just the inverses of the eigenvalues of 
LrM71L,  or, of M~- 1A. Hence we have 

2m~x(M71 A) ~ - 1 - -  Amin(M i A) = ~c(M~- 1A) - -  1 
p(I -- c ,L-~MiL -T) = /~max(M/_ I A  ) 7 2mi.(M[1A) ~(M/- 1A) + 1" 

x - 1  
Since - - - -~-  is an increasing function of x for x _> 1, the result (1.2) follows. 

x +  
Because of the choice of G and d2, the right-hand side is equal to the spectral radius 
o f / -  6 iMfaA ,  and so result (1.1) follows as well. • 

The symmetric matrix I - U 1 M L - r  is an affine function of the elements of M. 
Theorem 1 shows that if M1 minimizes the spectral radius of this matrix over all 
symmetric preconditioners M belonging to some set which also contains all positive 
scalar multiples of its members, then M1 (or any positive scalar multiple of M1) also 
minimizes the ratio of largest to smallest eigenvalue, K(M-1A), and there is a scalar 
C1 such that ci-1M~ minimizes the spectral radius, p(I - M - I A ) ,  over this set. The 
scalar ~ is defined in Lemma 1. 

In the following examples we find the matrix M in a given set which minimizes 
p(I - L -~ML-r) .  Theorem 1, together with the previous discussion, justifies refer- 
ring to this matrix (or any positive scalar multiple of this matrix, since scalar factors 
do not affect the condition number) as an "optimal" preconditioner from the set for 
use with the Chebyshev method. It shows that the appropriate scalar multiple of this 
matrix is the "optimal" preconditioner from the set for use with iterative refinement. 
Other criteria are possible for defining a good preconditioner for the conjugate 
gradient method [e.g., 2, 3, 9, 22, 23, 29]. These ideas generally involve the minimi- 
zation of a weighted Frobenius norm of the difference between the preconditioned 
matrix and the identity. They are easier to minimize than the condition number, but 
a small Frobenius norm is neither necessary nor sufficient to ensure fast convergence 
of the conjugate gradient method. The condition number is a reasonably simple 
measure, and if there is a matrix M in the set for which this measure is small, then the 
conjugate gradient method with this preconditioner will have guaranteed fast 
convergence. 

This same idea of minimizing the condition number was actually pursued for 
a certain class of preconditioners much earlier by Concus and Golub [8]. They 
considered 1-D model problems and used a code by Fletcher [ 16] to find an optimal 
diagonal scaling of the Laplacian to use as a preconditioner. 

2. Theoretical results. 

There are few theoretical results concerning optimal preconditioners for most 
possible sparsity patterns. An exception is the case of diagonal and block diagonal 
preconditioners. Van der Sluis [30] proved the following theorem about diagonal 
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scaling of a symmetric positive definite matrix A: 

THEOREM (VAN DER SLUIS). Let D be the diagonal of the symmetric positive definite 
matrix A, and let D be any other positive definite diagonal matrix. Then ~:(D- 1/2 A D -  t/2) 
satisfies 

to(D- 1/ZAD - l/z) _< m ~(/)AD), 

where m is the maximum number of nonzeros in any row of A. 

Thus, D = diag(A) approximately minimizes ~c(M- 1A) over all diagonal preeondi- 
tioners M. When the matrix A also possesses property-A, (that is, when A can be 
permuted into the form 

where D 1 and D2 are diagonal matrices), a stronger result holds [17]: 

THEOREM (FoRSYTHE & STRAUSS). Using the above notation, if the symmetric 
positive definite matrix A has property-A, then ~c(D - I/2 AD- 1/2) satisfies 

to(D- t/2 AD- 1/2) <_ tc(bAD). 

In this case, then, D = diag (A) is the optimal diagonal preconditioner for the matrix A. 
A generalization of the Van der Sluis theorem has also been proved for block 

diagonal preconditioners [7]. 

THEOREM (DEMMEL). Let D be the block diagonal of the symmetric positive definite 
matrix A, and let b be any other symmetric positive definite block diagonal matrix with 
the same size blocks. Then ~(D- 1/2 AD- i/2) satisfies 

~c(D - 1/2AD- 1,/2) ~ b lc(/)A/)), 

where b is the number of blocks in D. 

A result similar to that of Forsythe and Strauss has also been proved for block 
diagonal preconditioners [14], when the matrix A is block 2-cyclic and is permuted 
into the form 

l)i. 0 ... 0 i o, o 
(2.1) A = 1 ; D~ = . . ; i =  1,2 

D2 
0 ... Dim 

THEOREM (EIsENSTAT, LEWIS, SCHULTZ). Let A be of the form (2.1), and let D be the 
block diagonal matrix whose diagonal blocks are {D1.1,..., D l,r, , D2,1 . . . . .  D 2,r:}. Let 
b be any other block diagonal matrix with the same size blocks. Then ~c(D- I/ZAD- 1/2) 

satisfies 
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K(D- 1lEAD- 1/2) < x(DAD). 

A simple proof of these last two theorems is given in [15]. 
There appears to be little known theoretically about optimal preconditioners of 

more general sparsity patterns; e.g., tridiagonal or banded. There is, however, 
a useful theorem due to Varga [31] for comparing "regular splittings" which, in 
some cases, enables one to determine the optimal preconditioner among all regular 
splittings of a given sparsity pattern. (More general, but less simple, versions of this 
theorem can be found in [10].) 

DEFINITION. For n x n real matrices A, M, and N, A = M - N is a regular 
splitting of the matrix A if M is nonsingular with M -  1 > 0, and N _> 0. 

THEOREM (VARGA). Let A = M 1 - NI = M 2 - -  N 2 be two regular splittings of A, 
where A -  x > O. I f  N 2 > N 1 >_ O, (and neither N 1 nor N 2 - N 1 is the null matrix), then 

1 > p(M2 XN2) > p(M~ 1N~) > O. 

This theorem implies that among all regular splitting matrices M of a given 
bandwidth, for example, the optimal one for minimizing the spectral radius of 
I - M -  1 A is M = band (A). This matrix is closer element-wise to A than is any other 
member of the class, and so, by the theorem, is a better splitting, or, preconditioner. 
As will be shown in the following examples, however, there may be better banded 
preconditioners outside the class of regular splittings. This theorem is quite general 
and important to remember. Unfortunately, however, many of the most effective 
preconditioners are not regular splittings, and so it is of limited applicability. 

It should also be noted that because the set of regular splittings does not contain 
all positive scalar multiples of its members, the matrix, say, ~t, from some class of 
regular splittings, which minimizes p(I - M -  1A) over that class does not necessarily 
minimize ~(M- IA). The hypotheses of Varga's theorem, together with the assump- 
tion that A, M~, and M~ are symmetric and positive definite, do not imply 
~(M; 1A) <_ tc(M 21A). Only if the matrices M~ and c 2 M  2 - where c 2 minimizes 
p(I - eM~ IA), as explained in Lemma 1 - only if these matrices satisfy the hypo- 
theses of Varga's theorem would it also follow, from Theorem 1, that ~(M~ 1A) _< 
K(M;~A). With a weaker assumption about the matrix M2, however, it can be 
shown that ~(M;  IA) < 2 ~c(M 21A). 

THEOREM 2. Let A, M1, and M 2 be symmetric positive definite matrices satisfying 
the hypotheses of Varga's theorem, and suppose the largest eigenvalue of ME ~A is 
greater than or equal to 1. (This would be the case, for example, if A and M 2 have at 
least one diagonal element equal, since then the symmetric matrix N 2 would have a zero 
diagonal element and hence M 21N 2 would have a nonpositive eigenvalue.) Then the 
ratios of largest to smallest eigenvalues of M ;  1A and M 2 ~ A satisfy 

x ( M ;  XA) < 2 x(M~ XA). 

PROOF: Since the elements of M ~ N z  are nonnegative, the Perron-Frobenius 
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theorem states that its spectral radius is equal to its (algebraically) largest eigen- 
value: 

p(M;1N2) = p(I - M~tA)  = 1 - 2mi.(M ~- 1A). 

The result p(M~ 1N1) < p(M~ 1N2) from Varga's theorem implies 

1 - )Lrnin(M[1A) < 1 - ,,~min(M2"lA) and 2~,x(M~-~A) - 1 < 1 - )~min(M21A), 

or, equivalently, 

)Lmi,(MI-IA) > 2min(M21A) and 2max(M11A) < 2 - )~min(M2 IA). 

Dividing the second inequality by the first gives 

Ic(M[ 1A) -< ~c(M] IA)(2 - )~min(M21A))/A~a~(M] iA) < 2 tc(M 21A) 

with the last inequality holding because 2max(M 21A) _> I, and ;Lmi,(M] 1A) > 0 since 
p(M 21N2) < 1. • 

A somewhat more general result can be proved for symmetric matrices. 

DEFINITION. A splitting A = M - N is said to be a weak regular splitting of the 
matrix A if M is nonsingular with M -  IN > 0. 

We then get the following comparison theorem. 

THEOREM 3. Suppose A and M are symmetric positive definite matrices such that 
A = M - N is a weak regular splitting of A. Let MQ = M + Q for some symmetric 
matrix Q such that vr Qv > 0 whenever v >__ 0 (e.g.,for a positive semi-definite matrix 
Q or for a matrix Q with nonnegative elements). Then 

p(M-  ~ N) <_ p(M~. 1NQ) 

where A = MQ -- NQ. 

PROOF. Let 2rain(M-1A) and 2min(M~lA) denote the smallest eigenvalues of 
M - ~ A  and of M~IA,  respectively. Since M - 1 N  has nonnegative elements, the 
Perron-Frobenius theorem states that its spectral radius is equal to its (algebraical- 
ly) largest eigenvalue. Hence we have 

p(M-  ~N) = p(l - M -  ~A) = 1 -- ).min(M- ~A)- 

If ~ is the eigenvector corresponding to the largest eigenvalue of M-~N, then the 
Perron-Frobenius theorem also states that the elements of f are nonnegative. Hence 
~L~in(M-1A) also satisfies 

fTAf  fTAf  vTAv 
2min(M-1A) - fVMf  > ~rMf  + 5TQf > m i n - -  -- 2m~.(M~IA), u¢O vTMQ v 
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and from this the desired result follows: 

p(M~_INo)  = p(I  -- M ~ I A )  >_ 1 -- 2,~i , , (M~IA) >- 1 - ) .m i . (M-1A)  = p ( M - 1 N ) .  

Theorem 3 shows that while the optimal preconditioner of a given sparsity pattern 
may not be a regular splitting or even a weak regular splitting, it cannot be of the 
form M + Q, where M is a weak regular splitting and Q is as described in the 
theorem. To have a possibility of improving upon the optimal weak regular split- 
ting, one must add a matrix Q such that vTQv can be negative when v is nonnegative. 

Other work on iterative methods has focussed on preconditioners that are 
"optimal" in a different sense from that being considered here [e.g., 1,2]. Multigrid 
methods and algebraic multilevel methods, for example, are "optimal" in the sense 
that the preconditioned matrix has condition number O(1), independent of the size 
mesh from which the linear system was obtained (assuming that the linear system 
comes from a finite element approximation to an elliptic partial differential equa- 
tion). In this paper, to be considered "optimal", a preconditioner of the form of the 
multigrid or algebraic multilevel preconditioner, must not only give a condition 
number O(1), but the constant must be as small as possible, too. 

3. Experimental results for the 5-point Laplacian. 

In the following sections we report experimental results using the Overton 
optimization code [28] to find the matrix M of a given form which minimizes 
p(1 - L -  ' M U T ) ,  for a given matrix A = LU. According to Theorem 1, an approp- 
riate scalar multiple of this matrix also minimizes p(I  - M -  ' A) and any scalar 
multiple of this matrix minimizes ~(M- 1A) over all matrices M of the given form. 
The matrix A was taken to be the 5-point Laplacian on a square with Dirichtet 
boundary conditions: 

(3.1) A 

D1 E1 ] 
U. 02 

Em- 1 

E~_ 1 Dm 

D i  = , El = , 

- 1  - 1  

i =  1,...,m. 

In most cases, the matrix M was taken to have a fixed sparsity pattern, e.g. 
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diagonal or tridiagonal. The matrix I - U 1 M E  r can then be expressed in the form 

I - -  L - 1 M L  - r  = I - ~ M k q V  lk'q), 
k q 

where the sum is over all indices (k, q) such that Mkq is allowed to be nonzero, and the 
matrices V (k'q~ are given by 

(vlk'q))i  J = ( L - l ) i g ( L - 1 ) j q ,  i , j  = 1 . . . . .  n. 

The matrices I and - V ~k'q), (k, q) s {indices of free elements of M}, are the input to 
the optimization code. 

In some cases, slightly different forms for M were considered. For example, in one 
experiment, we found the matrix M -  ~ having the same sparsity pattern as A, for 
which p ( I  - L r  M -  ~ L)  was minimal. This is equivalent to minimizing p ( I  - M -  1 A) ,  

and from Theorem 1, this also minimizes ~(M- IA) over all matrices M -  1 with the 
given sparsity pattern. The elements of L r M -  I L are again linear functions of the free 
elements of M -  1, and so p ( I  - L r M -  ~L) can be minimized with the same optimiz- 

ation code. 
Another preconditioning problem considered was one involving not A but the 

Schur complement C in A of a block corresponding to a dividing line in the center of 

the square domain: 

ff21 

/"3 

f22 

If nodes in ~21 are numbered first, then nodes in 0 2, and finally nodes on the 

boundary F a, then the matrix A takes the form 

(3.2) 
- K i i  0 K13 ] 

A = 0 K22 K23 / 
K r K~a Ka3_] _ t3 

The Schur complement of K3a in A is defined as 

= _ _ K 2 3 K z z  K23, (3.3) C K33 K T 3 K l l t K I 3  7" - 1  

and the problem of solving a linear system with coefficient matrix A can be reduced 
to one of solving a smaller linear system with coefficient matrix C. This the is basis of 
many domain decomposition methods [6]. One still needs a good preconditioner 
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for the matrix C, and here we considered preconditioners with a given sparsity 
pattern; e.g., tridiagonal, as well as certain other forms; e.g., Toeplitz. Again, the 
matrix C was factored in the form L L  T, and the function p(I  - L - I M L  -T)  was 
minimized. This is a convex function of the nonzero elements of M (when M is 
restricted to have a certain sparsity pattern) or of the values on each diagonal of 
M (when M is restricted to be Toeplitz). 

Many of the most efficient preconditioners M are easy to solve not because they 
themselves have a special sparsity pattern, but because they are of the form K K  r, 

where K is a lower triangular matrix with a simple sparsity pattern; e.g., that of the 
lower triangle of A. The problem of finding the matrix K of a given form which 
minimizes p( I  --  L -  t K K T L -  T) is more difficult than the previously described prob- 
lems, however, because the matrix 

(3.4) I - L - 1 K K T L  - T  

is not  an affine function of the elements of K. Moreover, its spectral radius is not 
a convex function of K, and the function may have local minima. 

The optimization code is easily modified to handle the case of matrix elements 
which are nonlinear functions of the unknowns, but there is no guarantee that the 
solution it finds will be the global minimum. Still, it will be shown in the numerical 
examples that the optimization code is able to find preconditioners of the form (3.4), 
where K has a fixed sparsity pattern, that are significantly better than many 
currently used preconditioners. We considered matrices K having the same sparsity 
as the lower triangle of A, and compared the preconditioner K K  r returned by the 
optimization code with the incomplete Cholesky decomposition [27], the modified 
incomplete Cholesky decomposition [21], and the SSOR preconditioner [33]. 

Experiments that have been carried out so far are for very  small problems. It is 
planned to continue this work on larger problems when the optimization code has 
been ported to larger and faster machines. It should be stressed that this is not meant 
as a practical means for finding a good preconditioner for a given problem. It is much 

easier to solve the linear system than it is to find the optimal preconditioner of 
a given class. Rather, the optimization code is meant to provide insight into the 
properties of preconditioners and to be used as a test of conjectures about optimal 
preconditioners. If the optimal preconditioner of a certain form for a given problem 
does not  give rise to a preconditioned matrix with small condition number, then it is 
not worthwhile considering preconditioners of that form (unless such preconditio- 
ners can exhibit other desirable properties, such as tight clustering of most of the 
eigenvalues). On the other hand, if the code shows that there is a good precondi- 
tioner of the given form, then it still may or may not be possible to compute such 
a preconditioner in a reasonable amount of time. 
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3.1. Diagonal preconditioning for A. 

As a check on the code, we first tried computing the optimal diagonal preconditio- 
net for the matrix A of (3.1). According to the Forsythe and Strauss theorem of 
Section 2, this is simply D = diag(A). Indeed, even from very far off initial guesses, 
the code always converged to M = diag(A) and indicated that it had successfully 
found the minimum. This gave us confidence to try problems for which the answers 
were not known. 

3.2. Tridiagonat preconditioning for A. 

By numbering the odd block-rows and block-columns first and the even ones last, 
the matrix A of(3.1) can be permuted into block 2-cyclic form, without changing the 
diagonal blocks. It follows from the Eisenstat, Lewis, Schultz theorem of Section 2, 
that the optimal block diagonal preconditioner for A is D = block diag(A). This 
matrix is also tridiagonal. It also follows from Varga's theorem that among regular 
splittings this is the optimal tridiagonal preconditioner. The optimization code was 
used to compute the best tridiagonal preconditioner for A (which is not necessarily 
a regular splitting), and it was found to be slightly better than the block diagonal 
matrix D. Fig. 1 shows condition numbers for A, D-1A, and M-1A, where M is the 
optimal tridiagonal preconditioner, plotted against h- 2. From the figure, it appears 
that all of these matrices have condition number O(h- z), and based on these results 
we make the following conjecture: 

CONJECTURE 1. Let Ah be the 5-point Laplace matrix of(3.1), for grid size h, and let 
Mh be any symmetric positive definite tridiagonal preconditioner for Ah. Then the 
condition number ~c(M~- 1Ah) of the preconditioned matrix satisfies 

~c(MhlAh) >_ O(h-2). 

Based on these results we conclude that tridiagonal preconditioners for A cannot 
be very effective, in terms of giving a small condition number, for small values of h. 
Additional experiments were performed to find optimal preconditioners of slightly 
larger bandwidths, but again they appeared to give condition numbers for the 

preconditioned matrix that were O(h-2). 
The elements of the optimal tridiagonal preconditioner for different values of 

h are listed in Table 1. The tridiagonat matrix given in the table has been multiplied 
by an appropriate constant so that it minimizes p(I - M-~A)  (although the code 
actually computes the tridiagonal matrix which minimizes p(I - A - 1M)). Only half 
of the elements of each diagonal are listed because the preconditioners are persym- 
metric (symmetric about their northeast to southwest diagonal), as would be 
expected due to the symmetry of the problem. This restriction was not enforced on 
the class of matrices from which the optimal one was to be found, and so it gives 
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further evidence that the optimization code is functioning correctly. Also given in 
Table 1 are some of the eigenvalues of the preconditioned iteration matrices 
I - M -  ~A. Note that for all problems sizes, the largest and smallest eigenvalues of 
the preconditioned iteration matrix each have multiplicity 2. Based on this evidence 
we make the following conjecture: 

CONJECTURE 2. Let A h be the 5-point Laplace matrix of(3.1) for grid size h, and let 
M h be the optimal tridiagonal preconditioner for A h. If 21 < ~,2 ~ . . .  ~-- '~n-1 "( /~n 

are the eigenvalues of M h ~A h, then the largest and smallest eigenvalues satisfy 

21 = 22, 2n -1  = An" 

3.3. A p p r o x i m a t i o n  to A -  1 w i th  same  spar s i t y  as  A.  

Upon computing the inverse of the matrix A of (3.1), one finds that the larger 
elements of the inverse are on or near diagonals in which A has nonzeros. In fact, it is 
shown in [11] that elements of A-  1 decay exponentially away from these diagonals. 
It therefore seems reasonable to consider an approximation M -  1 to A- 1, which has 
nonzero entries only in the diagonals where A has nonzeros. If an effective precondi- 
tioner of this form could be found, it would result in a highly vectorizable or 
parallelizable algorithm, since "solving" the preconditioner would now just mean 
multiplying by a sparse matrix. The optimization code was used to find the matrix 
M-1 having nonzeros only in the five diagonals where A has nonzeros, for which 
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Table t. Optimal tridiagonat preconditioners for A. 

h=1/5 h=  1/6 h=  1/7 

eigenvalues 
--0.63~ --0.634, -0.255, 
-0.230,0.020,0.070 . . . .  
0.314,0.375, 0.437 
0.487,0.634, 0.634 

eigenvalues 
--0.732, -0.732, -0.406, 
-0.400, -0.034, -0.031 . . . .  
0.507,0.575,0.593, 
0.610,0.732,0.732 

eigenv~ues 
-0,798,-0.798, -0.539, 
-0.508, -0.188, -0.182 . . . .  
0.671,0.679,0.692, 
0.699,0.798,0.798 

diagonal subdiagonal diagonal subdiagonal diagonal subdiagonal 

4.4111 
4.7698 
5.0153 
5.2966 
4.9314 
4.9285 
4.9806 
5.1583 
5.1583 

- 1.2754 
- 1 . 6 8 4 2  

- 1.8785 
- 1 . t 1 4 3  

- 1.5857 
-1.6675 
-1.7323 
- 1.2442 
- 1.7323 

4.5383 
5.1029 
5.7456 
6.1396 
6.3366 
5.6482 
5.6718 
5.8645 
6.0232 
6.2313 
6.0631 
5.9260 
5.9285 
5.9260 

- 1.3198 
- 1.8296 
-2.3460 
--2.4573 
-- 1.4563 
- 1.9397 
-2.4873 
-2.2516 
-2.2930 
- 1.7199 
-2.1707 
-2.1821 
-2.1821 

4.6009 
5.2721 
6.2098 
7.0826 
7.5027 
7.5623 
6.4873 
6.4556 
6.7498 
7.1391 
7.3354 
7.4991 
7.1410 
7.0021 
7.0845 
7. I929 
7.2359 
7.3990 
7.3990 

- 1.3366 
- 1.8816 
-2.5799 
-3.0903 
-3.1271 
- 1 . 8 4 8 7  

-2.3507 
-2.4075 
-2.7103 
-2.9591 
-2.9480 
-2.2456 
-2.6953 
-2.7208 
-Z8095 
-2.8771 
-2.8434 
-2.3548 
-2.8434 

•(M 1A) was as small  as possible.  

This  tu rned  out  to be a more  difficult p r o b l e m  for the op t imiza t ion  code, than  

ei ther  of  the prev ious  two cases. Us ing  a very coarse  mesh,  h = 1/3, the op t imiza t ion  

code  re tu rned  a so lu t ion  with the fol lowing caveat:  

" A p p a r e n t l y  op t ima l  (or very near ly  opt imal )  with non-un ique  so lu t ion  

(since a Lag range  mat r ix  near ly  singular)".  

The  eigenvalues  of  the mat r ix  I - M -  1A, for the c o m p u t e d  mat r ix  M -  t, were all 

equal  in magni tude ,  wi th  three being posi t ive and one negative. U p o n  res tar t ing  the 

code  f rom a different  ini t ial  guess, it  r e turned  with the same warn ing  message but  

a different  op t ima l  M -  1 F o r  this newly c o m p u t e d  ma t r ix  M -  1, the eigenvalues of  

1 - M - 1  A, were aga in  all equal  in magni tude ,  and  of  the same magni tude  as those 

prev ious ly  computed ,  but  this t ime three were negat ive and  one positive. The  

e lements  of the two different op t ima l  mat r ices  M -  1 are  given in Table  2. 

F o r  smal ler  values  of h, the p rob l em appea r s  to have a unique  solut ion.  The code 

was able  to find and  identify as such the op t ima l  M -  1, for h = 1/5. F o r  h = 1/4, i /6,  
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Table 2. Two "optimal" matrices M -  i with same sparsity pattern as A (h = 1/3). 

eigenvalues eigenvalues 
- 1.429, 1.429, 1.429, 1.429 - 1.429, - 1.429, - 1.429, 1,429 

diag 1st subdiag 2nd subdiag diag 1st subdiag 2nd subdiag 

2.857e-01 7.143e-02 7.143e-02 2.857e-01 7.143e-02 7.143e-02 
2.500e-01 3.571e-02 7.143e-02 3.214e-01 3.571e-02 7.143e-02 
2.500e-01 7.143e-02 3.214e-0t 7.143e-02 
2.857e-01 2.857e-01 

and 1/7, attempts at finding the minimum resulted in the code halting with the 
message 

"radius too small" 

indicating that its trust region radius had been reduced below the machine precision 
and it had been unable to find a descent direction. Restarting, in the case h = 1/4, 
resulted in the code finding approximately the same "solution", but this time giving 
the message "Apparently optimal (or very nearly optimal) with non-unique sol- 
ution." In the case h = 1/6, several restarts resulted in the code finding approximate- 
ly the same "solution", but still halting because the trust region radius was too small. 
A restart in the case h = 1/7, however, resulted in the code finding a significantly 
different approximation and identifying it as optimal. The spectral radius of 
I - M -  IA for this "truly" optimal M -  1 was .680, compared to .685 for the M -  1 at 
which it stopped the first time because of a too small radius. It is believed that the 
spectral radii returned by the code, for the different sizes of h, are all near optimal, 
though the actual matrices M -  1 may be significantly further from the optimal ones. 

An approximation to A - 1 that has been suggested in the literature [13, 22] is the 
following. If we write A in the form 

A = Di /2( I  - G)D 1/z 

where D is a diagonal matrix, and if the spectral radius of G is less than 1 (which it is 
for this problem), then A-1 is given by 

A-1 = D-1/2(1 + G + G z + . . . )D-1/2  

An approximation to A - 1 is obtained by retaining just a finite number of terms in 
the infinite Neumann series above. The approximation can be improved by multi- 
plying each term retained by a appropriate constant [22-]. If only one term is 
retained, then this approximation has the same sparsity pattern as A. Thus, A-  1 can 
be approximated by 

(3.3.1) M~ 1 ~ D- I /2 (Co l  + c l G ) D  - i /2  

When A is the 5-point Laplacian, the optimal constants are just Co = cl = 1. 
The condition number of A, that of M~-1 A, where M~ -1 is defined by (3.3.1), and 
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that of M- ~A, where M ~ is the optimal preconditioner having nonzeros only in 
diagonals where A has nonzeros (or, at least, the preconditioner returned by the 
optimization code) are plotted in Fig. 2. Note that the condition number ofM~- 1A is 
almost the same as that of M-  tA for all values of hi It should be noted, however, that 
in cases where the code was able to find a matrix which it identified as optimal, it was 
significantly different from the matrix in (3.3.1). The condition number of the 
preconditioned matrix was very nearly the same, but the eigenvalues of the optimal- 
ly preconditioned matrix tended to cluster somewhat more at the ends and less in the 
middle. For the h = 1/5 case, for example, for the optimal M -t ,  the matrix 
I - M-  1A had 5 eigenvalues equal to -.474, 3 eigenvalues equal to + .474, and no 
repetitions among the remaining interior eigenvalues. Using the matrix of (3.3.1), 
I - M~- ~A had 4 eigenvalues equal to -.486, 4 equal to -.393, 2 equal to -.344, 
4 equal to -.022, and 2 equal to +.486. 

It is known that a polynomial preconditioner of the form (3.3.1) can reduce the 
number of conjugate gradient steps (over the number required with just the diagonal 
matrix D as preconditioner) by no more than a factor of 2 (one plus the degree of the 
polynomial in G) [13]. It is also known that when A is the 5-point Laplacian, for 
small values of h, the condition number of the matrix M ;  t A is approximately i/4 
that of A. This is not apparent from Fig. 2, however, because only very coarse grid 
sizes are shown. Because the asymptotic behavior of preconditioner (3.3. t) cannot 
be predicted from the figure, we are wary of predicting the behavior of the optimally 
preconditioned matrix based on these results. From the figure, it would appear that 
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the condition number of the optimally preconditioned matrix is still O(h-2), but 
testing on larger problems is needed to see if this trend continues. 

One experiment was performed in which the approximation to A - ~ was allowed 
to have nonzeros in extra diagonals- the same diagonals in which the second degree 
polynomial preconditioner 

M21 - col + clG + c2 G2 

has nonzeros. In this case, the code again stopped with the message "radius too 
small," so it is not known how close it came to finding the optimal preconditioner of 
the given sparsity pattern. Still, the matrix M -  1 returned by the optimization code 
was considerably better than the polynomial preconditioner M~ ~ with the optimal 
coetficients, Co, cl, c2. For h = 1/5, the spectral radius of I - M - I A  was .208, 
compared to .260 for I - M ;  ~A. 

3.4. Preconditioners for the Schur complement C. 

In this set of experiments we found optimal preconditioners of various forms for 
the Schur complement matrix C defined in (3.3). The condition number of the matrix 
C is O(h- ~) and, in fact, its entire eigendecomposition can be derived using Fourier 
analysis [6]. Based on this, one can determine analytically the optimal Toeplitz 
tridiagonal preconditioner [31,7] (since any Toeplitz tridiagonal matrix has the 
same eigenvectors as C), and it can be shown that this preconditioned matrix has 
condition number O(h- 1/2). With the optimization code, we were able to determine 
the optimal tridiagonal preconditioner, without requiring that it be Toeplitz. This 
turned out to be a relatively easy problem for the optimization code, with the code 
returning a solution which it identified as optimal, for all values of h tested. It was 
observed, however, that especially for the smaller values of h, the optimal tridiagonal 
preconditioner for C was very nearly Toeplitz. In Fig. 3 are plotted the condition 
numbers of C, of K331C, where K33 is as defined in (3.2), of T-~C, where T is the 
optimal Toeplitz tridiagonal preconditioner for C, and of M-~C, where M is the 
optimal tridiagonal preconditioner for C, returned by the optimization code. Note 
that the curves for K(T- 1C) and for x(M- 1 C) are almost identical. In Fig. 3b, these 
two curves only are plotted versus h-~/2 Based on this evidence, we make the 
following conjecture: 

CONJECTURE 3. Let Ch be the Schur complement matrix corresponding to a cen- 
ter dividing line for the 5-point Laplace matrix on a grid of size h, as defined in (3.3). 
Let Mh be any symmetric positive definite tridiagonal preconditioner for Ch. Then 
the condition number ~c(M~- 1 Ch) of the preconditioned matrix satisfies 

•(Mh- 1Ch) > O(h- 1/2). 
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3.5. Preconditioners of the form K K  r, where K has the same sparsity as the lower 
triangle of  A. 

Several well-known preconditioners - e.g., the incomplete Cholesky (IC) and 
modified incomplete Cholesky (MIC) decompositions [26,21], and the symmetric 
successive overrelaxation (SSOR) preconditioner 1-33] - are of the form K K  r, where 
K is a lower triangular matrix with the same sparsity pattern as the lower triangle of 
A. As mentioned earlier, the problem of finding the optimal preconditioner of this 
form is not one of minimizing a convex function, and so the "solution" returned by 
the optimization code may not be the global minimum. The code can, however, be 
used to find a local minimum for the spectral radius of (3.4), when K is restricted to 
have the same sparsity pattern as the lower triangle of A. This also turned out to be 
a difficult problem for the optimization code, and in all cases, it reached a point at 
which it could go no further because its trust region radius had been reduced below 
the precision of the machine. Still, the preconditioner K K  r returned by the opti- 
mization code was significantly better than those proposed in the literature. Condi- 
tion numbers for the matrix preconditioned by the IC decomposition, the MIC 
decomposition, and the SSOR preconditioner are plotted in Fig. 4, along with that 
of the matrix preconditioned by K K  r, where K is the matrix returned by the 
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optimization code. It remains to be seen how much further this condition number 
can be reduced. 

4. Experimental results for other diffusion-type operators. 

To determine if other diffusion-type elliptic operators could be preconditioned 
more or less effectively than the Laplacian, we attempted to compute optimal 
preconditioners of some of these same forms for several other operators. The 
problems were all of the form 

V ' p V u = f  on(0,1) x(0,1), 

u(x, O) = u(x, l )  = u(O, y)  = u(1 ,  y)  = O, 

where the diffusion coefficient p was varied, The values of p considered were: 

(a) p(x, y) = 1 (as in the previous section) 

(b) p(x, y) = .01 + x 2 + y2. 

1 i fx  < .5 
(c) p(x,y) = 100i fx  > . 5  

/ 1 i fx  < ' 5 a n d y  < i /  
10 4 i f x > . 5 a n d y <  

(d) p(x,y) = 10 -4 i fx  < .5 and y _> 

5 i fx  > .5 and y >_ 

To avoid ambiguity in differencing around the discontinuities in p, a continuous 
piecewise linear finite element approximation was used to generate the matrix 
A corresponding to each of these operators. 

4.1. Diagonal preconditioners for A. 

Although a highly-varying diffusion coefficient, such as that in (d), results in a very 
badly conditioned finite difference or finite element matrix, it has long been known 
that a simple diagonal scaling could greatly reduce the condition number. In Fig. 
5 are plotted the condition numbers of the matrices for these four problems, after 
they have been scaled by their diagonals. According to the Forsythe & Strauss 
theorem, this is the optimal diagonal preconditioner for these matrices. Note from 
the figure that after diagonal scaling, the condition numbers for all of these matrices 
are nearly the same, with case (b) actually being somewhat better conditioned than 
the Laplacian (a). In cases (c) and (d), this condition number jumps slightly when the 
mesh size 1/h is not even. In this case, the finite element equations are a poor 
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approximation to the differential equation, anyway, because the discontinuity of p, 
and hence Vu, occurs within a mesh cell. 

It is also interesting to note that, although the optimal diagonal preconditioners 
for these problems are known, the optimization code had a great deal of difficulty in 
finding the solutions for cases (e) and (d). For the h = 1/4 grid, starting from an initial 
guess that was equal to twice the true solution, the code required 272 iterations to 
find the optimal diagonal preconditioner for case (c), compared to just 12 for case (b). 
In case (d), the code was stopped after 600 iterations when only negligible improve- 
ment had been made over the initial guess. The reasons for this difficulty are 
currently being investigated to determine if some rescaling or other modification of 
the problem can make the optimization job easier. 

4.2. Preconditioners of the jbrm DAD, where A is the Laplacian and D is diagonal. 

It was recently proved that the matrix A from an arbitrary second-order self- 
adjoint elliptic partial differential equation can be preconditioned by the matrix 
A corresponding to the Laplacian on the same grid and with the same boundary 
conditions so that the resulting preconditioned matrix has condition number O(1), 
independent of the mesh size [25]. Since the Laptacian is relatively easy to solve on 
a rectangular grid (and with an integral equation formulation, perhaps also on an 
irregular grid [26]), this might make an effective preconditioner. Unfortunately, 
however, the constant in the condition number bound can be quite large, and it is 
large for problems (c) and (d). One might ask if there is a simple modification of the 
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Laptacian that would still be easy to solve and would give a condition number that is 
not only O(1) but has a small constant as well. The simplest idea is to scale the 
Laptacian by some diagonal matrix D and use the symmetric matrix DAD as the 
preconditioner. This is the same form of preconditioner that was studied by Concus 
and Gotub [8], who determined the optimal such preconditioner for t-D problems. 

We used the optimization code to find the diagonal matrix D for which the 
spectral radius o f / -  L- 'DADL-  r was as small as possible, and where A = LL r was 
the matrix arising from problems (b-d). Again, the optimization code had difficulty 
with problem (d), so we omitted this from our results. In Fig. 6 are plotted the 
condition numbers for problems (b) and (c), preconditioned by the optimally scaled 
Laplacian-type preconditioner, DAD. Computations for case (c) were performed on 
somewhat finer grids than for case (b), as will be explained below. Although the 
condition number for each of these preconditioned matrices is bounded by a con- 
stant independent of h, we have not reached a small enough value of h to determine 
this constant. Clearly, problem (b) is very well-conditioned by the appropriate 
diagonal scaling of the Laplacian, and problem (c) is also reasonably well approxi- 
mated by such a preconditioner, for the grid sizes shown. 

The optimal diagonal matrix determined in problem (c) was especially interesting 
and has led to a new theorem about optimal preconditioners of this form. The proof 
of this result is too long to be included here but will appear in a following paper [20]. 
If nodes to the left of the discontinuity in p are numbered first, then nodes to the right 
of the discontinuity, and finally nodes on the discontinuity, then the optimal 
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diagonal sealing for the Laplacian-type preconditioner, as determined by the opti- 
mization code, has the following form: 

l dlI j 
D = d21 , 

d3I 

where d~, i =  1, 2, 3 are scalars and each block corresponds to one of the above 
mentioned subregions. Using this ordering of nodes, the matrix A arising from 
problem (c) has the form 

ICloH 0 clK13 ~ 
A c2K23|, = c2K22 

L clKT3 c2K~3 ¢3K33] 

where the blocks Ki#, i,j = 1, 2, 3 are the blocks of the Laplacian, and the constants 
c~, i = 1, 2, 3 are 

c 1 = 1 ,  c2=100 ,  c 3=50.5 .  

The preconditioner DAD returned by the optimization code then has the form 

I d~oK11 0 dld3K13 ~ 
(4.3.1) A = d2K22 d2d3K23[. 

Ldld3Kf3 dzdaKT3 d~K33 ] 
The scalars di, i = 1, 2, 3,are listed in Table 3, for grid sizes 1/h = 4, 6, 8. Seeing this 

pattern, we were able to go to finer grid sizes by restricting the preconditioner to be 
of the form (4.3.1), and having the optimization code determine only the best scalars 
d i, i = l, 2, 3. These are also listed in Table 3, for 1/h = 10, 16, and the corresponding 
condition numbers are plotted in Fig. 6. The condition number of the precondi- 
tioned matrix still has not reached its asymptotic limit, however, and one cannot 
determine from the numerical results alone what that limit is. Having seen these 
numerical results, however, we were able to prove the following theorem. For a more 
general statement and proof of this theorem, the reader is referred to [20]. 

THEOREM. For the problem (c) defined above, with grid size h, the optimal matrix D h 

is of the form 

d2 hi2 h da,hI3,h t I 
dl ,hll,h , , 
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Constants definin9 the optimal preconditioner of the form DAD. 

1/h dl 

1.97 

1.94 

1.9t 

d2 

16.92 

14.60 

13.05 

d3 

13.52 

12.77 

12.08 

10 1,89 11,98 11.49 

16 1.88 10.05 10.05 

where d 1,h, d2,h, and d3, h are positive scalars and 11,h, I2,h, and I3, h are identity matrices 
correspondin9 to the left half of the domain, the right ha~ of the domain, and the center 
dividin9 line, respectively. In the limit as h goes to zero, the scalars dl,h, dz,h, and d3. h all 
approach the same limit. Thus, in the limit as h goes to zero, the condition number of the 
optimally preconditioned matrix approaches that of the matrix preconditioned by the 
simple Laplacian, which is just Pmax/Pmin = 100. 

Experiments with 1-D problems have shown that this limiting behavior may not 
be observed until the grid size is really very fine. (At grid size 1/h = 226, the 
condition number was still only about half of its asymptotic limit, and dl was not 
close to dz.) It is interesting to note, however, that at grid size 1/h = 16, in the 2-D 
problem, d2 is already equal to d 3. These two scalars match on relatively coarse 
grids, while it is only for much finer grids that the scalar d 1 approaches these two. 

5. Conclusions. 

We have demonstrated a very useful tool in the study of preconditioners. Again, 
an optimization code is not usually a practical method for finding a good precondi- 
tioner for a given problem, but rather it is intended to give insight into the properties 
of preconditioners and the forms of matrices that can or cannot be potentially 
effective preconditioners. Results from the code have led to several conjectures and 
a new theorem about preconditioners of various forms. 
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