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TOWARDS ACCURATE STATISTICAL ESTIMATION
OF ROUNDING ERRORS
IN FLOATING-POINT COMPUTATIONS

SEPPO LINNAINMAA

Abstract.

A new method of estimating o posteriori the statistical characteristics of the
rounding errors of an arbitrary algorithm is presented. This method is based on a
discrete model of the distribution of rounding errors which makes more accurate
estimates possible. The analysis is given for both rounding and truncating arith-
metic. Finally, some experimental results are reported.

1. Introduction.

The accumulated rounding error Ry of the resulting value uy of a
numerical algorithm can generally be expressed quite accurately by a
Taylor expansion of first degree with respect to the local errors r,, of
the initial and intermediate values ,; of the algorithm [10,5]. Thus

) Ry ~ 36y,

for some coefficients ¢;. In statistical analysis the local errors r,, are
usually treated as mutually independent random variables, and thus
the expected value ERy and variance D2Ry of Ry can be estimated using
formulae [1]

(2a) ERy ~ 3, c;lr,, ,

(2b) DRy ~ 3, ¢2Dr,, .

Estimation of the behavior of By may be attempted when the com-
puting process has either arbitrary or fixed initial values. The former
case involves the use of global amalysis. In this type of analysis, an
attempt is made to estimate a priori the general behavior of the rounding
errors in a certain computing algorithm.

Local analysis involves the use of fixed initial data. Of course, with
given initial values and a fixed arithmetic, By is unique, but in this case
the analysis is concerned with clarification of the behavior of Ey when
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the computing precision is varied or when the initial values are slightly
perturbed.

This article describes a new discrete model of the distribution of
r,,, for the purposes of local analysis. Used together with an existing
effective a posteriori algorithm for determining the coefficients ¢; in (1)
with fixed initial data [5, 11], more accurate estimates can be made for
the characteristics of R, than was previously possible. The analysis is
given for both rounding and truncating arithmetic.

A more thorough treatment of the results of this article is given in the
report [7], together with other existing methods for the statistical
estimation of rounding errors on the basis of the Taylor expansion (1}.
In that report the analysis is also given for a computer-oriented unbiased
arithmetie, called parity arithmetic [6].

2. The idea of discretization.

The following considerations are based on the generally used norma-
lized signed-magnitude representation of a real number u to base b

3) % = 8§, X (0.8l . . Yy x b = 8, [, 0% w0 u =0,
3oy 1

where s,e{—1,1} is the sign, f, the fraction and e, the exponent of u. In
a computer u is rounded to t digits. Thus a floating-point number of pre-
ciston 1, fl(u,t), is obtained. The number

(4’) Ty = fZ(’b&,f) —U

is known as the (absolute) rounding error of the number fl(u,1).

It has been shown both experimentally and theoretically that the
fraction f, of an arbitrary non-zero real number %, used in computations,
obeys approximately the logarithm low [4]. This means that log,f, is
uniformly distributed in the interval [ —1,0). On this basis it is possible
to determine the probability p,; that the kth digit u; of an arbitrary
non-zero real number » is equal to 5. We have [7]

log,(1+1/j), k=1, j=12,...,b—1,
(5) Dri = {1/b+((b—1)/(2bInb)) (b— 2j — 1)b~"+ O(b~2"),
b=23,..., j=01,..,b-1.

On the basis of (5) it is natural to expect r, to be practically uniformly
distributed for all practical values of the precision ¢, since b=% can be
assumed to be negligible with respect to 1/b when k1.

Thus the usual assumption that the local absolute rounding error is
uniformly distributed between its extreme values [e.g. 1, 2, 3] is quite
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well justified, and is surely accurate enough for the purposes of global
analysis. However, it is obvious that when two floating-point numbers,
containing at most ¢ non-zero digits, are added, subtracted or multiplied
the resulting value is a terminating real number. Thus it is possible to
obtain more accurate estimates for the distribution of local rounding
errors in local analysis by treating local rounding errors as discrete
rather than continuous random variables. The most significant discre-
pancy between discrete and continuous models occurs in additions and
subtractions.

3. Some practical units.

As we are performing a statistical analysis, a number « to be rounded
should not be thought as a fixed number but as one which may attain
all the values which are produced when the operands producing » are
perturbed slightly without increasing the number of their significant
digits. Thus the digits %, ¢==1,2,... in representation (3) are, except for
the first few, not unique in local analysis. If it is known that u, u,,. . .,%;
may differ from zero, but that u,=0, i >, then » may be represented as

(6) %= 8, X (Qagty. . .oyl x 0%, uy £ 0 if w0,

The concept of the number unit n,, (to the base &) of % is now introduced
and defined to be the largest possible number of the form &%, where k is
an integer, such that all possible values of % are reached by multiplying
this number by an integer. Since the number zero is reached by multi-
plying any finite number by zero, it is natural to assume its number
unit to be oo. Correspondingly, it is natural to assume the number
unit of u to be zero, if it has no such terminating representation as (6).
Thus

oo, ifw =0,
(7 Ty =10, if % hag no terminating representation,
b=t = (0.0,0,. . . 0,_;1,), x b%, otherwise ,

where [ is as defined in (6).

When the number « is rounded to fl(u,t), the unit of the least signi-
ficant digit which still can be expressed, called the machine unit of the
number %, is defined as?

8 b =5, % (0.0405. . .0 1)), x B, w0,
(8) M = {0 , u=0.

1 The case of renormalization is not noted since it occurs very rarely, in statistical
sense, and this article deals with statistical analysis.
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Further, the rounding unit of u is defined as
(9) dy = nyflmy,| .

Obviously, d,2 1 implies fl{u,t)=u. If d<1, then the number of digits
to be rounded is equal to { —¢= —log, d,,. If u is a product of two floating-
point numbers, then I —¢ normally equals ¢ or t — 1. In the case of division
1—1t is normally oo, and if w is a sum or difference then any positive inte-
ger value of [ —{ is possible, although small values occur more frequently
than large ones [9].

4. A method for statistical analysis of rounding errors.

As previously mentioned, it is natural to expect that if 0<d,<1
then the number (0.u;,,%;.5...%), attains all its possible values with
equal probability, i.e.

(].0) P{(O.ququ. " .ul)b = ’l;du} = du, 7: = 0,].,. . .,du—l"“l y

where P{4} denotes the probability of event 4.

There exists an obvious and quite troublesome exception to distribu-
tion (10). It occurs when # is the sum (or difference) of two floating-
point numbers, say v and w, having quite different exponents. If the
perturbation which causes the statistical distribution is quite small, then
only the last few digits of (0.u; 4% .s. . %), vary (see Fig. 1} and (10)

VVV VUV UOVY
+ WWWWWwWWWWw

UUUUUYUUUUYUYUU

Figure 1. Addition of two floating-point numbers of different magnitude such that the
perturbed digits (underlined) do not essentially affect the rounding error of the addition.

obviously does not hold. This effect is clearest when ¢,—e¢,,>#. In roun-
ding arithmetic, for example, the rounding error is then always equal to
—w. This failure in formula (10) is not easily corrected, but neverthe-
less the theory does not break down since it is concerned with statistical
considerations and large values of |e,—e,| appear quite seldom, as the
article by Sweeney [9] demonstrates. In addition, (10) always essenti-
ally holds when ‘“‘perturbation’” means computation by varying preci-
sion. In such cases t varies and thus the positions of the digits of # chosen
in (10) also vary.
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In view of the rounding rules of rounding! and truncating arithmetic,
(10) implies, provided that d, <1,

(11a) Br, = id,m,, Dr, = (1/12)(1—d2)m?, 1, € [-(§—d,)my, dm,]
for rounding arithmetic with even b,

(11b) Er, =0, D%, = (1/12)A —d,)m,?, r,€[—H(1—dym,, $(1—d,)m,]
for rounding arithmetic with odd b, and

(1) Br, = —3(1—-dm,, D, = (1/12)(1—d,2m,?, r,e[—(1—dy,)my 0]

for truncating arithmetic. As noted after (9), d= 1 implies Er,=D%,=0.

When formulae (11) are employed in (2), our accurate local method for
estimating the distribution of rounding errors is obtained.

The utilization of (11) requires the value of the rounding unit d,.
Equation (9) can be used to determine this value once the value of the
number unit n, is known. Determining the value of the number unit is
not a trivial problem since, when a number is computed with a computer,
only its rounded and not its accurate value is known. However, there
exist quite obvious formulae for this purpose, utilizing the number
units of the operands producing u [7].

In binary-based computers (i.e. b =2 for some integer k) our accurate
local method can be further refined, in gome situations, when binary
number units are used, instead of the number units to the base b.
E.g. the special properties of the number 2 as a multiplier and a divisor
will be automatically observed if n,=(10),=2.

It is interesting to note that the well-known [8] but until now un-
measurable bias of rounding arithmetic can be measured using (11a).
It has statistical importance only when the number of digits to be
rounded is small. As Sweeney [9] has found experimentally, this situa-
tion is quite common in addition and subtraction. Thus, it is not sur-
prising that the bias of the rounding arithmetic can clearly be obser-
ved in the experimental results reported below. It is natural for the
bias to become stronger with smaller base numbers, since the maxi-
mum value of Er, is $m,b~1.

5. Application to matrix inversion.

In the experiment described below, in which a matrix is inverted
using the Gauss-Jordan method, the present method of estimation is

1 In rounding arithmetie, my/2 is added to u, before truncation.
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tested with the algorithm and the initial data remaining fixed but the
precision of the arithmetic being varied. This is a typical local problem.

In order to perform this experiment, a 5 x 5 matrix was constructed
whose elements were random numbers obeying the logarithm law, with
random signs and the absolute values chosen from the interval (3, 2).
The column vectors of this matrix were orthonormalized using the
Gram-Schmidt method. The matrix U thus obtained was employed as
the eigenvector matrix of the final test matrix 4=UAU?. The eigen-
values of A4, i.e. the diagonal elements of the diagonal matrix A, were
positive random numbers chosen from the interval (2-8, 26). Thus the
following random matrix was obtained:

8.293 -—2.210 7.697 —1.977 10.14
—2.210 2205 -—5.222 —11.39 2.308
A ~ 7.697 —5.222 9.265 —1.837 8.848
—1.977 —11.39 —1.837 9.671 —4.946

10.14 2,308 8.848 —4.946 13.99

whose inverse is

7.021 4.365 4.185 3.719 -7.142

4.365 4991  5.867 4.821 ~5.993

A1 4185 5.867 7464 5.767 —6.684
3.719 4.821 5.767 4.868 -5.417

—7.142 —5.993 —6.684 —5.417 8.550

The largest and smallest eigenvalues af 4 are 30.642 and 0.035014.

An arithmetic simulator, programmed for a Burroughs B6700 com-
puter, was utilized in these experiments, thus enabling the use of diffe-
rent bases, rounding rules and precisions. The “exact’ inverse of 4 was
first computed employing a precision of 300 bits and the fact that
A1=UA-UT, Element (2,3) of A1, having a value of 5.867, was then
arbitrarily chosen for further investigation.

Of primary consideration was the Gauss-Jordan method for compu-
ting A-% Pivoting was not utilized during the inversion in order to
ensure that no change in the computing order occurred when the preci-
sion was varied.

Employing this method, matrix 4 was first inverted 250 times using
base 2 and varying the precision from 21 to 270 bits, then 100 times
using base 16 and varying the precision from 6 to 105 hexadecimal
digits. Thus the experimental statistical characteristics of the aceumu-
lated rounding error of element (2,3) of 4~ were obtained for bases 2
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and 16. The experiment was performed for both rounding and trunca-
ting arithmetie.

The theoretical statistical characteristics of element (2,3) were com-
puted using our accurate local method. For comparison, the experiment
was repeated for the so-called basic local and global methods [7]. The
former assumes that the rounding error is distributed (continuously)
uniformly between its extreme values. The latter assumes, in addition,
that the fraction is distributed according to the logarithm law.

Although some obvious dependencies between the local errors of the
Gauss-Jordan method can be pointed out [7], excellent results were
achieved in the theoretical estimations, as shown in Table 1.

Table 1. Estimaltes of the statistical characteristics of the accumulated
rounding error of the inverse element (2,3) when the precision is varied.
All estimates are given in machine units of the accurate result.

. Base 2, Sample size 250 Base 16, Sample size 100
9% Method Expected v. | Stand. dev.| Expected v. Stand. dev.
2 Estim. t Estim. ¢ Hstim. ¢ Estim. ¢
. | Experim. 16.4 121 21.1 239
g Acc. local 18.0 —0.22 | 116 0.91 —1.41 1.04 | 217 1.43
5 | Basic local O 2.21 | 117 0.71 0 0.96 1 220 1.24
M | Global 0 226|114 131 0  0.80 | 263 —1.31
. Experim. —151 111 12.0 241
2 Ace. loeal ~ 151 0.01 | 116 —1.07 19.0 --0.32 | 217 1.58
E Basic local | —151 —0.06 | 117 —-1.26 0.31 0.53 | 220 1.39
Global - 156 0.74 | 121 —-1.85 1 -293 8.02 | 381 —5.18

The experimental expected value (m) and standard deviation (s) of the
accumulated rounding error were tested for consistency with the corre-
sponding theorical values (ZR and DR) for each theoretical method.
Student’s ¢-test was utilized, the ¢-value being computed from the for-

mula ¢=(m— ER) x V;L/DR for the expected value and from the formula

t=(s—DR) xVZn/DR for the standard deviation. The sample size is
denoted by n. Since the percentile value #,4;5 for Student’s ¢-distribu-
tion is 1.96 for large samples, t-values of magnitude greater than 1.96,
at the 5%, significance level, can be rejected.

Ags expected, the global method generally produced the worst estima-
tes, since the problem is typically local. The estimates for standard
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deviation are particularly poor with base 16. This is a logical consequence
of the fact that the range within which the value of the fraction may vary
is much larger with hexadecimal than with binary numbers. Greater
error is therefore possible when the standard deviation of local errors is
estimated.

The bias of the rounding arithmetic is apparent from the experi-
mental results for binary arithmetic. The hypothesis that the expected
value of the accumulated rounding error equals zero can be rejected at
the 59, significance level. Only the accurate local method was able to in-
dicate this bias. As expected, the biasity was not equally obvious in
hexadecimal arithmetic, due to the larger base number.

The preceding experiment was repeated so that perturbation of the
initial data was used instead of varying precision, to obtain the experi-
mental statistical characteristics of the accumulated rounding error. The
results of this experiment, presented in [7], are in accordance with the
results given in Table 1.

6. Conclusions.

Several minor sources of inaccuracy still remain in our a posteriors
method for predicting the statistical behavior of accumulated rounding
errors: the local rounding errors are assumed to be independent, the
exponents of the local numbers are treated as though they remain
unchanged over the whole range of variation considered, and the distri-
bution of the rounding errors is assumed to be caused by varying preci-
sion rather than perturbation. However, as the experimental results
demonstrate, all these weaknesses are quite insignificant. In fact, our
method, based upon new statistical considerations, has shown its value
as a method giving more trustworthy predictions of the statistical
behavior of rounding errors than has previously been possible.
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