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TOWARDS ACCUI{ATE STATISTICAL ESTIMATION 

OF ROUNDING ERROI~S 

IN FLOATING-POINT COMPUTATIONS 

S E P P O  L I N N A I N M A A  

Abstract .  
A new m e t h o d  of e s t i m a t i n g  a pos ter ior i  t h e  s t a t i s t i c a l  cha rac t e r i s t i c s  of t h e  

r o u n d i n g  er rors  of a n  a r b i t r a r y  a l g o r i t h m  is p r e s e n t e d .  Th i s  m e t h o d  is b a s e d  on  a 
d i sc re te  mode l  of t h e  d i s t r i b u t i o n  of r o u n d i n g  er rors  w h i c h  m a k e s  m o r e  a c c u r a t e  
e s t i m a t e s  possible .  T he  ana lys i s  is g iven  for  b o t h  r o u n d i n g  a n d  t r u n c a t i n g  a r i t h -  
me t i c .  FLnally, some e x p e r i m e n t a l  resu l t s  are  r epor t ed .  

1. Introduct ion .  

The accumulated rounding error R~ of the resulting value u N of a 
numerical algorithm can generally be expressed quite accurately by  a 
Taylor expansion of first degree with respect to the local errors r~ of 
the initial and intermediate values ui of the algorithm [10,5]. Thus 

(1) RN ~ ~,i cir~ 

for some coefficients c i. In  statistical analysis the local errors ru~ are 
usually treated as mutually independent random variables, and thus 
the expected value E R  N and variance D2Riv of Riv can be estimated using 
formulae [1] 
(2a) ERN ~ ~ c,E%, 
(2b) D~-RN ~ ~ t  ct2D~r~ . 

Estimation of the behavior of R y may be at tempted when the com- 
puting process has either arbitrary or fixed initial values. The former 
ease involves the use of global analysis. In  this type  of analysis, an 
a t tempt  is made to estimate a priori the general behavior of the rounding 
errors in a certain computing algorithm. 

Local analysis involves the use of fixed initial data. Of course, with 
given initial values and a fixed arithmetic, R N is unique, bu t  in this case 
the analysis is concerned with clarification of the behavior of R N when 
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the computing precision is varied or when the initial values are slightly 
perturbed. 

This article describes a new discrete model of the distribution o~ 
r~i, for the purposes of local analysis. Used together with an existing 
effective a posteriori algorithm for determining the coefficients c~ in (1) 
with fixed initial data  [5, 11], more accurate estimates can be made for 
the characteristics of R N than was previously possible. The analysis is 
given for both rounding and truncating arithmetic. 

A more thorough treatment of the results of this article is given in the 
report [7], together with other existing methods for the statistical 
estimation of rounding errors on the basis of the Taylor expansion (1). 
In that  report the analysis is also given for a computer-oriented unbiased 
arithmetic, called pari ty arithmetic [6]. 

2. The  idea of discretization.  

The following considerations are based on the generally used norma- 
lized signed-magnitude representation of a real number u to base b 

(3) u = % x (O.ulu2us...)b x b ~ = Sufub ~, u 1Je 0 if u # O, 

where Sue { -  1, 1} is the sign, fu the fraction and e u the exponent of u. In 
a computer u is rounded to t digits. Thus a floating-point number of pre- 
cision t, fl(u,t), is obtained. The number 

(4) r u = f l(u,  t) - u 

is known as the (absolute) rounding error of the number f l (u ,  t). 
I t  has been shown both experimentally and theoretically that  the 

fraction f~ of an arbitrary non-zero real nmnber u, used in computations, 
obeys approximately the logarithm law [4]. This means that  l ogJu  is 
uniformly distributed in the interval [ -  1, 0). On this basis it is possible 
to determine the probability Pkt that  the /cth digit uk of an arbitrary 
non-zero real number u is equal to j .  We have [7] 

| log~( l+l / j ) ,  ]c = 1, j = 1,2 . . . .  , b - l ,  
/ 

(5) /)k3 = t l / b + ( ( b - 1 ) / ( 2 b l n b ) ) ( b - 2 j - 1 ) b - k + O ( b - 2 k ) ,  
I ]c = 2 , 3 , . . . ,  j = 0,] . . . . .  b - 1 .  

On the basis of (5) it is natural  to expect r u to be practically uniformly 
distributed for all practical values of the precision t, since b -k can be 
assumed to be negligible with respect to 1/b when ]c > t. 

Thus the usual assumption that  the local absolute rounding error is 
uniformly distributed between its extreme values [e.g. 1, 2, 3] is quite 
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well justified, and is surely accurate  enough for the purposes of global 
analysis.  However,  i t  is obvious t h a t  when two f loat ing-point  numbers,  
containing a t  most  t non-zero digits, are added, subt rac ted  or mult ipl ied 
the  result ing value is a te rmina t ing  real number .  Thus i t  is possible to 
obta in  more accurate  est imates for the  dis t r ibut ion of local rounding 
errors in local analysis by  t rea t ing  local rounding errors as discrete 
ra ther  t h a n  cont inuous r andom variables. The most  significant discre- 
pancy  between discrete and  continuous models occurs in addit ions and  
subtract ions.  

3. S o m e  pract ica l  units .  

As we are performing a stat ist ical  analysis, a number  u to be rounded 
should not  be t hough t  as a fixed number  bu t  as one which m a y  a t t a in  
all the  values which are produced when the  operands producing u are 
per turbed slightly wi thout  increasing the number  of their  significant 
digits. Thus  the  digits ui,  i =  1,2 . . . .  in representat ion (3) are, except for 
the  first  few, not  unique in local analysis. I f  i t  is known t h a t  ul, u 2 . . . .  ,u z 
m a y  differ f rom zero, bu t  t~hat u i = 0, i > l, then  u m a y  be represented as 

(6) u = s u×(0 .u lu  2 . . . u l )  b×b  eu, u 1 ~= 0 if u 4 0 .  

The concept of the number  un i t  n u (to the base b) of u is now in t roduced 
and  defined to be the  largest possible number  of the form b k, where k is 
an  integer, such t h a t  all possible values of u are reached by  mul t ip ly ing  
this  number  by  an  integer. Since the  number  zero is reached b y  mult i -  
plying any  finite nmnber  b y  zero, i t  is na tura l  to assume its number  
uni t  to be ~ .  Correspondingly, i t  is na tura l  to assume the number  
un i t  of u to be zero, if i t  has no such t~rminat ing representat ion as (6). 
Thus 

(7) n u = , if u has no te rminat ing  representat ion,  
[ b u-z = (0.0t0~.. .  0~_llz)b x b ~, o therwise ,  

where l is as defined in (6). 
When  the  number  u is rounded to f l (u , t ) ,  the  uni t  of the least  signi- 

f icant  digit  which still can be expressed, called the  machine  un i t  of  the  
number  u, is defined as 1 

{ % b  ~'~-t = s u x (0 .0~0~. . .  Ot_~lt) b x b% u + 0 ,  
(8) m~ = 0 , u = O. 

1 The ease of renormal iza t ion  is no t  no ted  since it  occurs ve ry  rarely,  in  s ta t is t ical  

sense, and this article deals wi th  stat is t ical  analysis .  
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Further,  the r o u n d i n g  u n i t  o f  u is defined as 

(9) d u = nu/Imul . 

Obviously, d u > 1 implies fl (u, t) = u. K d < 1, then the number of digits 
to be rounded is equal to l - t  = - l o g  b d~. If  u is a product of two floating- 
point numbers, then l -  t normally equals t or t -  1. In  the case of division 
l -  t is normally 0o, and if u is a sum or difference then any positive inte- 
ger value of l - t  is possible, although small values occur more frequently 
than large ones [9]. 

4. A method for statistical analysis of rounding errors. 

As previously mentioned, it is natural  to expect that  if 0 < d u <  1 
then the number (O.u~+lut+~. . .u  t) b attains all its possible values with 
equal probability, i.e. 

(10) P{(O.Ut+lUl+2. . .uz)  b = idu} = d u, i = 0,1 . . . .  , d u - l - 1 ,  

where P { A }  denotes the probability of event A. 
There exists an obvious and quite troublesome exception to distribu- 

tion (10). I t  occurs when u is the sum (or difference) of two floating- 
point numbers, say v and w, having quite different exponents. If the 
perturbation which causes the statistical distribution is quite small, then 
only the last few digits of (O.ut+lut+2. . .uz)  b vary (see Fig. 1) and (10) 

V V V V V V V V  

W W W W W W W W  

u u u % u u u u u ~ u u  

Figure 1. Addit ion of two floating-point numbers  of different magni tude such ~hat ~ho 
per turbed digits (underlined) do not  essentially affect the rounding error of the addition, 

obviously does not hold. This effect is clearest when e v - e  w > t. I n  roun- 
ding arithmetic, for example, the rounding error is then always equal to 
- w .  This failure in formula (10) is not easily corrected, but  neverthe- 
less the theory does not  break down since it is concerned with statistical 
considerations and large values of f e v - e w f  appear quite seldom, as the 
article by Sweeney [9] demonstrates. In  addition, (10) always essenti- 
ally ho]ds when "perturbation" means computation by varying preci- 
sion. In  such cases t varies and thus the positions of the digits of u chosen 
in (10) also vary. 
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In view of the rounding rules of rounding 1 and truncating arithmetic, 
(10) implies, provided that d,~ < 1, 

( l la)  Er,~ = ½d,~mu, D2ru = (1/12)(1-d,,2)m,, ~, r,~ e [-(½-d~)m~, ½mu] 

for  rounding arithmetic with even b, 

( l lb )  Er,, = 0, D~r,, = (1/12)(1-d,,~)m,~ ~, rue[-½(1-du)m~, ½(1-d~)mj  

for rounding arithmetic with odd b, and 

( l lc)  Eru= -½(1-du)rn.~, D~ru= (1/I2)(1-duU)mu ~, r ~ e [ - ( 1 - d u ) m  u, 0] 

for truncating arithmetic. As noted after (9), d > 1 implies Er,~=D2r,,= O. 

When formulae (11) are employed in (2), our accurate local method for 
estimating the distribution of rounding errors is obtained. 

The utilization of (11) requires the value of the rounding unit  du. 
Equation (9) can be used to determine this value once the value of the 
number unit n u is known. Determining the value of the number unit  is 
not a trivial problem since, when a number is computed with a computer, 
only its rounded and not its accurate value is known. However, there 
exist quite obvious formulae for this purpose, utilizing the number 
units of the operands producing u [7]. 

In  binary-based computers (i.e. b = 2 k for some integer k) our accurate 
local method can be further refined, in some situations, when binary 
number units are used, instead of the number units to the base b. 
E.g. the special properties of the number 2 as a multiplier and a divisor 
will be automatically observed if n~ = (10)3 = 2. 

I t  is interesting to note tha t  the well-known [8] but  until now un- 
measurable bias of rounding arithmetic can be measured using ( l la) .  
I t  has statistical importance only when the number of digits to be 
rounded is small. As Sweeney [9] has found experimentally, this situa- 
tion is quite common in addition and subtraction. Thus, it is not sur- 
prising that  the bias of the rounding arithmetic can clearly be obser- 
ved in the experimental results reported below. I t  is natural  for the 
bias to become stronger with smaller base numbers, since the maxi- 
mum value of Eru is ~ b  -~. 

5. Appl icat ion to m a t r i x  inversion.  

In  the experiment described below, in which a matrix is inverted 
using the Gauss-Jordan method, the present method of estimation is 

1 I n  r o u n d i n g  a r i t h m e t i c ,  mu]2 is a d d e d  t o  u ,  b e f o r e  t r u n c a t i o n .  
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tested with the algorithm and the initial data remaining fixed but the 
precision of the arithmetic being varied. This is a typical local problem. 

In order to perform this experiment, a 5 x 5 matrix was constructed 
whose elements were random numbers obeying the logarithm law, with 
random signs and the absolute values chosen from the interval (½, 2). 
The column vectors of this matrix were orthonormalized using the 
Gram-Schmidt method. The matrix U thus obtained was employed as 
the eigenvector matrix of the final test matrix A = UAU T. The eigen- 
values of A, i.e. the diagonal elements of the diagonal matrix A, were 
positive random numbers chosen from the interval (2 -s, 2s). Thus the 
following random matrix was obtained: 

A 

8.293 -2.210 7.697 -1.977 10.14 
-2.210 22.05 -5.222 -11.39 2.308 

7.697 --5.222 9.265 --1.837 8.848 
--1.977 --11.39 --1.837 9.671 --4.946 
10.14 2.308 8.848 -4.946 13.99 

whose inverse is 

A -1 

7.021 4.365 4.185 3.719 - 7.142 
4.365 4.991 5.867 4.821 - 5.993 
4.185 5.867 7.464 5.767 -- 6.684 
3.719 4.821 5.767 4.868 - 5.417 

--7.142 -5.993 -6 .684 -5.417 8.550 

The largest and smallest eigenvalues af A are 30.642 and 0.035014. 
An arithmetic simulator, programmed for a Burroughs B6700 com- 

puter, was utilized in these experiments, thus enabling the use of diffe- 
rent bases, rounding rules and precisions. The "exact"  inverse of A was 
first computed employing a precision of 300 bits and the fact tha t  
A - l =  UA-1U T. Element (2,3) of A -1, having a value of 5.867, was then 
arbitrarily chosen for further investigation. 

Of primary consideration was the Gauss-Jordan method for compu- 
ting A -1. Pivoting was not utilized during the inversion in order to 
ensure tha t  no change in the computing order occuiTed when the preci- 
sion was varied. 

Employing this method, matrix A was first inverted 250 times using 
base 2 and varying the precision from 21 to 270 bits, then 100 times 
using base 16 and varying the precision from 6 to 105 hexadecimal 
digits. Thus the experimental statistical characteristics of the accumu- 
lated rounding error of element (2,3) of A -1 were obtained for bases 2 
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and  16. The  exper iment  was per formed for  bo th  rounding  and  t runca-  

t ing ar i thmet ic .  
The  theore t ica l  s tat is t ical  character is t ics  of e lement  (2, 3) were com- 

p u t e d  using our  accurate local method. F o r  comparison,  the  exper imen t  
was repea ted  for  the  so-called basic local and  global methods  [7]. The  
fo rmer  assumes t h a t  t he  rounding  er ror  is d is tJ /buted (continuously)  
un i fo rmly  be tween its ex t r eme  values.  The  l a t t e r  assumes, in addi t ion,  
t h a t  the  f rac t ion  is d i s t r ibu ted  according to  the  logar i thm law. 

Al though some obvious dependencies  be tween the  local errors  of the  
Gauss - Jo rdan  m e t h o d  can be po in ted  out  [7], excel lent  results  were 
achieved in the  theore t ica l  est imations,  as shown in Table  1. 

Table 1. Estimates of the statistical characteristics of the accumulated 
rounding error of the inverse element (2, 3) when the precision is varied. 

All estimates are given in machine units of the accurate result. 

i Method 

Base 2, Sample size 250 ! Base 16, Sample size 100 

Expected v. Stand. dev. Expected v. 

Estim. t Estim. t Estim t 

Stand. dev. 

Estim. t 

i 
i 

Experim. 
Ace. local 
Basic local 
Global 

Experim. 
Acc. local 
Basic local 
Global 

16.4 
18.0 --0.22 
0 2.21 
0 2.26 

- -  1 5 1  

- 1 5 1  0.01 
-151 -0.06 
-156 0.74 

12t 21.1 
116 0.91 - 1.41 1.04 
117 0.71 0 0.96 
114 1.311 0 0.80 

111 
116 - 1.07 
117 -1.26 
121 -1.85 

12.0 
19.0 -0.32 
0.31 0.53 

-293 8.02 

239 
217 1.43 
220 1.24 
263 -1.31 

241 
217 1.58 
220 1.39 
381 -5.18 

The  exper imenta l  expec ted  value  (m) and s t anda rd  devia t ion (s) of the  
accumula ted  rounding error  were tes ted  for consistency wi th  the  corre- 
sponding theor ica l  values (ER and  DR) for  each theore t ica l  method .  
S tudent ' s  t - test  was utilized, the  t-value being compu ted  f rom the  for- 

mula  t = (m - ER) x ~n/DR for  the  expec ted  value  and  f rom the  formula  

t = ( s - D R )  x~2n/DR for  the  s t andard  deviat ion.  The  sample size is 
deno ted  by  n. Since the  percent i le  value  t0.9~ s for  S tuden t ' s  t-distr ibu- 
t ion is 1.96 for large samples, t-vMues of magn i tude  grea te r  t h a n  1.96, 
a t  the  5% significance level, can be rejected.  

As expected,  t he  global m e t h o d  general ly  p roduced  the  wors t  est ima- 
tes,  since ~he problem is t )T iea l ly  local. The  es t imates  for  s t andard  
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deviation are particularly poor with base 16. This is a logical consequence 
of the fact that  the range within which the value of the fraction may vary 
is much larger with hexadecimal than with binary numbers. Greater 
error is therefore possible when the standard deviation of local errors is 
estimated. 

The bias of the rounding arithmetic is apparent from the experi- 
mental  results for binary arithmetic, The hypothesis tha t  the expected 
value of the accumulated rounding error equals zero can be rejected at 
the 5% significance level. 0nly  the accurate local method was able to in- 
dicate this bias. As expected, the biasity was not equally obvious in 
hexadecimal arithmetic, due to the larger base number. 

The preceding experiment was repeated so that  perturbation of the 
initial data was used instead of varying precision, to obtain the experi- 
mental  statistical characteristics of the accumulated rounding error. The 
results of this experiment, presented in [7], are in accordance with the 
results given in Table 1. 

6. Conclusions. 

Several minor sources of inaccuracy still remain in our a posteriori 
method for predicting the statistical behavior of accumulated rounding 
errors: the local rounding errors are assumed to be independent, the 
exponents of the local numbers are treated as though they  remain 
unchanged over the whole range of variation considered, and the distri- 
bution of the rounding errors is assumed to be caused by varying preci- 
sion rather than perturbation. However, as the experimental results 
demonstrate, all these weaknesses are quite insignificant. In  fact, our 
method, based upon new statistical considerations, has shown its value 
as a method giving more t rustworthy predictions of the statistical 
behavior of rounding errors than has previously been possible. 
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