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PERTURBATION BOUNDS IN CONNECTION WITH
SINGULAR VALUE DECOMPOSITION

PER-AKE WEDIN

Abstract.

Let A be an m X n-matrix which is slightly perturbed. In this paper we will derive
an estimate of how much the invariant subspaces of 474 and 44% will then be
affected. These bounds have the sin§ theorem for Hermitian linear operators in
Davis and Xahan [1] as a special case. They are applicable to computational solu-
tion of overdetermined systems of linear equations and especially cover the rank
deficient case when the matrix is replaced by one of lower rank.

1. Preliminaries.
Let A be an m x n-matrix over the complex field. Then there exists
a singular value decomposition of 4,
(1.1) A=U3ZVE = U, 3, V,HE+U, 3, V¥
where
Vi=[vg 0 ]s Vo= [0pg. 0515 V= (V1. Vo),
and
Uy = [uyg,...ou); Ug = [t,4q,..5%,); U = (U,,Uy);
3, = diag(oy,...,0,); 3o = diag(o,4y,...,0,); 2 = diag(oy,...,0,)

Vi, Vo, V and Uy, Uy, U are assumed to be partial isometries satisfying
VAV = UBU = I,; V2V, = U,BU, = 1,; Vi#Vy = UfU,=1,_,.

The rank of 4 is p and r=p.
For the perturbation of 4, B=A+T, a corresponding singular value
decomposition can be made. Take

(1.2) Aj = Uj(A) Ej(A)ViH(A); Bj = Uj(B) Zj(B)VjH(B);
j=0,1.
From (1.1) it is obvious that

(1.3) A+T = A+ A44,+T = B, +B, = B.
It seems natural to assume that r=rank(4,)=rank(B,), although
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this condition is not needed for the generalization of the sin8 theorem
that we will prove later.

The range of a matrix 4 is denoted by R(4) and the nullspace of 4
by N(4). It is an immediate consequence of the decomposition (1.1) and
the definition (1.2) that

(1.4) R(4,)) = N(4,7)* and N(4,) = B(4,7%)*

where | denotes the orthogonal complement.

R(4,) and R(4,) are invariant subspaces of the Hermitian matrix
AAHE ag are B(A,7) and R(4,¥) of 474,

In this paper we are going to estimate the angles between the sub-
spaces in B™, R(A,) and R(B;) as well as between the subspaces in K",
R(A,H) and R(B,H).

The orthogonal projection onto a subspace M is denoted by P,,.
Angles between subspaces are studied by Davis and Kahan in [1]. The
angle between a vector « and a subspace M can be defined by

sinB(z, M) = minjlz—yl,
' yeM
with [lzll,=1.
It follows from the projection theorem that
min|lz~ylly = (L — Pyl -
yeM

For two subspaces L and M it is natural to define
(1.5) lsin 6(L, M)|| = (1 — Py) Pyl

for any unitary invariant norm.
Our aim can now be formulated strictly. We want to find good upper
bounds for

lsin 6(R(B,), R(4,))] and |sin0(R(B,H), R(4,T))|

when we have estimates of ||T'}] and the gap between the least singular
value of B; and the largest singular value of 4,,.

We will now define residuals which can be used instead of 7. Let
Y15+ - >y, be orthonormal vectors spanning the subspace E(B;). This
means that with Yy = [y,...,¥,),

(1.6) YEY, =1, and Y,Y,H = Pggy,.
Analogously define X through
(1.7) X X, =1, and X X\# = Ppg .

Take D;=Y,2BX,. A convenient but not necessary choice is X,=7V,
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and Y,=U,. With this choice we get D, =73, (B). We can now define the
residuals
(1.8) Ry = AX, - YD,

R, = ARY,~X,DE .

The connection between E,; and 7 is seen through the rewriting
R,,=AX,-Y,D;=(B-T)X,-Y(Y#BX,)=—-TX,. Analogously it
can be shown that Ry = —THY,.

In the same way partial isometries Y, and X, corresponding to E(B,)
and R(B,H) could be defined.

We have now at hand almost all tools necessary to estimate
lsin 6(R(By), R(4,))l| and |jsin6(R(B,7), R(4,7))|. But that work will
wait until paragrah 3 because we will first cite a theorem by Davis
and Kahan about the perturbation of Hermitian operators. That theorem
also shows how the gap-condition should be imposed on B; and A,.
In paragraph 3 we then make a rather natural generalization of Davis’
and Kahan’s theorem.

2. The sin® theorem for Hermitian matrices.

In this section it is assumed that A and B are Hermitian matrices.
It follows that R(A4,)=R(4,%) and R(B,)=R(B,#). We also choose
Y,=X, and get as a consequence R, =R, =R,. There are several
estimates of trigonometric functions of the angles between B; and 4,
in [1]. This theorem which we intend to generalize below will be stated.
The notations differ slightly from those used in [1], p. 10.

The sin 6 theorem. Assume there is an interval [B,«] and a >0 such
that the spectrum of A4, lies entirely in [8,«] while that of B; lies entirely
outside of (8—4,x+0) (or such that the spectrum of B, lies entirely in
[B,«], while that of A, lies entirely outside of (8 — d,x + J)). Then for every
unitary invariant norm, 8|jsin 6(R(B,), R(4,))|| S ||R,]l.

In the proof of the sinf theorem above a multiple of the identity
operator is added to A, translating the spectra of B, and 4, without
affecting R. It can accordingly be assumed without loss of generality
that 0 <& = —f in the hypothesis of the theorem. This choice of « and §
is subsequently used in [1] (see the proof p. 25). The point is now that
we cannot in general make any translation of the singular values of the
m x n-matrices A and B. It therefore seems natural to limit our general-
ization of the sin@-theorem to the following formulation of the sin6
theorem, which is equivalent for Hermitian matrices.

Adaptable formulation of the sinf theorem. Let A and B be Hermitian
matrices. Assume there exists an « 20 and a ¢ > 0 such that
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Opin(By) 2 x+8 and  0,,(4,) =
then for every unitary invariant norm,

dllsin 6(R(By), R(A))| = |[Byl -

3. The sin6 theorem for the singular value decomposition.

We are now ready to formulate a generalization of the sin§ theorem
to m x n-matrices.
The generalized sin 0 theorem. Assume there exists an «=0 and a 6> 0
such that
Gmin(Bl) 2 ‘9‘+6 and Gmax(As) é & .

Take e=max (||By]],||Ryy]) where R,; and E,, are defined by (1.8). Then
for every unitary invariant norm,

Isin O(R(By), B(AD)| < 5
(3.1)

.

llsin 8( R(B,H), R(4,T))]| £

(=22 )

Proor. We are going to use the same notations as in section 1. From
the definition (1.5) it is seen that

(3-3) lisin O(B(By), R(ADN = 1P ruptPray|
an
(3.3) [sin 6(B(B,H), B4, = 1P reaymiPres,ml -

It is also known from section 1 that

(3.4) 1Ball = ITX4l| = TP pp,m)
and that
(3.5) |Ball = ITHY || = |PrayTll -

The pseudo-inverse of a matrix 4 is denoted by 4+. In the following
we will make ardent use of the identities,

(3.6) Pry = AA+Y = AtHAH, Ppo gy = AT4A = AHA+H |
The proof now depends on two decompositions,

3.7 P R(A,)lP By < P R(Al)lBlB1+ =P R(Al)l(A1+A0—BO_T)BI+
= {“"P R(Al)-lTP R(BIH)+A0(P R(A,H)J-P R(BIH)>}B1+



PERTURBATION BOUNDS IN (ONNECTION WITH SINGULAR VALUE .., 103

and the corresponding identity
(3.8)  PrgmP BayEL = ByH{-P r T Priaymr+ PrsyP R(Al)lAO} .

Take p=max ([P TP gl 1Pruy TP puymal)). From (3.4) and (3.5)
it is seen that
(3.9) p = max ([[By,|[Byl) = .

We will temporarily use the notations

t; = [sin6(R(By), R(A)) = [IPreaptPreyll
and
t = |sin O(B(BH), R(AM) = |Ppu,mn1Prem -

It was assumed that o, (d,) ={4,lls = o« and that 1/||BH|y=0pnin(By) 2

o+ 6. Now it is known fror [3] that for unitary norms and arbitrary
matrices C and D such that CD is defined

ICD = IIClLIDIN = NI~ D] -

Then from the decompositions (3.7) and (3.8) we derive the inequalities

i< ot oy
1= &+ 0

(3.10)

lt <M+0‘t1
2= w4’

Assume that f; is max(4,,4,). (3.10) implies that

i < pt ol
! a+9
or simplified that
(3.11) t; < ufd.

Now we take inequality (3.9) into account and insert the notations
used originally. Then formula (3.11) implies the inequalities (3.1) which
we set out to prove.

I A and B are Hermitian, then the theorem above is identical with
the sin§ theorem in section 2.

As distinguished from Davis and Kahan [1] we work with subspaces
R{4,) and R(4,) which are orthogonal but not orthogonal complements
since R(dy)+R(4,)=R(4). Because of this we cannot state a sin
theorem with the residuals corresponding to 4, and B,. But it is easy
to make a small change of the definition of X, and Y, to make a similar
theorem possible. Let y,,,,...,¥, be orthonormal vectors spanning
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R(B))* and #,.,...,%, be orthonormal and spanning N(B,). Take
Yo=Y+ - 3 Umly Xo=[%r11,...,2,] and Dy=Y HBX,. Define

Ry = AXy=Y,Dy; By = A¥Y,— X Do¥ .

As in section 1 it is seen that Ey= —TX, and that Ryy= —TH#Y,. For
unitary invariant norms we get

Byl = ”TPR(BIH)J-”; |Boll = ”PR(Bl)lT” .

The sinf-theorem with complementary residuals. Assume there exists

an «=0 and a 6> 0 such that
Omin(dy) 2 «+8 and o, (B, £ .

Take &¢=max (||Ry), | Bsll). Then for every unitary invariant norm,

llsin 6(R(4,), B(By))|| =

Q|

(8.12)
Jsin O(R(4,™), RBM)| £ 5.

The proof is similar to that already given in this section.

Nore 1. When A4 is perturbed, Pg,,y and Pgz are influenced not
only by Pg 4,y and Pg my but also by Py o1 and Py That is the reason
why it is difficult to get estimates of

(3.13)  |lsinO(R(B,), R(4,))| and |sin 6(R(B,H), R(4T))] .
If N(A)=N(B)={0} then
lsin O(R(A,E), RBE)| = [PyayPrcap]l = [PrptPrisg]
= [|PrugPrmetll = [sin60(R(BH), B(45))||

and we can use (3.12). If N(4) or N(B) is nonempty we need a lower
bound of o,;,(B, in the theorem above to be able to estimate
llsin 6( R(B,H), R(4,7))||. About such problems see the theorem in sec-
tion 5.

Norte 2. For unitary invariant norms
(3.14) lisin 6(B(A,), R(B,))|| = |lsin 6(R(B,), B(4,))]
if and only if
(3.15) rank(4,) = rank(B,) .
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The proof of this theorem which is given in several papers (see [5]) is
based on the following two facts.
1. The singular values less than one are the same for (I - Pprp))P g,
and (I —Pgr )P rey-
2. A unitary invariant norm of a matrix depends only on the singular
values of that matrix.

Nore 3. For the spectral norm the generalized sinf theorem follows
from the sin§ theorem for hermitian matrices. To every m x n-matrix C
there is defined an (m+ n) X (m+ n)-matrix

0 C
0= ( o o)-
C is bermitian and has the eigenvalues +0y(C), *0,(C),..., +0,(C)

and m+7n—2p eigenvalues equal to zero. It is observed that with the
notations from (1.6) and (1.7)

173 (Xl X,

is a partial isometry corresponding to R(B,) because Z,2Z,=1I and
7,72 =Ppp, Take

D, = 2HB7, and R, = AZ,-7.D,.
From the sin @ theorem for hermitian matrices it follows that if

Gmin(gl) z «+d and o‘max(‘qo) S o

then
(3.16) 8+ |sin O(R(B,), R(AD)| = 1Byl .
But
lisin 6(R(B,), R(A,))lly = (I =~ Pgeay)Praylls =
_ I ((I =P ru)Prsy 0 ) -
0 I-pP R(Alﬂ)P R(B)/ lig

= max ([[sin 6 (B(By), B(Ay))lls, [sin O( BB, ), R(4,T))lly) -

It is further seen that
_ _1_ (Rn Ru)
1T ye Ry —Ry/’

where Ry, and R,, are given in (1.8), and that the singular values of R,
are the singular values of Ry, and R,;. Hence |&,|l,=max (||[Rylls, | Roslls)-
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o‘min(Bwl)xo’min(Bl) and O'max(fio)=o'nmx(*4-0) and so (3.16) gives the gen-
eralized sin § theorem for the spectral norm.

Nore 4. The estimates derived from (3.7) and (3.8) can be sharpened
if we take

M1 = P R(Al)-l-TP R(BIH)” and Bo = P R(BQTP R(AlH)-L“ .

If a counterpart of (3.10) with u; and u, instead of u is used we get after
gome work that

&«
Pyt =ty
tl =< —(x‘*_(i,_‘ < /i'
( 1 +_§m ) Y
a+0
(3.17) and
+ ®
t I{'iz 0‘-*—6‘“1 ”
x+0
Here p, < ||Byy|| and gy < ||Ryyll. T /(o + 8) is small we get from (3.17) that
B
lisin 6(R(By), R4 S I 611“
and
R
[]Sine(R(BlH),R(Aln))” < I 621”.

4. Applications to the estimation of |[B;*—4,%.
Throughout section 4 it will be assumed that

(4.1) rank(4,) = rank(B,)

so that we can take advantage of (3.14). In this context it is suitable
to use that |jsin0(L, M)||=|( — Py )Pl and we can formulate the result
in note 2 in the following lemma.

Lemma. If and only if rank(A4,)=rank(B,) then

(4.2) 1P reaptPrspll = 1P raptP reayll
and
(4.3) P avcapProtll = IPyapPaaptll

Sfor unitary invariant norms.
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If we want to estimate ||B;*— A4,*|| using the theorems in [5] or [6]
an estimate of ||B; — 4,|| is needed. Let us assume that 4 and B satisfy
the conditions of the sinf theorem. Expressed in the notations from
that theorem it is then seen that an estimate of ||B,— 4, involves 1/8
and | B—A4|. In fact we get

Bl_Al = P R(Bl)(B - A)P R(.415)+BlP N(Al)"'P R(Bl)lAl
BiPyay = PripT Py + Pripdo
Prippndy = —PrppTPpym+ BoPrumy .

From these identities and the sin 6 theorem it is seen that

4 @)

+

(44) N

Even if (4.4) is an overestimate we cannot find a bound which is essen-
tially sharper. In (4.4) we have used that |7']| is greater than or equal to
the number ¢ in (8.1).

The point is now that we do not need an estimate of ||[B,—4,]| to
be able to bound ||B;*—4,*|. We use the decomposition from [5],

(4-5) B1+—A1+ = ‘A1+(B1“A1)31+_A1+PR(B1)1+PN(A1)BI+
and note that

A HBy—A4,)B* = A;*(B—A)B,* = A,*TB,*.
Hence

5 T3

Bt A4:*
(4.6) 1B+ — A < |17 (||B1+“'|[A1+]|+“ I, 14y H) )

Bounds of ||B,* — 4,*|| are useful in at least two kinds of problems.

First there is the problem studied in [7] where we want to see how
large the perturbation (4 +7)*b—A+b is in different directions. Evi-
dently ||By*— 4,%]| can be much larger than ||B;+—4,*|. However that
problem is more easily dealt with if a decomposition similar to (4.5) is
used for B*— A+ If 4 and B are nonsingular we get B-1—A-1=
— (At + A,1)T(By* + By *) which in this context is more useful than (4.6).

There are several problems in which we want to determine the pseudo-
inverse 4,* of the matrix 4,, which minimizes |4, — A|| when rank(4,) =7
(see [3]). In some of these problems the rank of A4, is not known before-
hand but chosen in such a way that |4, ~ A4|| is small but o,(4,) is not
too small. In general during the computational procedure a matrix 4 4T
is found for which ||7'|| is small and (4 + T')+ is taken as an approximation
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of A,+. (4.6) can be used directly for this problem. But a sharper esti-
mate of ||(4+T)*+— 4,1 can be found if we take advantage of the fact
that B,=(4 +7T)=B. We know that

(4.7) Prupt Py = 4y71(—T — 4)Pypy = — A TPy
and that
(4.8) PruptPruy = Prapr(— T—-A4,)4,* = —PrpuTA,*.
From (4.5) it follows that

1Byt — Ay = [|AH- 0 1ByH A+ 1A P rap Praspll

B P yeapP vyl
and since the lemma implies that

1P xcapPaaprll = 1PxcapiPasyll
we can use (4.7) and (4.8) to get the estimate
(4.9) 1Byt —Ay*]| = 3T 1|4, *| max (|4, ], | B, H]) -

The constant 3 in (4.9) can be changed to (J/5+ 1)/2 for the spectral norm
and to )2 for the Euclidean matrix norm. The technique necessary for
that improvement is given in [6], section 6.

5. An extension of the original sin6 theorem.

A4; and B;, j=0, 1 are still defined as in section 1. We return to the
definition of X, and Y, as partial isometries corresponding to R(B,)
and R(B,¥) that is
(5.1) PR(BOH) = XOXOH; I= XOHXO

Prppp = YooY 25 I =Y2Y,

and take Dy= Y ,HBX,. As before we define the residuals

(5.2) Ry = AX,— Y Dy; Ryy = A7Y,— X D"
and
(5.3) & = 1ax ([{Eo, [|Foel) -

Theorem (extension of the original sin 0-theorem).

Assume there is an interval [§,«] and a §>0 such that the singular
values of B lie entirely in [$, ] while the singular values of 4, lie entirely
outside of (f—4,x+9) (or such that the singular values of 4, lie entirely
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in [f,«] while those of B, lie entirely outside of (8—9,x+48)). Then for
every unitary invariant norm

. . €
(5.4) max({}smG(R{BQ),R(AO))H,HsmG(R(BOH),R(AOH))H) < E-Ic
with
k = V2 for the spectral norm and the Euclidean matrix norm
£ = 2 for all unitary invariant norms.

Proor. As was mentioned in section 2 we cannot make any transla-
tion of the singular values of 4 and B. Instead we decompose

(5.5) Al = A2+A3

with A,7A4,=0 and A;4,7 =0. Then 4, and 4, have the same singular
values as 4,. We assume that all singular values of 4, which are less
than or equal to §— 4 belong to 4, and those which are greater than or
equal to &+ belong to 4,.

By definition

(6.6) llsin 6(R(By,), (A = | = Preag)Presyl -
We make the decomposition
(6.7 (I=Prup)Prey = (Prur+Pruy+ Prus)Prey =
= (Pruyt+ Priap)Prio+ PruyPrey -

An analogous decomposition can be made for (I — Py m)Prpm- We
will now prove that

£
(5.8) (P reor + Prug)Pregyll £ 3
and that
£
(5.9) 1PrupPrEgl = 5

Let us for a moment assume that proof clear. Because Pr g1+ Pgy, 18
orthogonal to P, it follows that
- €
(I — Preag)Prsylls = suP I — Preag)Presytls = V2 5
lind=1

and that
2

€
d—-p Rag) P R(B.,)”E2 = [(Preor+ P R(Aa))P R(Bo)HE2+ P reapPrisoll® = 2‘6—2’

I~ Preag)Prsolls < VE 5.
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The inequality |[(I —Pgsy)Prpyll < 2(¢/6) follows for all unitary invari-
ant norms from the triangular inequality and (5.8) and (5.9).
We now turn to the proof of (5.9) which we rewrite as in (3.8):

(5.10) P R(BO)P R(43) = P R(Bo)AA3+ =P R(Bo)(B “T)A3+

= BO(PR(BQH)PR(A3H))A3+_PR(Bo)TPR(Asﬂ)A3+ .
A corresponding decomposition can be made in E™ of Py P ro4,m.
It is also observed that ||4,%]| < 1/(c+0) and that ||By|| = «. The proof of

the sinf# theorem in section 3 can then be copied to give (5.9) and at
the same time

.

[SERN )

1P rasyP risemll <
The proof of (5.8) depends on the identity,

(5.11) (P RLL T P R(A,,))P R(By = (P R(A)-L+P R(Ag))BB0+
= (Pt + Pruy)(4 +T)By*+
= {4x(Preaym + Preamt) P ey + (Preot + Prug) TP pm ) Bet -

This decomposition is similar to (3.7). Since ||B,*|<1/f and ||4,|=f -6
we can use the same technique of proof as in section 3 to get (5.8). That
(5.8) and (5.9) give (5.4) has already been shown and hence the theorem
is proved.

Nore. It is not likely that the constant k in (5.4) can be chosen
smaller than V2. Taking Hermitian matrices 4 and B, then B, might
have eigenvalues both in [—«, —fg] and [f,x]. On the other hand it
seems probable that the theorem can be sharpened so that k=}2 can
be chosen for all unitary invariant norms.
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