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P E R T U R B A T I O N  B O U N D S  I N  C O N N E C T I O N  W I T H  

S I N G U L A R  V A L U E  D E C O M P O S I T I O N  

P E R - A K E  WED: IN  

Abstract. 
L e t  A be an  m × n -ma t r i x  which is s l ight ly  per turbed .  I n  th is  pape r  we will  der ive  

an  e s t ima te  of how m u c h  the  i nva r i an t  subspaces of A U A  and  A A  H will t h e n  be 
affected.  These bounds  have  the  sin 0 theorem for H e r m i t i a n  l inear  opera tors  in 
Dav i s  and  K a h a n  [1] as a special case. T h e y  are  appl icable  to computa t iona l  solu- 
t ion  of ove rde te rmined  systems of l inear  equat ions  and  especial ly cover  t he  rank  
def ic ient  case when  the  m a t r i x  is replaced b y  one of lower rank.  

1. Preliminaries. 
Le t  A be an m × n-mat r ix  over  the  complex field. Then  there  exists 

a singular value decomposi t ion of A, 

(1.1) A = U Y., V ~ = U~ Y.1 V~ H + Uo Xo Vo H 

w h e r e  

V1 = [v 1 . . . . .  v r ] ;  V 0 ~-- [vr+ 1 . . . .  , vp ] ;  V ~-~ ( V l ,  Vo) , 

and  

U 1 = [u 1 . . . . .  u r ] ;  U 0 = [Ur+ 1 . . . . .  up ] ;  V = (U1,  U0) ;  

~1 = diag (al . . . .  , a~) ; X0 -- diag (a~+l . . . .  , %) ; 2~ = diag (al . . . .  , %) 

V 1, V 0, V and U 1, U 0, U are assumed to  be par t ia l  isometrics sat isfying 

V HV = U HU =I~;  V1 HVI= U1 H U I = I ~ ;  Vo HVo = Uo ~Uo =Ip -~ .  

The  r ank  of A is p and  r < p. 
F o r  the  per tu rba t ion  of A, B = A  + T ,  a corresponding singular value  

decomposi t ion can be made.  Take  

(1.2) A s =  j(A) 

F r o m  (1.1) i t  is obvious t ha t  

Bj = GAB) Xj(B) Vj ' (B);  
j = O ,  1. 

(1.3) A + T  = A I + A o + T  = B I + B  o = B .  

I t  seems na tu ra l  to  assume t h a t  r=rank(A1)=rank(B1), a l though 
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this condition is not needed for the generalization of the sin 0 theorem 
tha t  we will prove later. 

The range of a matrix A is denoted by R(A) and the nullspaee of A 
by N(A). I t  is an immediate consequence of the decomposition (1.1) and 
the definition (1.2) tha t  

(1.4) R(Ai) = N(Ai~) ± and I(A1) = R(AiH) ± 

where L denotes the orthogonal complement. 
R(A1) and R(Ao) are invariant subspaces of the Hermitian matrix 

AA H as are R(A1 H) and R(Ao ~) of AHA. 
In this paper we are going to estimate the angles between the sub- 

spaces in E "~, R(Ai) and R(Bi) as well as between the subspaees in E ~, 
R(A1 H) and •(B1H). 

The orthogonal projection onto a subspaee M is denoted by PM. 
Angles between subspaees are studied by Davis and Kahan in [1]. The 
angle between a vector x and a subspaee M can be defined by 

sin O(x, M) -- rain Nx- YII~ 
yeM 

with l]xlt~ = 1. 
I t  follows from the projection theorem that  

min I]x- Y]12 = [](I- PM)x]]2. 
yeM 

For two subspaees L and M it is natural to define 

(1.5) [[sin O(L, M)I ] = [](I - P~)PLI] 

for any unitary invariant norm. 
Our aim can now be formulated strictly. We want to find good upper 

bounds for 

IlsinO(R(B~),R(Ax))ll and HsinO(R(BiH),R(AiH))H 

when we have estimates of ttTII and the gap between the least singular 
value of B i and the largest singular value of A o. 

We will now define residuals which can be used instead of T. Let 
Yi . . . . .  Yr be orthonormal vectors spanning the subspace R(Bi). This 
means tha t  with Yi = [Yi . . . . .  Yr], 

(1.6) YiHYi = I r and YiY1 ~ = Pn(Bi)" 

Analogously define Xi through 

(1.7) XiHXi = I r and X I X 1  TI -= P.R(B1R). 

Take Di= YiHBXr A convenient but not necessary choice is X i =  V i 
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and Y1 = U1. With this choice we get D 1 - ~ I ( B ) .  We can now define the 
residuals 

I R l l  = A X 1 -  YlD1 (1.8) / R~l AH Yl - X1D1 ~ • 

The connection between Rll and T is seen through the rewriting 
Rll = A X  1 - Y1DI-= ( B -  T)X 1 -  Yl(Y1HBX1) = - TXI" Analogously it 
can be shown tha t  R21 = - T  H Yl. 

In the same way partial isometries Y0 and X o corresponding to R(Bo) 
and R(BoH ) could be defined. 

We have now at hand almost all tools necessary to estimate 
llsinO(R(B~),R(Ax))ll and tlsinO(R(B~H),R(AxU))lt. But tha t  work will 
wait until  paragrah 3 because we will first cite a theorem by Davis 
and Kahan about the perturbation of t termitian operators. That  theorem 
also shows how the gap-condition should be imposed on B 1 and A o. 
In paragraph 3 we then make a rather natural generalization of Davis' 
and Kahan 's  theorem. 

2. T h e  s i n 0  t h e o r e m  for H e r m i t i a n  m a t r i c e s .  

In this section it is assumed tha t  A and B are Hermitian matrices. 
I t  follows tha t  J¢(AI)=R(A1 H) and R(Bx)=R(BI~). We also choose 
YI=X1 and get as a consequence Rn=R21=R1. There are several 
estimates of trigonometric functions of the angles between B 1 and A 1 
in [1]. This theorem which we intend to generalize below will be stated. 
The notations differ slightly from those used in [1], p. 10. 

The sin 0 theorem. Assume there is an intervM [fl, c¢] and a ~ > 0 such 
tha t  the spectrum of A 0 lies entirely in [fi,~] while tha t  of B I lies entirely 
outside of ( f i -~ ,~+6)  (or such tha t  the spectrum of B 1 lies entirely in 
[fl, ~], while that  of A o lies entirely outside of (f l -  6, ~ + 6)). Then for every 
uni tary invariant norm, ~NsinO(R(B1),R(A1))[1 < ]]R1][. 

In  the proof of the sin0 theorem above a multiple of the identi ty 
operator is added to A, translating the spectra of B 0 and A 1 without 
affecting R. I t  can accordingly be assumed without loss of generality 
tha t  0 < ~ = - fl in the hypothesis of the theorem. This choice of a and fl 
is subsequently used in [1] (see the proof p. 25). The point is now tha t  
we cannot in general make any translation of the singular values of the 
m x n-matrices A and B. I t  therefore seems natural  to limit our general- 
ization of the sin0-theorem to the following formulation of the sin0 
theorem, which is equivalent for Hermitian matrices. 

Adaptable formulation of the sin 0 theorem. Let A and B be Hermitian 
matrices. Assume there exists an c¢ > 0 and a 6 > 0 such tha t  
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(train(B1) > o~+$ and  amax(Ao) < 0¢, 

t hen  for every un i t a ry  invar iant  norm, 

~llsin O(R(B~),R(A1))ll ~ tiRlll- 

3. The s in0  theorem for the s ingular  value decomposi t ion .  

We are now ready  to formulate  a generMization of the  sin 0 theorem 
to m × n-matrices. 

The generalized sin 0 theorem. Assume there exists an  ~ > 0 and  a ~ > 0 
such t h a t  

~min(B1) > o~+~ and  amax(Ao) < o¢. 

Take s=max([IRll[I, IIR2111) where Rll  and  Re1 are defined by  (1.8). Then 
for every un i t a ry  invar iant  norm, 

(3.1) 
Hsin O(R(B1),R(A1))[I < 

llsin O(R(B,H),R(Aln))II  < ~. 

PROOF. We are going to use the same notat ions as in section I. F rom 
the  definition (1.5) i t  is seen t h a t  

(3.2) I]sinO(R(B1),R(A~))II = I[PR(Ap±P2~(Bpll 
and  
(3.3) IIsin O( R( B I ~  ) ,R(  A1H) )II = NP R(~In)±P R(BI~)I I . 

I t  is also known from section 1 t ha t  

(3.4) llRll N = NTXIH = IITPR(BI~)I I 

and tha t  

(3.5) llReltl = llT"YiN = ] lPReB~)Tl i  • 

The pseudo-inverse of a mat r ix  A is denoted by  A +. In  the  following 
we will make ardent  use of the  identities, 

(3.6) Pn(A) = A A +  = A+~AXt;  P ~ , )  = A + A  = A H A  +~ . 

The proof now depends on two decompositions, 

(3.7) Pn(.~I)±PR(B~) = PR(Ap±B1BI + = P R(A1)±(A1 + A o -  B o - T)BI+ 

= { -  PR(A1)ITPR(B~) + Ao(PR(~IH)IPR(B~u))}B1 + 
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and  the corresponding ident i ty  

(3.8) pR(B1H)p~¢(~lm.t = B~+{-  px¢(~)TpR(.qrx)~ + pR(m)pRc~)xAo} . 

Take # =max([IPn(~)±TP~(B~mll, NPn(BpTPn(.~),N). F r o m  (3.4) and (3.5) 
i t  is seen tha t  
(3.9) tt < max(HRll[l, lIRelll) = e .  

W e  will t emporar i ly  use the  nota t ions  

q -- IIsin O(R(B~) , t t (A1))II  = I[P~<AI)'PR(B~)II 
and  

t~ -- llsin O(R(B1H), R(A~))II  -- IIPI~(A~n)xPn(B~n)II. 

I t  was assumed tha t  amax(A0) = IIA0112 =< ~ and tha t  1/l[B~+l[ 2 = 6min(B1) => 
+ & N o w  it  is known from [3] t ha t  for un i ta ry  norms and arb i t ra ry  

matr ices  C and D such tha t  CD is defined 

[tCDI] 5 []Cll21]D[[ < []CI['IIDI[. 

Then from the decomposi t ions (3.7) and (3.8) we derive the  inequMities 

(3.1o) 

I t  1 < # + c¢tz 

I t  S /t + ~t 1 < 

Assume tha t  tt is max(t l ,  t~). (3.10) implies tha t  

tj < # + ~ t j  
= ~ + ~  

or simplified tha t  
(3.11) tj < ~ /~ .  

N o w  we take  inequal i ty  (3.9) into account  and insert  the  notat ions  
used originally. Then formula (3 . t l )  implies the  inequalit ies (3.1) which 
we set ou t  to prove.  

I f  A and B are Hermit ian,  then the theorem above is identical with 
the  sin 0 theorem in section 2. 

As dist inguished from Davis  and K a h a n  [1] we work  with subspaees 
R(Ao) and R(A1) which are orthogonal  b u t  not  or thogonal  complements  
since R(Ao)+R(A1)=R(A ). Because of this we cannot  s ta te  a sin0 
theorem with the  residuals corresponding to A o and B o. Bu t  i t  is easy  
to make  a small change of the  definition of X o and  Yo to make  a similar 
theorem possible. Let  Yr+l . . . . .  Ym be or thonormal  vectors  spanning 
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R(B1) l and  X r + l , . . . , x ,  be or thonormal  and  spanning N(B1). Take 
Yo=[Yr+l . . . . .  Ym], X ,=[xr+l  . . . .  ,xn] a n d / 9 0 =  YoHBXe.  Define 

Rio = A X  e -  YoDo; t~o = A H Y o - X o D o  ~t . 

As in section 1 i t  is seen t h a t  Rio = - T X  o and t h a t  R2o = - T  ~ Yo. For  
un i t a ry  invar iant  norms we get 

[IRlol] = IITP~(B,H)±ll; ][R2ol] = IIP~(B1)xTII. 

The sin O-theorem with complementary residuals. Assume there exists 
an  ~ > 0 and  a d > 0 such t h a t  

amin(A1) > ~ + 6  and  amax(Bo) _-< 0¢. 

Take e=max([]Rlol] , ]]R2o[]). Then for every un i t a ry  invar iant  norm, 

8 
IlsinO(R(Ax),R(B1))l] < -~ 

(3.12) 
IIsin O(R(AI~),R(B~U))II <= ~. 

The proof is similar to that already given in this section. 

NOTE 1. When  A is perturbed,  P~c~O and PR(Ao H) are influenced no t  
only by  PRC~,) and PR(A1H) but  also by  Pi~c~)± and P~(m. Tha t  is the  reason 
why  it  is difficult to get est imates of 

(3.13) INnO(R(Bo),R(Ao))[I and  llsinO(l~(BoH),R(AoH))[] . 

I f  N ( A ) = N ( B ) =  {0} then  

llsin O(R(A~H),R(B~H))I[ = tIe~.(B~)Pzv(A~).tlI = IIPN(Bo)J.PN(~,~H 

= IIP~.(Ao)P~(B.)xH = Ilsin O(R(BoH),R(AoH))[[ 

and we can use (3.12). I f  N(A)  or N(B)  is n o n e mp t y  we need a lower 
bound  of groin(B0) in the theorem above to be able to est imate 
[[sinO(R(BoH),R(AoH))II. About  such problems see the  theorem in sec- 
t ion 5. 

NOTE 2. For  un i t a ry  invar iant  norms 

(3.14) Itsin O(R(A~),R(B~) )I t = llsin O(R(B~),R(A~) )I l 

ff and only ff 

(3.15) rank(A1) = rank(B1) .  
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The proof of this theorem which is given in several papers (see [5]) is 
based on the following two facts. 

1. The singular values less than one are the same for (I-Pt~(Bp)PI~(Ap 
and (I-- PR(Ap)P~(Bp. 

2. A uni tary invariant norm of a matrix depends only on the singular 
values of that  matrix. 

NOT~ 3. For the spectral norm the generalized sin 0 theorem follows 
from the sin 0 theorem for hermitian matrices. To every m x n-matrix C 
there is defined an (m + n) x (m + n)-matrix 

(o Co) 
is hermitian and has the eigenvalues +ai(C), + a~(C) . . . . .  +ap(C) 

and m + n - 2 p  eigenvalues equal to zero. I t  is observed tha t  with the 
notations from (1.6) and (1.7) 

1 (Y i  - Y i )  
Zi  = ~ Xi Xi 

is a partial isometry corresponding to /?(Bi) because Z i R Z i = I  and 
ZiZi H = P~(ih)" Take 

J~l -'~ ZIHJ~IZ1 and k i = XZ 1 -  ~1/~1 • 

From the sin 0 theorem for hermitian matrices it follows that  if 

amin(/)i) > ~ + ~  and amax(ATo) -<_ 
then 

(3.16) 

But 

6" llsin O( R(B~),R(-~l) )II < lll~lit . 

0 = ((I--PI~(;1))PI~(B1) i_p~alH)p~B1B) ) 2 = 

-- max (][sin 0 (R(BI), R(A1))II~, ][sin O(R(Bt'), R(AI"))!le) • 

I t  is further seen that  

A~ 1 ~- ~ kR21 - - R 2 1 1 '  

where R n and 1721 are given in (1.8), and tha t  the singular values of i~ 1 
are the singular values of/711 and/?~1. Hence ]]/~:H2 = max(]]RnII~, ]tR~i]I~) • 
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Crmin(B1)-(~min(B1) and (r,~x(Ao)=an,~(Ao) and so (3.16) gives the gen- 
eralized sin 0 theorem for the spectral norm. 

NOTE 4. The est imates derived from (3.7) and  (3.8) can be sharpened 
if we take  

[A 1 = IIPR(~I),TPR(m,)] I and /~u = IIPR(B1)TPR<AI~)']I. 

If  a counterpar t  of (3.10) with/~i  and  f12 instead of/z is used we get after  
some work tha t  

t t<=  =< it- 

l + 2 ; -  

(3.17) and 

~ 2 + ~ / A 1  /A 
~ < < _ 

Here/~1 < [IRl111 a n d / ~  < lIRa211. If  a](~ + (~) is small  we get from (3.17) t h a t  

and 

IIsin O(R(B1),R(AI))[[ < - -  
IIRllli 

lIR 111 
[lsin O(R(BxH),R(A1H))]] <~ 

4. Applications to the es t imat ion  of NBI+-AI+[[. 

Throughout  section 4 i t  will be assumed t h a t  

(4.1) rank (A1) = rank (B1) 

so t h a t  we can take  advantage  of (3.14). In  this  context  i t  is suitable 
to use t ha t  tlsinO(L,M)II = N(I--PM)PLN and we can formulate  the  result 
in note 2 in the following lemma. 

LEMMA. I f  and only i f  rank(A1)=rank(B1)  then 

(4.2) ][P R(A,)±P R(BDI[ = [[P R(Bp± P R(AD N 
and 
(4.3) IIPN(A,)P~v(BIp. H = HPN(BpPN(e,)±H 

for unitary invariant norms. 
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I f  we want  to  es t imate  IIBI+-AI+II using the  theorems in [5] or [6] 
an  es t imate  of IIB1-A1]I is needed.  Le t  us assume t h a t  A and  B sat isfy 
the  condit ions of the  sin0 theorem.  Expressed  in the  nota t ions  f rom 
t h a t  theorem it is t hen  seen t h a t  an es t imate  of l IB1-All  I involves 1/8 
and  l I B - A l l .  I n  fact  we get 

B 1 - A 1 = PR(BD(B - A)PR(A1H) + BIPN(&) - P~(Bx).tA1 

B1PN(Ap = PR(BpTPN(A~) + PR(B~)A o 

P n(BpIA 1 = - P t~(Bp± T P  ~(&~) + B o P  R(.~B) • 

F r o m  these identi t ies and  the sin 0 theorem it is seen t h a t  

(4.4) i]Ao]] IIBo]l\ 
l lBx- /~l l  ~ IITII 3 ÷ T + - ~ ) .  

Even  if (4.4) is an overes t imate  we cannot  f ind a bound  which is essen- 
t ia l ly  sharper.  I n  (4.4) we have  used t h a t  IITII is grea ter  t h a n  or  equal  to  
the  n u m b e r  e in (3.1). 

The  poin t  is now t h a t  we do not  need an  es t imate  of t IBI-A1[t  to  
be able to  bound  IIBx+-AI+II. We use the  decomposi t ion f rom [5], 

(4.5) BI+ - AI+ = - A I + ( B  1 - A1)B1 + - AI+PR(B1 ), + PN(A1)BI+ 

and note  t ha t  

H e n c e  

(4.6) 

Ai+(B i -  Ai )Bi  + = A I + ( B -  A)Bi+ = A I + T B 1  + . 

Bounds  of ][BI+-AI+I1 are useful in a t  least two kinds of problems. 
F i rs t  there  is the  problem s tudied in [7] where we wan t  to  see how 

large the  pe r tu rba t ion  ( A + T ) + b - A + b  is in different  directions. Evi -  
den t ly  NB0+-A0+II can be much  larger t h a n  llB1+-Al+II. However  t h a t  
p rob lem is more  easily deal t  wi th  if a decomposi t ion similar to  (4.5) is 
used for  B + - A + .  I f  A and  B are nonsingular  we get  B - l - A - l =  

- (AI+ + Ao+)T(B1 + + 17o+ ) which in this con tex t  is more  useful t h a n  (4.6). 
There  are several problems in which we w a n t  to  de termine  the  pseudo- 

inverse AI+ of the  ma t r ix  AI, which minimizes ]IA 1 -  A [[ when r ank  (A1) = r 
(see [3]). In  some of these probIems the  r ank  of A 1 is no t  known before- 
hand  b u t  chosen in such a way  t ha t  [IA1-AI] is small bu t  at(A1) is no t  
too small. In  general during the  computa t iona l  procedure  a ma t r ix  A + T 
is found  for which IITII is small and  (A + T)+ is t aken  as an approx imat ion  
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of AI+. (4.6) can be used direct ly for this problem. But  a sharper esti- 
mate  of [](A +T)+-AI+] [  can be found if we take  advantage  of the fact  
t h a t  B 1 = (A + T ) = B .  We know t h a t  

(4.7) PN(ApIPN(B1 ) = AI+ ( - T - Ao)P~T(B1) = - A I + T P v ( B  p 

and tha t  

(4.8) PR(BI)±Pt~(AI) = PR(B~)±( -- T - A o ) A 1  + = --PR(B~)±TA1 + • 

From (4.5) i t  follows t h a t  

HBI+-AI+[[ _-< ][AI+[]. [[TH" ][BI+I] + [[AI+N'[]Ple(A,)PR(B,p.]I 

+ []BI+II'IIPN~)PN(m)±[[ 

and since the lemma implies t h a t  

[IP N(ApP N(B1).t[[ = NP N(a~)±P,v(m)]l 

we can use (4.7) and  (4.8) to get the est imate 

(4.9) IIB~+-A~+I] __< 3[ITiI.IIAx+ll max([IA~+LllB~+]l ) . 

The constant  3 in (4.9) can be changed to (V5 + 1)/2 for the spectral norm 
and to ~/2 for the Eucl idean mat r ix  norm. The technique necessary for 
t h a t  improvement  is given in [6], section 6. 

5. An extens ion  of the original  s in0  theorem.  

A i and Bi, j = 0, 1 are still defined as in section 1. We re turn  to the  
definition of X 0 and  Yo as par t ia l  isometries corresponding to R(Bo)  
and R(Bo H) t ha t  is 

(5.1) PR(Bo H) = X o X o H ;  I = X o H X o  
PR(Bo)= Y o Y o  H; I = ]7o H Y o  

and  take D O = Y o n B X o  . As before we define the residuals 

(5.2) Rol = A X  o -  YoD0; .Ro2 = A H Y o - - X o D J  z 

and  

(5.3) ~ = max  ([}R01[I, IlR0~ll). 

Theorem (extens ion of  the original  sin O-theorem). 

Assume there is an interval  [fl, a] and  a ~ > 0 such t h a t  the  singular 
values of B o lie entirely in [fl, a] while the singular values of A 1 lie entirely 
outside of ( f l -  ~, a + 6) (or such t h a t  the singular values of A 1 lie entirely 
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(5.4) 

with  

in [fl, cq while tbose of B 0 lie ent i re ly  outside of (/3-(~, ~ + ~)). Th e n  for  
eve ry  un i t a ry  invar ian t  norm 

m a x  (]Isin O(R(Bo), R(Ao))I], Ilsin O(R(Bo=), R(Ao=))II) < _e. k = d  

k = 1/2 for the  spectral  norm and the  Euc l idean  ma t r ix  norm 
k < 2 for  all un i t a ry  invar ian t  norms.  

(5.8) 

and  t h a t  

X~OOF. As was ment ioned  in section 2 we cannot  make  a n y  t ransla-  
t ion  of the  singular values of A and  B. Ins t ead  we decompose 

( 5 . 5 )  A 1 = A ~ + A  3 

with  A,,HAa= 0 and  AaA2rS= O. Then  A g. and  A a have  the  same singular 
values  as A r We assume t h a t  all s ingular values of A 1 which are less 
t han  or equal  t o / 3 -  ~ belong to  A s and  those  which are grea ter  t h a n  or 
equal  to ~ + ~ belong to  A a. 

B y  defini t ion 

(5.6) llsin O( R( Bo), R(Ao))t I = 11(I- P ~(.40) )P n(Bo)N . 

We make  the  decomposi t ion 

(5.7) ( I  - PR(Ao))P~(B,) = (PR(m.t + PR(A~) + PR(.~3))PR(Bo) = 

= (Pn(a)x + PR(A~))PR(eo) + P~C~)PR(Bo). 

An analogous decomposi t ion can be made  for (I--P~(AoH))PR(BoH). We 
will now prove  t h a t  

II(PR~)-'- + Pn(~,))Pn(Bdl[ < 

(5.9) tlP R(A.)P ~(Bo)I[ <= -~ . 

Le t  us for  a momen t  assume tha t  proof  clear. Because P~(mi + Pn(~)  is 
or thogonal  to  PRu3) i t  follows t h a t  

II(I- PR(Ao))PR(Bo)II2 = s u p  1] (1- -  PR(Ao))PR(Bo)Xl]2 <= W-2 
NI=I 

and  t h a t  
6 2 

[I( I -  P R(Ao) )P R(Bo)I[I~ ~ = I](PR(A)~ + P R(A3) )P R(Bo)]]I~ 2 + ]]P Rcta)P R(Bo)HE ~ < 2~,  

8 
tI(I--P~(~o))PR(Bo)IIE = V2 ~. 
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The  inequal i ty  N ( I - - P R c ~ ) P R ( B d N  ~ 2(d~) follows for  all u n i t a ry  invari-  
an t  norms f rom the  t r iangular  inequal i ty  and  (5.8) and  (5.9). 

We now tu rn  to  the  proof  of (5.9) which we rewri te  as in (3.8): 

(5.10) P~(Bo)PR(Aa) = PR(Bo)AAa + = P R ( B o ) ( B -  T ) A a +  

= Bo(PR(Borz)PR(Aa~))Aa+--P~(Bo)TPIe(AaB)Aa + . 

A corresponding decomposi t ion can be made  in E ~ of PR(BoEoPR(.~SR). 
I t  is also observed t h a t  [IAa+ll < 1/(~ + (~) and  t h a t  ilB01I _-< ~. The  proof of 
the  sin0 theorem in sect ion 3 can t hen  be  copied to  give (5.9) a n d  a t  
the  same t ime 

][P I~(A3H)P I~(Bon)I[ <-- -~ . 

The proof of (5.8) depends on the ident i ty ,  

(5.11) (PR~)± + PR(A~))PR(Bo) = (PR(A).t -{- Pn(a~))BBo + 

= (PR(a)x + Psac~))( A + T)Bo+ 

= { A ~ ( P R ( x ~ B ) + P R ( a n ) , ) P n ( B o n ) + ( P R ( m , + P R ( a ~ ) ) T P R ( B o n ) } B o  + • 

This decomposi t ion is similar to (3.7). Since IiBo+lI ~ l i f t  and  HAul[ 5 f l -  
we can use the  same technique  of proof as in section 3 to get  (5.8). T h a t  
(5.8) and (5.9) give (5.4) has a l ready been shown and  hence the theorem 

is proved.  

NOTE. I t  is no t  l ikely t h a t  the  cons tan t  k in (5.4) can  be chosen 
smaller  t h a n  V2. Tak ing  Hermi t i an  matr ices  A and  B, t hen  B 0 might  
have  eigenvalues bo th  in [ - a , - f l ]  and  [fl, a]. On the  o ther  h a n d  i t  
seems probable  t h a t  the  theorem can be sharpened so t h a t  k = ~/2 can 
be chosen for all un i t a ry  invar ian t  norms.  
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