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ATTAINABLE ORDER OF RATIONAL
APPROXIMATIONS TO THE EXPONENTIAL FUNCTION
WITH ONLY REAL POLES

SYVERT P. NORSETIT and ARNE WOLFBRANDT

Abstract.

Rational approximations of the form X7, g%/ TI%, (1+y9) to exp(—g), g€,
are studied with respect to order and error constant. It ig shown that the maximum
obtainable order is m +1 and that the approximation of order m +1 with least
absolute value of the error constant has y, =y, =... =y,. As an application it is
shown that the order of a v-stage semi-implicit Runge-Kutta method eannot
exceed v + 1.

1. Introduction.

Different approximations to the exponential function play an impor-
tant role in connection with the numerical solution of stiff systems of
ordinary differential equations. For example, entries in the Padé table
for exp({—¢) are connected with implicit Runge-Kutta methods of op-
timal order, Ehle [1], Chipman [2]. Further multiple Padé approxima-
tions') are, Norsett [3], related to the special semi-implicit Runge-Kutta
methods of Ngrsett [4] and the special one-step Hermite methods of
Norsett [5].

The Padé approximations RI'(q9) to exp(—gq),q € O, are such that the
coefficients of the denominator and the numerator are chosen to give
optimal order n-+m. However, the zeros of the denominator are all
complex except for one when » is an odd number. In connection with,
for example, semi-implicit Runge-Kutta methods, the relevant rational
approximations to exp{q) are such that the denominator has only real
zeros. The natural question to be discussed is therefore, what is the
optimal order of such rational approximations? This problem was
treated in Norsett [3] for the case where the denominator was of one of
the forms (1+yg)* and (1+yg)*Y(1+4dq) and the numerator a polyno-
mial of degree m < n. The case of »n different real zeros in the denominator
and a polynomial of degree n—1 in the numerator is discussed in Wolf-
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1 In Siemieniuch [6] called Norsett approximations.
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brandt [8]. In this paper the general case of n distinct real factors in the
denominator and a polynomial of degree m in the numerator is discussed
thereby extending the results of Norsett [3] and Wolfbrandt [8]. The
surprising result is that the maximum reachable order is m+1. Hence
the error is of the form Cgm+24 O(g™+3) where C, the error constant, is
a function of n—1 real variables. By minimising €' with respect to these
variables the next main result is obtained, saying that the least value
of C is obtained when all the zeros of the denominator are equal, which
means that the optimal approximations in the sense of minimising C
are the multiple Padé approximations of Nersett [3].

2. N-approximations and C-polynomials.

Let pen, = {polynomials of degree =n,p™(x)=1}. Then, (1.2) in
Norsett [7] (g is replaced by —g),

(2.1)  BY(P;9) = 270 9:-nl0)0 27 09:-n(1)g* = e~24+0(g™*) ,

where we have defined

(2.2) gira(®) = \Tg,(t)ds,

)
g-i(2) = gex), i 2

{go(w) = p(z),

p is called the C-polynomial for the rational approximation RI(p;q).
Following Norsett [7], B (p;q) is an approximation to exp(—g) of
order s >m iff

(2.3) {gi~n+1(0) =0 for m<igae-1

Js-n+1(0) = 0.

DerinrrioN 2.1 A rational approximation to exp(—g¢) whose denomi-
nator has only real zeros is called an N-approximation to exp(—g).

Levya 2.1. Let the denominator of a rational approximation to exp(—q)
be of the form

(2.4) D,(@) = D, @)1 +yg)*,

where

(2.5) D, ) = Jrfpr*d (g, Pemyy.
Then

(2.6) D,(g) = 27 0P N1)g"

BIT 17 — 14
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with
(2.7) p(t) = Jko gt
where g; is defined by (2.2) and gy= 1.

Proor. By induction on k. Let k=1, then

(28) Dyfg) = [ZEAp--2(1)g 11 +79)
= PI(1)+ T2 (PO + P+ pplLg"

Using p from (2.7) with k=1,
(2.9) p(t) = yp(t)+ ] Bl)da = pgo(t) +g(t)
which gives (2.6) from (2.8).

Suppose that the lemma is true for k <k,—1. For k=k,,
(2.10) Do) = Dy @)1+ (1 479) = Dy @1 +79) »
where by the induction hypothesis
(2.11) D, 1(q) = 233 pni-d(1)gt

and
= YRt (Bt tigy () .

From (2.9), (2.10) and (2.11)

pit) = yp(t) + i Pla)de
= 2705t (5 Dy gy + Zhegt (o e g ()
2‘7:0 (ko),yfco‘] g](t) . I

Let B}'(p,q) be an N-approximation to exp (~g¢) of the form
(2'12) Rg(P:Q) = Qm(Q)/H};l(l'*'qu)s Yi 2 0; Qme“m

The corresponding C-polynomial p=1p, ,, is then a function of y,,...,y,,
Do, ml) =Pn, (V15 -+ +>V5;t) where p, .. is a symmetric function in its
variables y, . . ., ¥, Let gy(y1, . . ., 7,;¢) be defined as in (2.2) with p=1p,, .
Using Lemma 2.1 we obtain,

(2.13) g(ys, -« »¥n3t) = Va1 - - 5 ViwsVisns -+ +5¥ns0)

+ 01V - Vit Vit - - 5 ¥nil)y 1 15w
for kz —n+ 1. According to (2.3) R in (2.12) has order m + 2 if and only
if

Im-ns1(V1++ >¥n30) = 0
2.14
@14 e i Z .
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Define k,(z,, . . .,2,;t) by

(2.18)  Igfzy, -« s2n38) = GV - oVl (TTEaave) 2 = vt
From (2.13),

(2.18) A2y, -« 02038) = Pyl2gs o o325 15 Bg01s « « « 520 30)
F 2R (s v e3Z51Baqs e 2p3t), 1 212 m.

Obviously %, is a symmetric function of its z-arguments. Order m + 2
is then equivalent with (by (2.14))

(2.17) {hm-m(z;, eer2y30) = 0
hm-—n+2(zl., e gzn;O) == {,

LeMMmA 2.2. For n21 the following identity holds (k> —n+1):

(2.18) 2;;1(6/9z,.)hk(z1, censZit) = (mF k4 Dhyoy(2y, -0 0 52,30)
(b= D)y(2q, « - - 52,38) .

Proor. By induction. By definition of C-polynomials,

Jo(y138) = yr+(E—1).
Hence, using (2.2),

ga=1 g = palt=DFkHE- DYDY, 20,

and therefore,
h_y(z3t) = 2 .
(2.19)  Ry(zb) = (— 1%kl +2,(E— 1Y (k+1)!, &2 0.

(2.18) then follows for n=1.
Suppose that (2.18) is satisfied for n <m. Using (2.16) and (2.18) for
n=m we have

POz hilzys « - Zmanit) = Ppaa(Zas - - 5% t)

+ 271002yl 23 t) F 2y 2721(0]02) a2, - - - 23 E)
= Rpi(Zyy - 2ty F M4 Dl (2, 0 o 5203 E)

— (= Dhgl2y, . - +1258)

+ zmﬂ.(m +k+ 2)7?/,“2(21, te :zm;t) - 2"m+1(i - l)hk+1(zle s :zm;t)
= (m+k+ 2){hk+1(zl> e ’zm3t)+zm+1hk+2(zb e 3zm;t)}

— (= Dhlzs -« 52038 + Znaafia(Zes - - 5 250)]
= (m+E+ 21z, . 23~ E= Dl Zmanst) -

Levma 2.8, The following two statements are equivalent,

(2.20) (0102 h(2as -+ +12030) = 0, Pylegse..,2,50) = 0
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and

(2.21) {hk(zl»---:zf—n Yoyt 0) =0
Pra(Zis -« 0%5-15%5415 -« +2%030) = 0

Proor: By observing that

(2.22)  (8)02)hfZ1s - - +52038) = Bypa(Zas -« <5 Zo1s %4405 - - -5 %5E)

the lemma is an easy consequence of (2.16). ]
The main result is then,

TaeorEM 2.1. The maximum attainable order of an N-approximation
to exp(—q) of the form (2.12) is m + 1.
(This result has been obiained when m=mn—1 by Wolfbrandt [8]).

Proor. By induction on n we show that order m+ 2 is not attainable.
(i) Let n=1. From (2.17) and (2.19) for order m+ 2,

(= D)nfm!+ 24— e (m+ 1)1 = 0
(= 1™+ (m + 1)+ 2,(— 2 (m+2)! = 0

or z;=m+1 and z,=m+2 and it is impossible to satisfy both equations
at the same time.

(i) Suppose that the theorem is true for n<r—1.

(iii) Let n=r. The equations to be satisfied for order m+2 are by
(2.17) and lemma 2.2 given by

(2.23a) b2y, . 02,;0) =0, k=m—-r+1
(2.23b) 27-10[02) 2y, . . ,2,30) = 0.
With (ii) in mind, (2.23a) gives

(2.24) (0)oz)hp(2y, - . 52,30y £ 0, j = 1(1)r.

The proof is completed if we can verify that the quantities in (2.24) all
have the same sign under the condition (2.23a). In this connection we
first observe that the domain

Q = {(z,...,2,) € R"; by, . . . ,2,30) = 0}
rif bz —~1
rbk+1 if —r+1 k< —1
subdomains such that to each subdomain belongs a point (z,...,2),
where 2 is a solution to ;‘"‘—‘ tiaes
LE(z) =0 for k20
FLEP(z) =0 for —r+15kZ0

can be split up in exactly f#= {

(2.25)
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and L, is the Laguerre polynomial of degree ». This observation follows
by induction from the fact that (2, ...,2,) € 2 implies
zp = =y, . 20130 a2 - - 20150) 5
and (by (ii)) it is impossible to have A2y, . . .,2p-1;0) =lpa(z1. . . -, 2,15 0)
=0. Further, when z; = ... = 2,_; = 2>0,
(r+BLE, (@LEPE), kz 0
. { —2L{T9(2) [LECE D 2), —r+2<ks -1
which shows that the number of subdomains is at least # (the zeros of

the nominator and denominator separate each other).
For each such subdomain of 2,

8) (9/02)hy(zy, - - »2,30) + 0 (from (2.24))

b) (8/62 o2y, -+ 52,3 0) is continuous. l=yjs=r
c) (z L2 ER w1th (0]oz)hy(z, . . .,2;0), j = L(1)r, of the same sign.
- tlmes

It is then obvious that the quantities in (2.24) all have the same sign. §

3. The error constant.

When we are dealing with rational approximations R(g) of order s
to exp(—q) for |g|<1, the size of the error constant, Cy. ., , is of in-
terest. Asymptotically we have

(8.1) Bg) = exp(—q)+ 0} 11¢° 7 +O0(g*+) .
If the order is at least m, then
(3.2) Oﬁmz = Jm-n+2(0) 5

with g,(!)=p(t), p the C-polynomial for RP. Having established in
theorem 2.1 that the highest order obtainable for the N-approximation
(2.12) to exp(—q) is m + 1, the natural point to consider is the problem
of minimizing |C},, .ol = |9m-n+2(0)]. In this respect the unexpected
result is,

TerEoREM 3.1. Let the order of the N-approximation Rl in (2.12) be
m+ 1. The minimum value of |g,,_,.2(0)] s then obtained with y,=y,=

S =Y.

Proor. The polynomial w, € =, is defined by
(3.3) =14y = 2w (1)gt
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From {2.7) in Lemma 2.1 (with k=1)
(3.4)

G0 = w,q(8) = Ypaw,lf) +S£ HT)T = Vg™ (®) +917(8), 7= 0.
Hence, p(t)=g,"(t) and order m + 1 is obtained when

(3.5) Vs 1(0) gt o(0) = 0.

We may obviously assume that g7}, ,,(0)0. If not, order m+ 2 is ob-
tained when # is replaced by n—1 in (2.12), and this is not possible
from theorem 2.1.

Now g,» ig a function of y,,...,y,_;. Let

(3.6) G- 3 Vn-1) = Imons2(0) = 7’n9m-n+2(0)+9m n+3(0)
and

(3.7) g, M) = 0g, )+ gl 6 = Yua

Minimum of @ is obtained when 8G/dy;=0, i=1(1)n—1. In particular

(3.8) 9628 = 8G|0yy_y = (07n)0)0 " 42(0) +7a(0)08)g7 4 (0) +
+(9/20)g " 15(0) = 0.

But, from (3.5),

(3.9 (Opufo0)gty1(0) + Pu(O)000G 12 (0 + (220N 1e(0) = O

Oombining (3.8) and (3.9), using (3.7),

(3'10) '“"6 { n+1(0)gm—n+3(0) [g n+2(0)]2} = O

Assume that y,, +J. Then we are asking for order m for the approximation

Qo) TTi=1 (1 +7:9), Q-2 € T2,

which from theorem 2.1 is impossible. Hence y,,_,=d=y,. In the same
way we may show
Y1=Yaerr = Va2 = Va- |
The error constant with y,=...=y,=y is given by
(= 1ym+nymi2p=m=2(1 [y  formSn-—2
I B = G = [
(n!f(m+2) Yy Lo 2 2(1]y) for m>n—2,

where y is a solution to

LE=m=D(1fy) =0 for m < n-1
Lm=mtD(1fy) = 0 for m > n—1.

Values of y and E7(y) can be found in Nersett [3] and Wolfbrandt [8].

(3.12)
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4. Application.

The y-stage Runge-Kutta methods for solving ¢’ =f(y), (@) =y, y:[a,b] -
R#, numerically are defined by

Y; = yo+h Dj1045f(Y;), i =101p+1,
1= Lyyq-

It is well known that when the methods are explicit, a;;=0 for j = ¢, the
maximum attainable order is ». For a fully implicit method the highest
obtainable order is 2.

When a;;=0 for j > i, the method is called semi-implicit. So far, only
the case a;; =y, =1(1)y, has been considered by Narsett [4] for the ques-
tion of reachable order, with the result that order »+ 2 is not obtained
by any method. But by using the results from the preceding section we
have,

TaroreEM 4.1. The highest attainable order of a v-stage semi-implicit
Runge-Kutta method is v+ 1.

Proor. Applying the »-stage semi-implicit Runge-Kutta method on

y'=—Ay,AeC, and using g=21h, results in an N-approximation to
exp(—q) of the form (2.12) with n:=v and m:=v. The theorem then
follows from theorem 2.1. |

With a,;=y, ¢=1(1)r, methods of order v+ 1 have been constructed
for v==1,2,3 by Norsett [4¢]. For y=4 Nersett [4] shows that no method
of order 5 exists. Hence, to get 4-stage semi-implicit Runge-Kutta
methods of order 5, at least two different a,;’s must be used in the method.
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