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ATTAINABLE ORDER OF I~ATIONAL 

APPROXIMATIONS TO THE EXPONENTIAL FUNCTION 

WITH ONLY REAL POLES 

SYVERT P. NORSETT and ARNE WOLFBRANDT 

Abstract. 

Rational approximations of the form ~-,~=0 a~q/l'Ii=i (1 +7~q) to exp(-q),  q E C, 
are studied with respect to order and error constant. I t  is shown that the maximum 
obtainable order is m + 1 and that the approximation of order m + 1 with bast  
absolute value of the error constant has ~'l = ~  . . . . .  Fn. As an application it is 
shown that the order of a v-stage semi-implicit Runge-Kutta method cannot 
exceed v + 1. 

1. In t roduct ion .  

Different  approximat ions  to  the  exponent ia l  funct ion p lay  an  impor-  
t a n t  role in connect ion wi th  the  numerica l  solution of stiff sys tems of 
o rd inary  differential  equat ions.  F o r  example,  entr ies  in the  Pad6 tab le  
for  exp ( -  q) are connected wi th  implici t  R u n g e - K u t t a  me thods  of op- 
t imal  order,  Eh le  [1], Chipman [2]. F u r t h e r  mult iple  Pad6  approxima-  
t ions i) are, N~rse t t  [3], re la ted  to  the  special semi-implicit  l~unge-Kut ta  
methods  of Norse t t  [4] and  the  special one-step H e rmi t e  methods  of 
Norsett [5]. 

The Pad6 approximat ions  Rnm(q) to  e x p ( - q ) , q  ~ C, are such t h a t  the  
coefficients of the  denomina tor  and  the  n u me ra t o r  are chosen to  give 
opt imal  order  n + m .  However ,  the  zeros of the  denomina tor  are all 
complex except  for  one when  n is an odd number .  In  connect ion with, 
for  example,  semi-implicit  l~unge-Kut ta  methods ,  the  re levant  ra t ional  
approximat ions  to  exp  (q) are such t h a t  the  denomina tor  has  only  real 
zeros. The  na tu ra l  quest ion to  be discussed is therefore,  w h a t  is the  
op t imal  order  of such ra t ional  approximat ions?  This  p rob lem was 
t r e a t ed  in Norse t t  [3] for  the  case where the  denomina to r  was of one of 
the  forms (1 + y~/)~ and  (1 + yq)~-i(1 + ~q) and the  n u m e r a t o r  a pol3mo- 
mial  of degree m < n. The  case of n different  real  zeros in the  denomina tor  
and  a polynomial  of degree n -  I in the  n u m e r a t o r  is discussed in Wolf-  

l~eceived Oct. 22, 1976. 
1 In Siemieniuch [6] called Nsrsett approximations. 
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brandt  [8]. In  this paper the general case of n distinct real factors in the  
denominator  and a polynomial of degree m in the numerator  is discussed 
thereby extending the results of Norsett  [3] and Wolfbrandt [8]. The 
surprising result is tha t  the max imum reachable order is m + 1. Hence 
the  error is of the  form Cqm+~+O(q~+3) where C, the error constant,  is 
a function of n -  1 real variables. By minimising C with respect to these 
variables the next  main result is obtained, saying tha t  the least value 
of C is obtained when all the zeros of the denominator  are equal, which 
means tha t  the optimal approximations in the sense of minimising C 
are the  multiple Pad6 approximations of Nzrset t  [3]. 

2. N-approximations and C-polynomials. 
Let P ~ n  = {polynomials of degree <n,p(n)(x)=l}. Then, (1.2) in 

N~rsett  [7] (q is replaced by -q ) ,  

(2.1) R'~(p;q) = ~'~o 9t-n(O)qi/~=og,-n(1)q ~ = e-q+O(qm+l), 

where we have defined 

(2.2) 
go(z) = p ( x ) ,  

i g++1(x ) = lig+(t)dt, | i ~ 0 
t g_~(x) = go(+)(x), i > O. 

P is called the C-polynomial for the rational approximation Rn~(p;q). 
Following Norset t  [7], ~ ( p ; q )  is an approximation to e x p ( - q )  of 
order s > m iff 

(2.3) { gs_n+l(0)g/-n+l(0) #= 0.0 for m -< i _< s - 1  

Dv, Pn~ITXON 2.1 A rational approximation to exp ( -  q) whose denomi- 
nator  has only real zeros is called an N-approximation to e x p ( - q ) .  

LEM~L~ 2.1. Let the denominator of a rational approximation to exp ( - q) 
be of the form 
(2.4) 
where 
(2.5) 
Then 
(2.6) 

B I T  1 7  - -  1 4  

D A q )  = D._k(q)( l+  rq) k , 

D._k(q)  = Zr:o~9 ( '-k-~)(1)q',  ~ e ~._~ . 

D . (q )  = ZT.op( '-~)(1)q ~ 
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with 

(2.~) v(t)  = ~ - o ( ~ ) y  a (  ) 

where g¢ is defined by (2.2) and go=~.  

PRooF. B y  induct ion on k. Le t  k = 1, then  

(2.s) ~)~(q) = [ ]~:0~(~-~- l ) (1)qi ] ( l+~q)  
= ~ ( n - 1 ) ( 1 ) - t - ~ C n - l i ~ ( n - i - 1 ) l  i ,- L ~ = i  u'-" d,+Y~(n-O(1))qi+y~(1)q n .  

Using p f rom (2.7) wi th  k = 1, 

(2.9) p(t) = r~(t) + Si ~(x)dx = ~go(t) + a ( t )  

which gives (2.6) f rom (2.8). 
Suppose t h a t  the lemma is t rue  for k < k o - 1. For  k =/c 0, 

(2.1o) D,~(q) = ~,~_ko(q)(l +rq)k°-~(l +rq) = ~_k°(q)(l  +Tq) , 

where by  the  induct ion hypothesis  

(2.11) l~.-koCq) = F.~:o' ~(.-1-~)(1)q~ 
and 

~(t) = ~ o - 1  (k~-%k°- l -%, ( t )  /..d=o 

l~rom (2.9), (2.10) and  (2.11) 

pit) = ~ ( t )  + f~ ~(~)d~ 
= ~.~001 (]¢O-1%,ko-J.q ( " t  A- ~'!~o - 1  ( ' % ' - l / . , k o - l - J .  [÷~ 

= Z : o  (~')~k°-%(t) • I 

Let  R~(p, q) be an N-approximat ion to exp ( - q )  of the  form 

(2.12) R~(p,q) = Q,n(q)/H~=~(l+y~q), y] > o, Q m e u m .  

The corresponding C-polynomial p = p n , ~  is then  a funct ion of Yl . . . . .  yn, 
pn, m(t)=pn.m(?l . . . . .  yn;t)  where p , , ~  is a symmetr ic  funct ion in its 
variables 7~ . . . . .  ~n- Le t  g~(?~ . . . . .  ?n; t) be defined as in (2.2) wi th  p = Tn. ~- 
Using L e m m a  2.1 we obtain,  

(2.13) g~(yl . . . . .  Yn; t) = 71gk(7~ . . . . .  7i-~, 7t+~ . . . . .  ?n ; t) 
+gk+~(Y~ . . . . .  Yt-l, Yt+l . . . .  ,?n;t), 1 <= i <= n 

for k >  - n +  1. According to (2.3) R ~ i n  (2.12) has order m + 2  if and  only 
if 

(2.14) I g~-~+~(r~ . . . . .  r . ;  o) = o 
! g~-.+~(Y~, . ,?~;0) O. 
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Define hk(z  1 . . . . .  z,~; t) b y  

(2.15) hk(z~ . . . . .  z . ; t )  = gk(r~ . . . . .  ~',~;t)/(II~=~'O, z~ = ~,~-~. 
F r o m  (2.13), 

(2.I6) hk(za . . . . .  zn ; t )  = hk(Z x . . . . .  zt_x,zt+ x . . . .  , zn ; t  ) 
+Zghk+x(z x . . . . .  zi_x,z¢+ x . . . . .  zn; t ) ,  1 < i < n .  

Obviously  h~ is a symmetr ic  funct ion of its z-~rguments. Order m + 2 
is then  equivalent  with (by  (2.14)) 

(2.17) 1 hm'-n+x(zx . . . . .  z n ;0) = 0 
I h ~ _ , + d z ,  .,z,~;o) o .  

LEnA 2.2. F o r  n >  1 the  f o U o w i n g  i d e n t i t y  ho lds  (It> - n +  1): 

(2 .1s)  y_'].~(ala~)h,~(~ . . . .  ,z.;t) = ( n + k +  1)hk+~(~... . ,~.;t) 
- ( t -  1 ) h k ( z .  . . . .  ~ . ; t ) .  

PROOF. B y  induction. B y  definition of C-polynomials,  

go(zx;t) = r , + ( t -  1). 
Hence,  using (2.2), 

g-x = 1, 

and therefore, 

gk = ~ x ( t - - 1 ) k / I c l + ( t - - 1 ) k + l / ( l ~ + l )  !, k > O ,  

h_ l ( z  1;t) = z 1 . 
(2.19) hk(zx , t  ) = ( t - - 1 ) k / ] ~ ! T z x ( t - - 1 ) k + x / ( k T 1 ) ! ,  ]c >= O.  

(2.18) then  follows for n =  1. 

Suppose tha t  (2.18) is satisfied for n < m .  Using (2.16) and (2.18) for 
n =- m w e  h a v e  

~ ? £ 1 ( ~ 1 ~ ) ~ k ( ~  . . . . .  zm+~;t) = h~+~(=~ . . . . .  ~m;t) 
+ Z?= l(ala~)h~(~ . . . . .  ~ ; t )  + ~+~ Z?= ~(alaz~)~k+l(zl , . . . ,  ~, ;t) 

= hk+x(z 1 . . . . .  zm; t  ) + ( r e + k +  1)hk+x(z I . . . . .  zm; t )  
- ( t -  1)hk(z~ . . . . .  z .~;t)  

+ zm+~(m + I~ + 2)h~+~(z~ . . . . .  zm; t) - zm+~(t - l)hk+~(z~ . . . . .  z. ,  ;t) 
= (m +/c + 2)[hk+l(z 1 . . . . .  z m ;t) + zm+lhk+2(zl . . . . .  z~;t)] 

- ( t -  1)[hk(z x . . . . .  z~ ;t) + z m + l h k + x ( z x , . . . , Z m ;  t)] 

L E ~  2.3. T h e  f o U o w i n g  two  s t a t e m e n t s  are  equ iva len t ,  

(2.2o) (a/az~)hkCzl . . . .  , z . ; 0 )  = 0, 7~(zl, . . . .  z . ; 0 )  = 0 
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and 

(2.21) [ hk(zl . . . . .  z#-l, z#+~, . . . .  z~;0) = 0 
hk+l(Zl, . . . .  zj_i,z¢+l . . . . .  z~; 0) = 0 

1 < j < n  

P~OOF: B y  observing t h a t  

(2.22) (~/~zj)hk(z i . . . . .  z n ;t) = hk+l(zl, . . . .  zj_l, z j+x , . . . ,  z n ; t ) ,  

the  l emma is an  easy consequence of (2.16). 
The  main  resul t  is then,  

THEOREM 2.1. The m a x i m u m  attainable order of an N-approximation 
to e x p ( - q )  of the form (2.12) is m +  1. 
(This  result has been obtained when m = n -  1 by WoIfbrandt [8]). 

PROOF. B y  induct ion on n we show t h a t  order  m + 2 is no t  at tainable.  
(i) L e t  n =  1. F r o m  (2.17) and  (2.19) for  order  m +  2, 

(-- 1)m/mt +zx(--  l )m+l/(m+ 1)! = 0 

(--  1)m+X/(m + 1)! + zx(-- 1)m+Z/(m + 2)! = 0 

or z 1 = m + 1 and z 1 = m + 2 and  i t  is impossible to  sat isfy bo th  equat ions  
a t  the  same time. 

(ii) Suppose t h a t  the  theorem is t rue  for n __< r -  1. 
(iii) Le t  n = r. The  equat ions  to  be satisfied for  order  m + 2 are b y  

(2.17) and  1emma 2.2 given by  

(2.23a) hk(Zl , . . .  ,zr;O ) = O, k = m - r +  1 

(2.23b) ~']=l(~/3zj)hk(zl . . . . .  z~; O) = O. 

With  (ii) in mind,  (2.23a) gives 

(2.24) (~/@z~)hk(zx,...,zr;O) ~= 0 ,  j = 1(1)r .  

The  proof  is completed if we can ver i fy  t h a t  the  quant i t ies  in (2.24) all 
have  the  same sign under  the  condit ion (2.23a). I n  this connect ion we 

f irs t  observe t h a t  the  domain  

= { ( z l  . . . . .  z,) e R~; hk(zl . . . . .  z , ;  0 )  = 0}  

r if k > - - I  
can be split up in exac t ly  ~ = r + k + 1 if - r + 1 < k < - 1 

subdomains such t h a t  to  each subdomain  belongs a poin t  (z . . . .  ,z), 

where z is a solution to  r- t imes 

| L(~k(z) = 0 for k__>O 
(2.25) / zkL(~-k)(z) 0 for  - - r +  1 _<k_<0 
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and L n is the Lagnerre polynomial of degree n. This observation follows 
by induction from the fact tha t  (z l , . . . ,zr)  e f2 implies 

z ,  = - hk(zl  . . . .  ,z~_l ; O)/hk+~(zl . . . . .  z~_i ; 0 ) ,  

and (by (ii)) it is impossible to have hk(z 1 . . . . .  zr_l;0 ) =hu+l(z 1 . . . .  , zr_l;0 ) 
= 0. Further ,  when z i . . . . .  zr_ 1 = z > 0, 

I tr±k~L(f) tz~tL(~+l)tz ~ k > 0 - - k  T ] r + k - l k  1t  r+l~ k ],  ~- 

zr = zL(-X)tz~lL(-k-1)tz ~ - r + 2 _ < k < - 1  
- -  r - l k  1 /  r - 1  ~ / ~  - -  ~- 

which shows that  the number of subdomains is at least ~ (the zeros of 
the nominator and denominator separate each other). 
For each such subdomain of D, 

a) (O/bzc)hk(z 1 . . . . .  zr;O) # 0 (from (2.24)) I 
b) (~]~z¢)h~(z 1, ,z,;0) is continuous. ] 1 < j < r 
c) (z . . . . .  z) e$gwith (O/Ozi)hk(Z . . . . .  z;0), j = l(1)r, of thesame  sign. 

,e  

r-times 

I t  is then obvious tha t  the quantities in (2.24) all have the same sign. | 

3. The error  constant. 

When we are dealing with rational approximations R~(q) of order s 
to e x p ( - q )  for Iq[<<l, the size of the error constant, C~,s+i, is of in- 
terest. Asymptotically we have 

(3.1) ~ ( q )  = exp ( -  q) + o~ , ,+  ~q~+l + o ( ¢ + ~ )  . 

If the order is at  least m, then 

(3.2) o.~,~+~ = gin_.+40) ,  

with go(t)=p(t), p the C-polynomial for B~. Having established in 
theorem 2.1 tha t  the highest order obtainable for the N-approximation 
(2.12) to e x p ( - q )  is m +  1, the natural  point to consider is the problem 
of minimizing 10~+~1 = lg~-~+2(0)l. In  this respect the unexpected 
result is, 

THEOREM 3.1. Let the order of the 2V-approximation R~  in (2.12) be 
m +  1. The min imum value of Igm_n+~(0)I is then obtained with ? l = ? ~ =  

PHOOF. The polynomiM w r e gr is defined by 

(a.a) I I~ -  i(1 + ~iq) = ]~-_ oW,(r~)(1)q~. 
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F r o m  (2.7) in L e m m a  2.1 (with k = 1) 

(3.4) 

gor+l(t) - wr+l(t)  = r , + ~ w ~ ( t ) +  S~ w~(x)dx = ~ +~ go~ ( t ) +g l" ( t ) ,  r > 0 .  

Hence, p(t) = gon(t) and order m + 1 is obtained when 

(3.5) ~-I 0 +~-i ,0 ~ r~g,~-~+l( ) ~-~+2~ J = 0 .  

We m a y  obviously assume t h a t  g~=~+l(0)# 0. I f  not,  order m +  2 is ob- 
ta ined when n is replaced by  n - 1  in (2.12), and  this  is no t  possible 
f rom theorem 2.1. 

Now g ~ - i  is a funct ion of 71 . . . . .  Y~-r Le t  

n 0 n - 1  n--1 (3.6) G(Yl . . . . .  7n-O = g,n-n+2( ) = 7ngm-n+2(O)+g~-,~+s(O) 
and 

(3.7) g~-~(t) = ~g,~-~(t)+g~f~(t), ~ = Yn-~" 

Minimum of G is obtained when OG/Oyl= O, i=  l ( 1 ) n - 1 .  In  part icular  

(3.8) ~a /~  = ~a/or~_~ = (~rJ00)z~-~+~(o)+r~(a /~0)g~-~+2(o)+  

But ,  f rom (3.5), 

(3.9) (~7n/~)g%-_~+~(O) + r~(~/~a)g~i~+~(o) + (~/~a)g~Ll+2(o) = o .  

Combining (3.8) and  (3.9), using (3.7), 

n - 2  n - 2  n - 2  0 2 (3.10) (Tn-  ~){g~-,~+l(O)g,n-n+3( 0 ) -  [gin-n+2( )] } = 0 .  

Assume t h a t  ~ # ~. Then we are asking for order m for the  approximat ion  

Q,n-~(q)/II~=l (1 + yiq), Q~_~ e ~m-~, 

which f rom theorem 2.1 is impossible. Hence y n _ l = ~ = y  n. In  the same 
way  we m a y  show 

The error constant  wi th  y~ . . . . .  ~ = y is given by  

= I(-1)m+nT~+~L(nn-m-2)(1/yl f o r m < n - 2  
(3.11) E'~(y) = G(? . . . . .  y) [(n!/(m+2)!)>'nL(~m+~'~+2)(1/y) f o r m > n - 2 ,  

where ? is a solution to 

/L(~-~-~)(1/y) = 0 for m -_< n - 1  
(3.12) t L(m-n+~)(lly) 0 for m > n - 1  

( m + l  / 

Values of ~, and E~@) can be found in N~rsett  [3] and  Wolfbrandt  [8]. 
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4. Application. 

The ~:stage Runge-Kutta  methods for solving y' =f(y) ,  y(a) = Y0, Y: [a, b] -~ 
R 8, numerically are defined by 

Yi = yo+h ~ = l a ~ J ( r j ) ,  i = l ( 1 ) v + l ,  

Yl = Y,+I- 

I t  is well known that  when the methods are explicit, at1 = 0 for j > i, the 
maximum attainable order is v. For a fully implicit method the highest 
obtainable order is 2v. 

When aii = 0 for j > i, the method is called semi-implicit. So far, only 
the case aii=y,  i=  1(1)v, has been considered by Norsett [4] for the ques- 
tion of reachable order, with the result that  order v + 2 is not  obtained 
by any method. But by using the results from the preceding section we 
have, 

T~EOREM 4.1. The highest attainable order of a v-stage semi-implicit 
Runge-Kutta method is v + I. 

PROOF. Applying the v-stage semi-implicit Runge-Kutta  method on 
y ' = - ~ y ,  2 ~ C, and using q=2h, results in an N-approximation to 
e x p ( - q )  of the form (2.12) with n : = v  and m:=v .  The theorem then 
follows from theorem 2.1. | 

With aii=y,  i=l(1)v,  methods of order v + l  have been constructed 
for v= 1,2,3 by Norsett [4]. For ~=4  Norsett [4] shows that  no method 
of order 5 exists. Hence, to get 4-stage semi-implicit Runge-Kut ta  
methods of order 5, at  least two different a d s  must be used in the method. 
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