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A L G O R I T H M S  F O R  T H E  R E G U L A R I Z A T I O N  

OF ILL-CONDITIONED LEAST SQUARES PROBLEMS 

LARS ELD~N 

Abstract. 
Two regularization methods for ill-conditioned least squares problems are 

studied from the point  of view of numerical efficiency. The regularization methods 
are formulated as quadratically constrained least squares problems, and it is shown 
that  if they are transformed into a certain s tandard form, very efficient algorithms 
can be used for their solution. New algorithms are given, both for the transforma- 
t ion and for the regularization methods in standard form. A comparison to previous 
algorithms is made and i t  is shown tha t  the overall efficiency (in terms of the num- 
ber of arithmetic operations) of the new algorithms is better. 

1. Introduction. 

The problem of solving a Fredholm integral equation of the first kind 

(1.1) ~baK(x,y)f(y)dy=g(x), c =< x =< d, -oo  < a < b < q-co, 

where K is continuous, is ill-posed in the sense that  the solution f does 
not depend continuously on the data  g. Equation (1.1) can be diseretized 
in various ways, e.g. by moment diseretization (see [14]), or expansion 
of f in a basis of piece-wise pol3uaomials (see [9]), giving a system of 
linear equations, 

(1.2) • f  = g ,  

where K is an m × n matrix and f and g are vectors. 
Due to the ill-posedness of (1.1) the condition number of K increases 

rapidly with n. Therefore any a t tempt  to solve (1.2) e.g. in the least 
squares sense for large values of n will give a meaningless result, and in 
this sense the problem of solving (1.2) is ill-posed too. To make it well- 
posed one can introduce some a priori information about the solution, 
e.g. in the form of a bound of the norm of Lf, where L is some p x n ma- 
trix. This leads to a Constrained least squares problem 

(1.3) .RI: minf~BJ[Kf-gil 2, .B 1 = ( f :  IILfll2 =< o~}. 
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In  practice 9 often contains measurement errors and then it is not  mean- 
ingful to t ry  to satisfy (1.2) exactly. If  we know that  the solution f is 
smooth in some sense we are led to the following minimization problem 

(1.4) /~2: mins~BJILfll2, B~ = {f:  IlKf-gll~ < ~}, 

for some value of ~ related to the statistical distribution of the errors in 
g (see [9] and [1]). 

In [3] •1 and _~2 are studied and it is proved that  in all interesting 
cases the minima are attained on the boundaries of B~ and B~. Using 
the terminology of Tihonov [17] we call R1 and R2 regularization methods 
for the ill-conditioned least squares problem min[IKf-g]] ~. R1 is some- 
times called tile method of quasisolution [10]. R2 was suggested by  
Phillips [15] and Cook [1]. 

In /~1  and /~2  the matrix L is the discretization of a differentiation 
operator and thus in most cases a band matrix. For simplicity we as- 
sume that  L has full row rank (i.e. rank(L)= i~)- This is no restriction, 
since otherwise L can be transformed into a full row rank matrix by  
premultiplication by  an orthogonal matrix [13], Theorem 3.15. We also 
assume that  the nullspaces of K and L intersect trivially: 

(1.5) N(K)  n ~V(L) = {0}. 

This is a necessary condition for (1.3) and (1.4) to have a unique solution. 
Using the method of Lagrange multipliers we see that  (1.3) and (1.4) 

are equivalent to solving (for the multiplier #,/x > 0) the equations 

(1,6) h~(~) --llLf.l122-co~ = O, 

(1.7) h~(~u) = I lKf , -g I i~-  e ~ = o ,  

respectively, where f ,  is the solution of 

(1.8) rainy {Iigf - giI~ + ~tiLfiI~} • 

Thus we note tha t  the repeated solution of the unconstrained least 
squares problem (1.8) for different values of # is common to R1 and R2. 
(We also remark that  (1.8) in itself has been suggested as a regularization 
method by  Tihonov [17], [18]). 

We shall say that  R1 and R2 (and also (1.8)) are in standard form if 
L = I .  

Although there is an extensive literature about  regularization methods, 
not very much has been written about  numerical algorithms for/~1 and 
R2, except when they are in standard form, ([7], [8]). In  this paper we 
develop efficient algorithms for R1 and /~2 in the general case 1 ,41 .  
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In  section 2 we first show that  if a straightforward approach is made 
then the cost for the repeated solution of (1.8) is prohibitively high. 
However, for/~1,/~2 and (1.8) in standard form there are very efficient 
algorithms. We give an algorithm for the transformation into standard 
form, which is based on a decomposition of L. If L is a band matrix the 
transformation can be computed cheaply. 

Previous algorithms ([7], [8]) for/~1 and /~2  in standard form use a 
singular value decomposition (SVD) of the matrix K. The SVD algo- 
r i thm starts with a bidiagonalization of K, followed by an iterative reduc- 
tion to diagonal form. In  section 3 we show that  the iterative part  can be 
avoided, thus saving the main part  of the work in the S VD algorithm, 
and we give algorithms for/~1 a n d / / 2  based on the bidiagonalization of 
K. A comparison is made between our algorithms and those based on 
the SV.D, and it is shown tha t  the overall efficiency (in terms of the num- 
ber of arithmetic operations) of our algorithms is better. 

The algorithms presented in this paper are discussed in more detail 
in [2]. The implementation of the algorithms in a program for inter- 
active regularization will be discussed in a forthcoming report [5], where 
also Algol procedures will be given. 

2. T r a n s f o r m a t i o n  into s tandard  form.  

When an iterative method is used for the solution of the non-linear 
equations (1.6) and (1.7), the least squares problem (1.8) must be solved 
for several values of #. Note that  the assumption 2 / (K)n N(L)=  {0) 
implies tha t  (1.8) has a unique solution for all positive #. We first consider 
a straightforward approach for the solution of (1.8), and here we assume 
that  L is a band matrix. I t  is easily seen tha t  (1.8) is equivalent to 

(2.1) rain! ( 
.R 

where K =QR is the QR-deeomposition of K and QTg=g 1. By making a 

further orthogonal transformation we can reduce 1/~L to upper tri- 

angular form, from which the solution is easily obtained (the details 
of the procedure can be found in [6], pp 428-424). Even ff we take ad- 
vantage of the band structure of L this reduction requires O(n ~) opera- 
tions, which is highly unsatisfactory since it must be performed for se- 
veral values of/x. I t  seems tha t  we can do no better as long as L # I ,  
for then only left hand orthogonal transformations can be used for the 
decomposition of K (transformations from the right would destroy the 
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band structure of L). When L=I ,  (i.e. when (1.8) is in standard form), 
right hand transformations can be used and in this case there are very 
efficient algorithms for the repeated solution of (1.8) (see [7], [8] and 
section 3 of this paper). 

We also see tha t  when L is not  a band matrix the approach (2.1) is 
unsatisfactory, because then we must  annihilate a p x n matrix for 
every value of # (it does not seem to be possible to exploit any sparseness 
structure of L). 

We now give an algorithm for the reduction of (1.8) into standard 
form. Problem (1.8) is equivalent to minimizing [[rt]2, where r is the resi- 
dual vector 

(2.2) r - -  ( 
K 

\ 

We start by making a decomposition of L r 

(2.3) = (R, ip , V = 
\ O ] } n - p  ~ ,.~ 

p n - p  

where 17 and R are non-singular (note that  we have assumed that  L 
has full row rank (see section 1)). We can take (2.3) to be the QR-decom- 
position of L T, in which case V is orthogonal and /~  upper triangular. 
If L is a band matrix this decomposition can be computed efficiently 
by a sequence of plane rotations. Alternatively (2.3) can be computed 
by Gaussian elimination. 

If n=p  (=rank(L))  we can now put  f=  VR -T] and it is easily seen 
that  the problem is in standard form in the variable ] .  Otherwise, if 
p < n, we make the change of variables 

(2.4) f = Vy  = Vly~+ V2Y2, 

by which (2.2) is transformed into 

[ KV1 K:2 )  Yl (2.5) 

We then perform a Q]~-decomposition of KVs, 

(2.6) KV~ = Q \ O ] } m - n + p '  Q = ( ~-~Q1 ~.~Q~ ), 
n - p  m - n + p  

where Q is orthogonal and U is upper triangular. Note that  the null- 
space of L is spanned by the columns of V~ and therefore by the assump- 

B I T  17  - -  t 0  
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t ion (1.5) we mus t  have rank(KV~)=n-p. This implies tha t  U is non- 
singular. By  multiplying the first m components  in (2.5) by Q~ we get 

t =  
~ \ V~R~ o g "  

Here ~ and ~3 are independent  of Y2, and y~ can always be chosen so 
tha t  ~1= 0. Therefore the problem (1.8) splits into 

(2.7) rainy, [Q2TKVI"~ / _~',7\~Q~) \ ~ R  ~ ] Y~- ,, 

and 

(2.8) y~ = U-1QI~(g-KVlyl). 

By the final change of variables 

(2.9) ] = R~yl,  

(2.7) is reduced to s tandard form 

(2.1o) rain/{{{~] - ~{{~ + ~,{}/{1~}, 
where 

(2.11) J~ = Q~TKV1R-r , ~ = Q~'g, /~ is (m-n+p) ×p . 

From (2.4), (2.8) and (2.9) we see tha t  the  solutions of (1.8) and (2.10) 
are related by 

(2.12a) {ff= Lf, 
(2.12b) VIR-rff + V, U-~Q~T(g - K VzR-T] ). 

If co and e are small enough so that the constraints are active, it can 
be proved (see [3]) that R1 and R2 are equivalent to 

_~1: min/o~ii~]-~{l~, ~ = {]: {{]Hs = ~o), 

where /~ and ~ are defined by (2.11) and the solutions are related by 
(2.12). Thus, using the above technique, R1 and R2 are t ransformed 
into standard form. 

Instead of computing the 0R-decomposit ion (2.6) one can use projec- 
tions, see [2]. 

I t  can be shown tha t  in a certain sense the above transformation is a 
discrete analogue of the reproducing kernel Hflber~ space technique 
developed by Wahba [22], [23]. 
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The number of operations for the transformation into standard form 
depends very much on the actual implementation. As an example we 
assume that  m = n and that  the bandwidth of L is q + 1 where q = n - p .  
If  the decomposition of L is computed b y  a series of rotations, then the 
whole transformation requires approximately 6npq+(q+l)p ~ opera- 
tions. The backtransformation (2.12b) can be performed in 6pq+q2/2 
operations. 

Van Loan [19] and KSekler [12] derive a transformation similar to 
the one described above (see also Varah [20]). Their approach is based 
on a simultaneous diagonalization of KTK and LTL, and therefore 
requires more arithmetic operations than our transformation. A diffe- 
rent transformation is made by  Jennings [11], who uses the singular 
value decomposition of K. Since K is usually very ill-conditioned and 
L often quite well-conditioned, it is more natural  to base the trans- 
formation on a decomposition of L. The case rank(L)= n = p  has been 
considered by  Voevodin [21]. 

3. Algori thms for R1 a n d / t 2  in s tandard form. 

In this section we discuss how to compute function values and deriva- 
tives of hl(/x ) and h2(/x ) ((1.6) and (1.7)) for a sequence of values of #. 
From section 2 we see that  we can restrict ourselves to the case when 
R1 and R2 are in standard form. Then for each/~ we must  first solve 
the least squares problem 

(3.1) m i n I { l I K f  - g]]~ +/~[If[ l~} • 

Here K is assumed to be an m × n matrix (if the transformation of section 
2 has been made on an original m × n matrix, then of course the matrix 
in (3.1) is ( m - n + p )  ×p).  For  simplicity we assume that  m>=n (see [2] 
for the case m < n). 

3.1 Efficient solution of the least 8quares problem. 
In  [7], [8] formulas are given for the solution of (3.1) when a singular 

value decomposition of the matrix K has been performed. Here we give 
algorithms based on a bidiagonalization of K. Consider the decomposition 

(3.2) 

where W and Y are orthogonal and B is n × n upper bidiagonal. I t  is 
shown in [24], p. 135-136, how this decomposition can be computed in 
2(ran ~-  n313) operations taking W and Y to be products of Householder 
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transformations. We also remark that  when m > (5/3)n it is more efficient 
to perform the decomposition in two steps: 

( i ) R e d u c t i o n t o t r i a n g u l a r f o r m K = W l ( R ) w i t h W l e q u a l t o a p r o d u c t  

of Householder transformations (ran ~ -  na]3 operations). 
(ii) Further  reduction to bidiagonal form 

R = W2BY T 

where W~ and Y are products of approximately n~]2 plane rotations. 
This step requires 4n8/3 operations, and a typical stage of the reduction 

is shown below 
5 3 1 

x x x • ~] 
x x x x 6 

X X X 
~I~ 4 

where the figures indicate the order in which the rotations are applied. 
In  the column transformations elements in the first row are put  equal to 
zero and new non-zero subdiagonM elements are created. The latter are 
annihilated in the row transformations. Note that  only the matrix Y 
needs to be saved (if •here is only one righl~ hand side to be processed). 
This algorithm has been suggested to the author by A. Bj6rek (19"/4) 
and it appears to be new. 

If we make the transformation of variables 

(3.3) f l  = :y'2f, ~ = WTg = \g27} m - n '  

we easily see that  (3.1) is equivalent to 

min,, l ( B g, (3.4) 

This least squares problem is now solved by first determining an ortho- 
gonal matrix Q~, such that  

(3.5) Q,r ( 'o0--("o ::), B 

where B~ is upper bidiagonal. Then f l  is computed from 

(~.6) B~A = ~ .  
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The matrix Q, in (3.5) is constructed as a product of plane rotations. 
We demonstrate the algorithm by considering a small example (n=3) .  
First a rotation in the (1 ,n+ 1)-plane annihilates the element (n+  1,1), 
and a non-zero element is created in (n+ 1,2). This is canceled by a 
rotation in the (n + 1, n + 2)-plane. 

(3.7) 

~a i b i 
a~ 

where 

bf 

a i' b i' 
a 2 

0 

al' = (al 2 + #)~, 

a l' bl' 
b2 a~ b~ 
a3 a3 

b 1" = biai/ai' , ), = b l ~ / a l ' .  

Now the dimension of the problem has been reduced by one. In  the 
next  step the element (n + 2, 2) disappears after a rotation in the (2, n + 2)- 
plane, and so on. A description of the algorithm in pseudo-Algol can be 
found in [2]. The whole transformation (3.5) together with the solution 
of (3.6) requires about l l n  multiplications, 5n divisions, 5n additions 
and 2n square roots. 

The mMn advantage of our algorithm lies in using the bidiagonalization 
(3.2) instead of the S V D .  If m ~ n  then the computation of (3.2) (using 
the first, finite part  of the SVD-algori thm [24]) usually requires less 
than one third of the work for the full S V D .  The number of operations 
for the repeated solution of (3.1) using our algorithms is of the same 
order of magnitude as for the corresponding S VD-based algorithms (see 
section 3.3 for operation counts). 

3.2 Algorithms for R1 and R2 

Before giving formulas for the computation of function values and 
derivatives of hi(#), we make some remarks about the difficulties which 
arise in the numerical solution of the equation hi(#)= 0 (the remarks 
also apply to the solution of h~(#)= 0). 

I t  is easily seen that  hi(#) is a rational function in /~, and that  all 
the poles lie on the negative real axis (due to (1.5)). In  general the equa- 
tion hi(#)= 0 has exactly one positive solution (see [3]), which can be 
found by e.g. Newton's method. Often this solution is small and since 
the rightmost pole lies close to the origin, the convergence of Newton's 
method will be slow. One possible method to accelerate the convergence 
is to solve the equation 1/[Ifii~-l[co2=O, instead of llfIl~-~2--0 ([16], 
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[8]). Numerical tests indicate that  iterative methods based on rational 
approximation converge faster than methods of the same order based 
on polynomial approximation. As will be seen below, derivatives of ar- 
bitrary order can be computed, each derivative requiring less than one 
fifth of the work for computing one function value. Therefore high 
order iteration methods can be used. We have tried Halley's method, 
which in some cases converges about twice as fast as Newton's method. 
Further  research is needed in this area. 

In/~1 we shall compute (remember L = I )  hl(#)=fTf--~o ~'. From (3.3) 
we get hi(/~ ) = f i T f i -  eo 9". Thus, given fi ,  the computation of each function 
value requires n operations. In  [2] it has been shown that  also derivatives 
of h i can be computed cheaply. We have 

h~'(~t) = - 2vlTv.  l l J v ~  = I1 ,  

where B,  is defined by (3.5). 
Similarly higher derivatives can be computed reeursively: 

hi(v)(# ) = (-1)~(T+l)!vvZv~, p > O, (3.8) 
where 

{ B~-lvio_l, p even, 
(3.9) v0 = f i ,  vv = (BJ)_lvv_x ' p o d d .  

Each derivative thus requires about 2n multiplications and additions 
and n divisions. 

I n / ? 2  we shall compute h~(lx)=HKf-gll~-e ~'. Using the decomposi- 
tion (3.2) and (3.3) we ge t  

h~(~) 2 ,2 . 
= [IBfl-glll2+ IIg~ll2-s~ 

The computation of h 2 with given f l  requires about 3n operations. 
Again derivatives can be computed cheaply. We find (see [2]) 

h~)(~)  = ( -  1)~p! f l z [ ( p -  1 ) G - ~ + l - ~ ( p +  1 ) G - ~ ] f l ,  

where C,=B,  ZB,. I t  is easily seen that  the reeursive scheme (3.8), (3.9) 
can be used to compute each derivative with the same amount of work 
as in R1. 

3.3 Summary of operation count8 and comparison to S VD-based algorithms. 
In  table 1 we summarize the operation counts for the algorithms in 

section 3.1-3.2 and for the corresponding SVD-based algorithms. We 
assume tha t  m ~ n  and give the leading term in the count of floating 
point multiplications and divisions. Note tha t  the operation count is 
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made for each algorithm separately, so that  e.g. the count n operations 
for computing h i (# )=f lPf l -co  s presupposes that  f l  is available. 

Table 1. Operation count for the algorithms in section 3. 

Decomposition of K (3.2) 
Solution of (3.4) 

hi: function values 
derivatives 

h3: function values 
derivatives 

Backtransformation (3.3) 

Number of operations for 

our algorithm 

4n3/3 • 
16n 

+ 2n square r,3ots 
n 

3n 
3n 
3n 
n 2 

corresponding SVD-  
based algorithm 

3n a to 5n a 
n 

n 

1.Sn 
2n 

1.5n 
n~ 

R~MAttK. For the transformation of variables (3.3) the matrix Y is 
needed, and it can be stored in factorized form in the empty  locations 
of K both when Y is taken as a product of Householder transformations 
and when Y is taken as a product of plane rotations. In  the latter case 
the backtransformation (3.3) requires 2n ~ operations. When the S V D  is 
computed, the orthogonal matrix corresponding to Y must  be computed 
explicitly. The count 3n 3 to 5n 3 operations presupposes that  the S V D  

subroutine has the option to compute only one of the orthogonal factors. 
From Table 1 it is seen that  the major part  of the work in both ap- 

proaches lies in the decomposition of K. The total amount of work for 
solving a specific problem depends of course on the number of different 
values of #, for which (3.4) is solved, and on the number of derivatives 
computed for each/~. In  Table 2 we compare the total  amount of work 
using our algorithms and S V D - b a s e d  algorithms in a typical example. 
We define 

Co(n , k) = 4ha/3 + 23n]c, 

which is the total  amount  of work in our algorithms, if (3.4) is solved 
for/c different # and if for each/~, hi(#), hi ' (#  ) and hi"(# ) are computed. 
The corresponding quanti ty  for the S VD-based algorithms is taken to be 

Cs(n  , I~) = 4 n  a + 5n i¢ .  

Note, tha t  the work for the  backtransformation, which is the same for 
both approaches, has not  been included. In Table 2 we give the ratio 
Co/C s for different n and ]~. 
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Table 2. The ratio Uo/U~. 

"> . , . n  10 15 20 30 40 60 

10 I 0.81 0.56 0.46 0.39 0.37 0.35 
20 I 1.2 0.76 0.58 0.45 0.40 0.36 
30 1.5 0.94 0.70 0.50 0.43 0.38 

Thus we conclude that for practical values of n the overall efficiency 
or our algorithms is better. 

4. Conclusion. 

The algorithms described in this paper permit efficient experiments 
with the choice of regularization method and parameter. This is an 
advantage, since sometimes it may be difficult to obtain the a priori 
information required for R1 and R2. An interactive program for regu- 
larization is presently being developed, based on the algorithms given 
in this paper. It  uses a graphic display for presentation of the results 
and allows the user to study interesting features of the solution as the 
regularization is varied. A pilot version is running (Feb. 1977) on a 
DEC-10 system. Other regularization methods than the two described 
in this paper will also be implemented, e.g. the one based on generalized 
cross validation by Wahba [23]. The program will be described in two 
forthcoming reports [4], [5]. 
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