ON THE IMPLEMENTATION OF IMPLICIT RUNGE-KUTTA METHODS

J. C. BUTCHER

Abstract.

The modified Newton iterations in the implementation of an s stage implicit Runge-Kutta method for an n dimensional differential equation system require $2s^3n^3/3 + O(n^2)$ operations for the LU factorisations and $2s^2n^2+O(n)$ operations for the back substitutions. This paper describes a method for transforming the linear system so as to reduce these operation counts.

In the numerical solution of an n dimensional stiff differential equation system

$$
(1) \t\t\t y'(x) = f(y(x)),
$$

using an *s* stage implicit Runge-Kutta method, the solution at $x_m =$ $x_{m-1} + h$ is computed as

(2)
$$
y_m = y_{m-1} + h \sum_{j=1}^s b_j f(Y_j)
$$

where

(3)
$$
Y_i = y_{m-1} + h \sum_{j=1}^s a_{ij} f(Y_j), \quad i = 1, 2, ..., s.
$$

To evaluate Y_1, Y_2, \ldots, Y_s satisfying the system (3), it is usual to use a modification of the Newton-Raphson method so that at the end of a current iteration, Y_i is to be replaced by $Y_i + w_i$ where w_1, w_2, \ldots, w_s are given by

(4)
$$
w_i - h \sum_{j=1}^s a_{ij} J w_j - Z_i = 0, \quad i = 1, 2, ..., s,
$$

with J, the $n \times n$ Jacobian matrix of f, evaluated at a recent point on the solution trajectory and

(5)
$$
Z_i = -Y_i + y_{m-1} + h \sum_{j=1}^s a_{ij} f(Y_j), \quad i = 1, 2, ..., s.
$$

Since a major part of the computation time is expended in the evaluation of J and the treatment of the linear system (4) , it is standard practice to evaluate J as seldom as possible and to carry out preliminary work on the linear system (4) so that the actual iterations can be per-

BIT 16--16

Received March 19, 1976.

238 J.C. BUTCHER

formed efficiently. It is with this preliminary work that this paper is mainly concerned.

Let $w, Z \in \mathbb{R}^{ns}$ and the $s \times s$ matrix A be defined by

$$
w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_s \end{bmatrix}, \quad Z = \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_s \end{bmatrix}, \quad A = \begin{bmatrix} a_{11}a_{12} \dots a_{1s} \\ a_{21}a_{22} \dots a_{2s} \\ \vdots & \vdots \\ a_{s1}a_{s2} \dots a_{ss} \end{bmatrix}
$$

and let $M = \overline{I} \otimes I - hA \otimes J$ be the matrix of coefficients in (4) where \overline{I} is the $s \times s$ unit matrix and I the $n \times n$ unit matrix. Thus (4) can be written as

(6) $Mw-Z = 0$.

Throughout this paper we will assume that A is non-singular. This assumption holds for most implicit Runge-Kutta methods that have been proposed as suitable for stiff problems, and leads to some simplifications in this paper.

We will regard it as the standard practice to compute the *LU* factorisation of M as the preliminary treatment of (4). In this case, the number of multiplicative and additive calculations to perform are each $C(n^3/3)$ + $O(n^2)$ (for large *n*), where $C=s^3$, the number of operations in the back substitution for each iteration is $Dn^2 + O(n)$ where $D = s^2$. We will consider how the factors C, D can be lowered, either through the choice of parameters or else through a suitable organisation of the work.

Let P, Q be non-singular $s \times s$ matrices and let

$$
\widetilde{w} = (Q^{-1} \otimes I)w, \quad \widetilde{Z} = (P \otimes I)Z,
$$

 $\tilde{M} = (P \otimes I)M(Q \otimes I) = (PQ) \otimes I - h\tilde{A} \otimes J$ where $\tilde{A} = PAQ$ so that (6) is equivalent to (7) $\tilde{M}\tilde{w}-\tilde{Z} = 0.$

Since the computation of \tilde{Z} from Z and of w from \tilde{w} each require $O(n)$ multiplieative and additive calculations, we might just as well use this transformed version of these equations if this leads to some advantage.

We now consider how to make a judicious choice of P and Q . Let the Jordan canonical form of A^{-1} be

$$
T^{-1}A^{-1}T = \begin{bmatrix} \lambda_1^{-1}0 & 0 & \dots & 0 \\ \mu_1 & \lambda_2^{-1}0 & \dots & 0 \\ 0 & \mu_2 & \lambda_3^{-1} \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_s^{-1} \end{bmatrix}
$$

where each subdiagonal element μ_i (i = 1, 2, ..., s-1) is zero if $\lambda_i + \lambda_{i+1}$ and is either zero or an arbitrary non-zero number if $\lambda_i = \lambda_{i+1}$. Where it is non-zero we suppose that $\mu_i = \lambda_i^{-1}$. Let $D = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_s)$. We select $P = DT^{-1}A^{-1}$, $Q = T$ so that

$$
PQ = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \varepsilon_1 & 0 & \dots & 0 \\ 0 & \varepsilon_2 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}
$$

where each of the subdiagonals $\varepsilon_1, \varepsilon_2, \ldots$ is either 0 or 1, and $PAQ = D$.

The matrix \vec{M} now consists of diagonal blocks of the form $\vec{I}-\hbar\lambda\vec{J}$. together with subdiagonal blocks of 0 (the zero matrix) or I . The preliminary treatment of (4) now consists of the *LU* factorisation of each of the *distinct* diagonal blocks and the back substitutions break into 8 separate blocks with the subdiagonal elements of *PQ* contributing only a further $O(n)$ operations.

To assess the factors C and D , we must take into account the possible presence of non-real eigenvalues of A. Let α denote the number of distinct real eigenvalues and β the total number of real zeros of the characteristic polynomial of A. Also let γ denote the number of distinct conjugate complex eigenvalue pairs and δ the total number of conjugate pairs of zeros of the characteristic polynomial of A. Thus $\alpha \leq \beta, \gamma \leq \delta$, $\beta + 2\delta = s$. Since complex multiplications and additions require the time of 4 real multiplications and additions, we have $C = \alpha + 4\gamma$, $D = \beta + 4\delta$.

Consider, for example, the implicit Runge-Kutta methods of order 2s, [1]. For these methods A has at most one real eigenvatue and all zeros of the characteristic polynomial are distinct. Hence, $\alpha = \beta = 0$ (s even) and $\alpha = \beta = 1$ (s odd); $\gamma = \delta = [s/2]$. In this case $C = D = 2s$ (s even) and $C=D=2s-1$ (s odd), a marked improvement for s greater than 2 over the standard values of $C = s^3$, $D = s^2$.

For the semi-explicit methods of Norsett [2], where all diagonals of A are equal, we find $C = 1, D = s$. However, if the transformation described here is not applied we would have $C=1, D=s(s+1)/2$. It is interesting to note that values of C and D identical to those for Nørsett's methods could also be obtained for any method which is not necessarily semiexplicit but for which the characteristic polynomial of A has only a single s-fold zero.

$J.$ C. BUTCHER

REFERENCES

- 1. J. C. Butcher, Implicit Runge-Kutta Processes, Math. Comp. 18 (1964), 50-64.
- 2. S. P. Nørsett, Semi Explicit Runge-Kutta Methods, Mathematics Department, University of Trondheim, Reprint No. 6/74.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF AUCKLAND AUCKLAND, NEW ZEALAND