
BIT 17 (1977), 329-337 

A N  A N A L Y S I S  O F  A M E T H O D  F O R  

S O L V I N G  S I N G U L A R  I N T E G R A L  E Q U A T I O N S  

PETER LINZ 

Abstract. 
We establish convergence rates for a method of approximate solution of certain singular 

integral equations. The method considered involves an expansion of the kernel of the 
equation in terms of Chebyshev polynomials. 

1. Introduction. 
We consider here the numerical solution of the singular integral equation 

1 q~(t) d t+2 k(x,t)~o(t)dt 1 <1 , ( 1 )  = g ( x ) ,  - < x  
- 1  x - - t  - 1  

subject to a normalization condition 

(2) ~p(t) dt = N .  
- 1  

The first integral in (1) is to be understood as a principal value integral. We will 
assume that equations (1) and (2) define a unique ~(x); this will be the case except 
for some special values of 2 which will be omitted from consideration. 

The specified conditions imply that ~p(x) is unbounded near x = +_ 1 ana is 
proportional to (1 -x2)  -~ near there (see [3]). To simplify matters, we introduce 

y ( x )  = 

and re-write (1) and (2) as 

(3) fl_ y ( t )  f~k(x,t)y(t) 
1 ( x - t ) V l - t  ~ a t + 2  -1 - V ~ = ~  dt = g(x),  

fl_ y(t) (4) i / l _ t ~ d t  = N .  

A technique frequently proposed for the approximate computation of the 
solution involves an expansion of the unknown y(x) in terms of some orthogonal 
polynomials; typically Chebyshev or Jacobi polynomials when (3) is treated in the 
form given ([2], [3], [4]) or trigonometric polynomials if one considers an 
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equivalent form obtained after changing variables ([1], [7]). This technique 
appears to be successful, at least in some simple examples, although a thorough 
error analysis has not yet been provided. Some discussion of the error analysis has 
been given in ([2], [4], [7]); in this paper we continue this analysis by establishing 
rates of convergence for the method. 

Let us begin by defining our notation. Our expansion functions will be the 
normalized Chebyshev polynomials of the first kind 

(5) To(x)  - t ri(x)~V2cos(icos_lx) ~ 

and those of the second kind 

]/2- sin ((i + 1) cos-  1 x) 
(6) Ui(x) 

sin (cos - 1 x) 

We will have occasion to use various types of inner products defined by 

(7) (f,g)2 = f [ 1  f ( t ) g ( t ) d t ,  

(8) (f'g)T = f [ 1  ( 1 - - t 2 ) - ~ f ( t ) g ( t ) d t ,  

fl 
(9) (f, g)u = (1 - t2)~f(t)g(t)  dt . 

- 1  

The corresponding norms will be denoted by [[ 1[2, [1 lIT and 1[ lie, respectively. We 
also use the standard notation for the infinity norm: 

Ilflloo = s u p l f ( x ) [  

for any function bounded in N. 
The following standard results will be needed: 

(10) (T~, Tj)T = 5~j , 

(11) (Ui, Uj)u = 6ij ,  

f ~ U~(t) 
(12) (1 2 ! - t  )5 dt = n T i + i ( x  ) 

- 1  x - - t  

f ' t2)_ ~ Wi(t) (13) (1 = dt = (5oi-  1)u U,_ i (x) 
-1  X - - t  

where again these integrals are to be understood in the principal value sense. 



AN ANALYSIS O F  A M E T H O D  F O R  . . .  331 

2. Solution of  the Equation with 2 = 0. 

We begin by considering the simple case 2 = 0. This will serve to elucidate the 
method as well as to provide some results needed in the treatment of the full 
problem. In operator notation we write (3) as 

(14) K ° y  = g ,  

which has a known solution 

1 
(15) y ( x )  

- ,o  1 ( x -  0 l / 1  - t 2 

where the constant c is uniquely determined by the normalization condition (4) 
(cf. [5], I-8])*. From this, and the properties of principal value integrals we know 
that if g ~ C~1)[- 1, 1], then (14) subject to (4) has a unique continuous solution. 

Although (15) gives an explicit representation of the solution of (14) this does 
not completely solve the problem, since it requires the evaluation of some 
complicated integrals. One can, without any loss of efficiency, consider the 
approximate solution of (14) directly. We look for an approximate solution of the 
form 

(16)_ yn(X) = ~ o~iTi(x ) . 
i = 0  

The unknown coefficients ct i can be chosen in a variety of ways; the technique due 
to Erdogan is essentially a Galerkin-type method, in which the coefficients are 
chosen such that the residual 

f f l T (t) 
r , ( x )  = ~ ~i d t - g ( x )  

,=o -1 ( x -  t)]/1 " t  2 

satisfies the orthogonality relation 

(r., Ui)u = O, i = O, 1 . . . .  , n -  1 . 

Using (10)-(13) and satisfying (4) exactly we get 

N 
(17) ao - V~-, 

(18) ~i = - r c - l ( g ,  U i - O v ,  i=1  . . . .  , n .  

Let us now consider the convergence of y,,(x) towards y(x) .  To do so we need 
the following 

* Throughout this paper we will use c to denote a constant of unspecified value; it may generally 

take on different values even within a sequence of steps. 
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LEMMA 1. Let g e C(V+l)(-1,1). Then 

(19) ](g, U/)tA < ei-(v+l)flg{P+l)tloo, 

(20) [(g, Z3r[ < ci-{v+ ')llgCP+ ~)lloo . 

PROOF. Let P*_ 1 (x) be the min-max approximation polynomial to g(x). Then, 
by Jackson's theorem ([6], p. 23) we know that 

Ng-P**]I~ < ci-(P+l)T[g(P+l)[]o~. 

Now 

(g, Ui)v = ( P *  1, Ui)v + ( g -  P *  2, U3u 

and, since (P*-I, UI)u=0, we have by the Schwarz inequality 

[(g,g~)gl < I Ig-P*l l iv l lg~l lu  < c l l g -P* l l l oo .  

Thus (19) follows and the bound (20) can be derived in exactly the same manner. 
Since the solution y(x) is continuous it has a Fourier expansion 

y(x) = ~ fliTi(x), 
1=0 

where 

Hence 

fl~ = (y ,  T,)r. 

1 

fli = (1 - t2) -~y( t )T i ( t )d t  
- 1  

1 2 - *  (1 2 -1 
= - ( 1 - t )  ~y(t) - -  Ui_,(s)ds 

7~ 1 1 t - - s  

i f  1_ (l_s2)½Ui_l(S)f 1_ y(t)dt 
X 1 1 (1-- t2)~( t -s )  

_ l f l  (1 - s2)~;U i _ 1 (s)g (s) ds 

1 
(g, U~_ 1)v • 

The interchange of the order of integration is justified by standard results on 
principal value integrals ([8], p. 170). Thus we have 

1 o0 
(21) y(x ) - -y , (x )  = ~ (g, Ui_x)uTi(x).  

/=n+l 
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THEOREM 1. I f  g ~ C(1)(-- 1, t) then 

(22) lim IIY--Y.IIT = O. 
n ~ o o  

PROOF. Parseval's identity gives 

ily-y.l!}" = ~ (g, Ui-1)~ 
i = n + l  

333 

and applying (19) with p--O the result follows. 
We can strengthen this result to get point-wise convergence as well as an order 

of convergence by making additional smoothness assumptions on g. 

THEOREM 2. I f g  ~ C(P+I)(-1, 1), l__<p<oe, then 

(23) lira l l y - y . l l ~  = o 
n--* oo 

and furthermore, there exists some c such that 

(24) IlY-Y,I[~ <= cn -p .  

PROOF. From (19) and (2t) we have 

1 
Ily-y,,lloo ~ - 

i = n + l  

C 

IITillo~l(g,U~-l)v[ ~ ip+,, 
i=n 

proving both (23) and (24). 

3. Solution for General Values of 2. 

To discuss the general case we need a result on the behavior of the solution of 
(3) with respect to small perturbat{ons in k(x, t) and g(x). 

LEMMA 2. Let kn(x,t) and gn(t) be two sequences of  functions such that 

lim []k(x,t)-k.(x,t)]]~ = O, 
n - * o o  

lim [Ig(x)-g.(x)llo~ = O. 

Let y(x) satisfy equations (3) and (4), and let y.(x) satisfy similar equations in which 
k(x, t) is replaced by k.(x, t) and g(x) is replaced by g.(x). Then, for sufficiently large 
n, 

(25) Ily-y,,ll~ < c(I/AK*II~+/13g*llo~), 
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i f  1 ] / / 1 - t ~ ( f  1 1 = (k(t, s)-- k.(t ,  s))y(s) ds dr ,  AK*(x )  ~ -1 t - x  -1 

Ag*(x) = ~ i t - ' x  ( g ( O - g . ( t ) ) d t .  

PROOF. Let us write (3) in operator form as 

K°y  + 2Ky  = g .  

The corresponding equation for 1'. is 

K°y~ + 2K .y .  = g. 

and setting e . = y - y . ,  we have 

(26) K°e.  + 2K.e .  = 2 (K.  - K)y + g -  g. . 

From the general theory of integral equations ([5], p. 338) we know that e.(x) 

satisfies an integral equation of the form 

e.(x)+2fl_l 
where 

q.(x, t)en(t) dt = - ;.A K*  (x) + A g* (x) + c = G. (x) + c ,  

1 

q.(x , t )  n2 ~ 

By making the further transformation 

x = sin 0, 

e.(0) = e.(sin0), 

we obtain 

(27) e.(O)+ 2 f= i/a 
where the kernel 

f l_ kn(s , t )] / / l_s  z 

1 s - - x  
ds .  

t = sin 0' 

~.(0) = G.(sin0) 

~.(0, O')e.(O') dO' = Gn(O) + c ,  

l f1_ k.(s, s inO,)] / l_s  2 
(28) ~. (0, 0') = ~-~ 1 (s - sin 0) ds 

is now bounded. Equation (27) is therefore a Fredholm equation which we write 
in operator form as 

(29) (I +2(~.)e. = G. + c .  
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Let ~(0, 0') denote the kernel derived in the same way as ~.(0, 0'), but with k(x ,  t) 

replacing k . (x ,  t); let O- denote the operator corresponding to ~(0, 0'). Then from 
(28) 

lim Ilq-q.[loo = O, 
n - ~ o o  

and it follows from the standard Fredholm theory that, except for those ). which 
are eigenvalues of O-, the operator (I + 2O..) has a bounded inverse for sufficiently 
large n. We can then write 

e. = (I + 2 0 . . ) - l ( ~ . + c )  , 

and, since y and y. satisfy (4), we also have, 

f ~/2 e.(O)dO = O. 
- h i 2  

Thus 

f 
z~/2 

- ~/2 (I + , tO. . ) -  18 . (0)  dO 
(30) C I 

-i  ~/2 (I + 2 0 . ) -  1 dO 
d - n / 2  

Finally, since (I + 20-.)- ~ ~ (I + 20-)- 1 we get 

c = O(l lG.l too),  

II~.ltoo = lle.ll~ = O(llG.IIo~) = O(lla.l loo),  

completing the proof. 

To obtain the approximate solution to (3) we set 

n--1 

g.(x) = y (g, u,)vU,(x) 
i=0 

and 

where 

Corresponding to (3) and 

(31) 

n - 1  

k.(x,t) = Z Z ~,y,(x)TAt) 
i = O  j = O  

#,j = (v,, (k(x,-), Tj)~)u. 

(4) we then have the 

(x_t) ll/FT~_t ~ +)"  - ,  

approximating system 

k.(x, t )y.( t)  dt = g . ( x ) ,  
V1 - t  2 
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(32) f l _ l Y n ( t )  dt 

The solution of these equations is given by 

(33) 

with 

PETER LINZ 

= N .  

y.(x) = ~ ~iT~(x), 
i=0  

N 
0~ 0 - -  1 ~ -  

and a = (~1, ~2 . . . . .  0~n) T given by the matrix system 

(34) Aria = On" 

Here g , =  ((g, Uo)v,.. .  , (g, Un_I)V) r and the elements of A, are 

(35) aij "= - rc6ij + 2fli- l d .  

This can be verified by substitution. Convergence results then follow easily. 

THEOREM 3. I f  g e C(Pt +l)(-1,1), p1>1, and k(x,t) e C(P2 + l)(-1,1),  p z ~ l  
(with respect to both variaoles) then, for sufficiently large n 

(36) I[y-y,,l[~ < cn-P, p = min(pl, p2). 

PROOF. Since k(x, t) is continuous 

(37) k(x, t ) -  kn(x, t) = ~ fluU,(x)Tj(t) , 
~r 

where a = { O < i < e % j > n +  l} U{n<i<oo,  O<j<n}. Thus 

1 f ~  V l - t  2 f l  AKn*(x) = ~ 1 t - x  1 ~ flijUi(t)Tj(s)y(s)dsdt 

y(s) E flijr~(s) U ~(t) dtds 
~ - 1  a - 1  t - - x  

if = - y(s) ~, flijTj(s)Ti+l(x)ds, 
- 1  a 

where the interchanges can be justified by the theory of singular integrals. Now 

flu = (U,, (k(x, .), T~)T)V , 

and setting qj(x)= (k(x, "), Tj)T we have from Lemma 1 that 

~flljl <---- ci-(p2 + l~IIq~P2 +1)(x)l[~ . 
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Applying the lemma again to q~p2+l)(x) gives 

Ifli~l --< ci-Cvz+1~i-~P2+l) 

and it follows that 

and 

c 

G 

IIAK*II = O(n-P2)  " 

A similar argument can be made for Ag* and we obtain (36). 

4. Conclusions. 

We have shown that the method of orthogonal polynomial expansion is 
convergent for the solution of certain singular integral equations, and that the 
convergence rates are high if the functions in the equation have a high degree of 
smoothness. The arguments given here can be generalized in various ways. 
Systems of such integral equations can be treated in exactly the same manner. In 
practice, it is sometimes required to find solutions of (1) which behave like 

near the ends. This requires that a subsidiary condition be imposed 
on g rather than on (o; the consequent analysis can be carried out in the 
manner indicated although the details will change. 

Finally we comment that it may be possible, by a more thorough analysis, to 
extend the results to prove convergence for functions which do not possess all the 
smoothness assumed in our discussion. We have not investigated this since we 
consider such a result of marginal usefulness. This type of method is usually 
practical only when all functions are quite smooth; otherwise convergence 
becomes too slow. 
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