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Abstract. 
A class of cyclic linear multistep methods suitable for the approximate numerical 

integration of stiff systems of first order ordinary differential equations is developed. 
Particular attention is paid to the problem of deriving schemes which are almost A-stable, 
self starting, have relatively high orders of accuracy and contain a built in error estimate. 
These requirements demand that the linear multistep methods which are used are solved 
iteratively rather than directly in the usual way and an efficient method for doing this is 
suggested. Finally the algorithms are illustrated by application to a particular test problem. 

Introduction. 

Recently [1] the present author has introduced a class of highly stable iterative 
integration procedures suitable for the approximate numerical integration of first 
order systems of ordinary differential equations of the form 

(1.1) d x / d t  = f ( x ) ,  X ( to )  = Xo, x ~ R s . 

One of the main virtues of these procedures is that they are able to achieve 
relatively high orders of accuracy while maintaining both an infinite region of 
absolute stability and a single step nature. A combination of these three 
characteristics is of course not possible with conventional linear multistep 
methods. The algorithms which were proposed in [1] were described as "implicit 
predictor-corrector schemes" since, although the "predictor" is implicit and must 
be iterated to convergence, the method of use of these schemes has distinct 
similarities to the way in which conventional explicit predictor-corrector methods 
are applied. If, for example, we use one of the integration procedures proposed in 
[1] to integrate from the nth step point t. to t.+ 1 ( = t . + h . )  it is necessary to first 
of all predict the solution values at the step points (t .+l,t .+2 . . . . .  t.+~) where 
j > 2 .  In some cases this will result in a disproportionately large number of 
predicted values being required and this is obviously an undesirable situation. 
Two other problems which need to be investigated and which have not been 
discussed so far are firstly how our analysis may be extended to the multistep case 
and secondly how we may obtain a computable estimate of the local truncation 
error suitable for use with a step control procedure. The main purpose of the 
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present paper is to examine these problems in some detail with the aim of 
suggesting ways in which they may be overcome. In the next section it will be 

shown that all of these three problems may be overcome to some extent if our 
basic algorithm is allowed to consist of more than one integration scheme with 
these schemes being applied in a well defined cyclic order. It has been found that 
in order to be able to derive a j th order method we need to use a composite 
procedure consisting of j distinct schemes and this allows a Milne-type error 
estimate to be available at every jth integration step. 

In section 2 we present some particular algorithms of orders 2, 3 and 4 and 
finally in section 3 some numerical results are presented. 

2. Cyclic iterative methods. 

In a fairly recent paper [2] Donelson and Hansen have proposed a class of what 
they call cyclic composite multistep methods for the numerical integration of non- 
stiff systems of ordinary differential equations. Basically speaking their idea is to 
use not one but several integration procedures, applied in a given fixed order, in 
the hope of obtaining improved stability characteristics. It turns out, in fact, that a 
cyclic composite multistep method may be stable even though the k-step schemes 
which it uses are not all zero-stable. For  numerous extensions of their analysis 
and a detailed account of the main implications of their approach the reader is 
referred to Stetter [3]. It is the purpose of this section to show that it is also 
possible to use iterative schemes of the type discussed in [1] in a cyclic fashion in 
such a way that the resulting algorithms offer certain computational advantages 
over more conventional ones currently in use. In order to explain our ideas we 
shall consider first of all a very simple scheme which we do not propose tor 
practical computation but which is useful for demonstrative purposes. 

S c h e m e  1. 

We shall denote our overall integration procedure by C1C2 and it will consist 
of two distinct schemes C1 and C2 applied in a cyclic fashion. We shall assume 
that the finally accepted approximation x, to x ( t . )  has been computed and we 
consider first of all a predictor-corrector scheme, C1, which we shall use to 
calculate x, + 1. As a predictor we use the trapezoidal rule 

x(O)+i_x(O)+i_l _ 11~ ¢~o) .~¢(o) "t i=1 ,2 ,  x ~ ) = x n  
- -  ~ t ~ ) , J n + i . J n + i _ l J  

and as a corrector we use the scheme 

1 (0) 9 v . ( 0 )  _1.. ; ( 0 ) ) ,  h / "  - -  1--A 2 ~r(0) 
X n + l - - X n  = h f n + l - - 2 { X n + 2 - - ~ n + l X ' ~ n  J ~ " U n + l  2 ~ "~'n 

where A x  n = X n + I - - X  n . 

We now make a few remarks regarding the computational aspects of this 
predictor-corrector scheme and these remarks will hold generally for all the 
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schemes which we shall propose in this section. We note first of all that our 
"predictor" is implicit and to solve for the required solution ~'.+i"c°) we use a quasi- 
Newton iteration procedure iterated to convergence. It is important to note that 
associated with our algorithm there are two distinct iterations namely the 
predictor-corrector scheme itself (which we call the primary iteration) and the 
quasi-Newton scheme (which we call the secondary iteration) which is used to 
generate the required solution of the algebraic equations occuring at each step 
point. The way in which we apply our quasi-Newton schemes is very similar to 
that described by Gear [4] in that we keep the Jacobian matrix fixed and re- 
evaluate it only if the scheme fails to converge to the prescribed degree of 
precision in four iterations. If the scheme still fails to converge in four iterations 
we halve h and re-start from the step point t,. The only remaining problem which 
we have to consider is that of finding a suitable initial iterate for use with our 
iteration schemes and for our predictor this is provided by the explicit Euler rule 
and for our corrector ,,(m --,+1 serves as our initial iterate. It may be shown that the 
scheme C1 is L-stable and has order 2. In order to obtain the required solution at 
the step point t.+2 we use the backward differentiation scheme (denoted by C2) 

x,+ 2 - (4/3)x.+ 1 + (1/3)x, = (2/3)h~cn+ 2 . 

Note that we already have the iterate ~,n+~v(°~- available, which we hope is a 
reasonable approximation to x~ + 2, and we can use this as the first iterate in the 
quasi-Newton scheme used to solve for x,+2. We now examine the region of 
absolute stability of our composite scheme C1C2. Applying scheme C1 to the 
scalar test equation } = 2x, where for the remainder of this paper 2 will denote a 
complex constant with negative real part, we obtain the expression 

(2.1) 
x , + l / x  . = R,(h2) = ( 1 - q / 2 - 7 q 2 / 1 6 ) / ( 1 - 3 q / 2 + 9 q 2 / 1 6 - q 3 / 1 6 ) ,  q = h 2 .  

If we now apply scheme C2 to our scalar test equation we obtain the expression 

(2.2) x,,+ z/x, ,  = R 2 (h2) = (4R~ (h2)/3 - 1/3)/(1 - 2q/3). 

By examining the magnitude of the rational function R2(h2 ) we may easily 
determine the region of absolute stability of our cyclic scheme and it may be 

shown that scheme C1C2 is L-stable and of order 2. We note, however, that this 
scheme as it stands requires three coefficient matrices to be factorised for each 
block step (=  2 integration steps of length h) and this would seem to be an area 
where an increase in computational efficiency could be obtained. We may of 
course be able to use a quasi-Newton iteration scheme which allows these 
coefficient matrices to be kept piecewise constant over several successive 
integration steps but in general we shall try to avoid the possibility of having 
more than two matrices to factorise for each block step. In general when 
considering conventional linear multistep methods for use as predictors it would 
seem to be advisable to use the trapezoidal rule since this is the most accurate A- 
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stable one step scheme. When considering possible correctors, however, we have a 
very wide choice and we shall need to bear in mind that we wish to keep the 

number of matrix factorisations to a minimum. We shall not consider any 
modifications to scheme 1 since we are not proposing it for practical computat ion 

but we shall instead go on to consider the problem of obtaining an estimate of the 
local truncation error committed in integrating from t, to t ,+ z. If we again 

consider our backward differentiation scheme we have 

(2.3) x. + 2 - (4/3)x. + 1 + (1/3)x. = (2/3)h)}. + z .  

The analytic solution x( t . )  satisfies 

(2.4) x ( t , + 2 ) -  ( 4 /3 ) x ( t .+ l )+  (1/3)x(t , )  = (2/3)hf ( t ,+ 2, x(t.~_2) ) 

+ ~lh3x'; ' + 0 (h 4) 

where ~ is the principal error constant associated with. (2.3). Usually the 
procedure adopted at this stage is to assume that x ,  and x. + 1 are exact and then 

to derive an estimate of the error in x.+2 on this assumption. In our case, 
howe~ver, it does not seem reasonable to assume that x.+ 1 is e x a c t -  what we 

really need to do is to calculate an approximation to the error in x.+2 on the 
assumption t h a t  x.  only is exact. We may do this by using as a corrector the 

scheme 

(2.5) x. + 2 - (4/3)x. + x + (1/3)x, = h{ (4/3))}. +1 - (2/3))}.}. 

The true solution of this scheme satisfies 

(2.6) x ( t . + 2 ) -  ( 4 / 3 ) x ( t . + O +  (1/3)x(t .)  = h { ( 4 / 3 ) f ( t . + l , x ( t . + O )  

- (2/3)f (t., x (t~))~ + ~2hax"' + O (h 4) 

where ~2 is the principal error constant associated with (2.5). Denoting the 
_(o) we solution obtained using (2.3) by x .+2 and that obtained from (2.5) by ~.+~ 

have 

(2.7) x(t.+2) ,,co) _ (4 /3 ) (x ( t .+l )_Xn+X)  = a2haxn '+O(h  4) - - ~ n + 2  

Similarly subtracting (2.3) from (2.4) we have 

(2.8) x ( t . + z ) - x . + 2 -  ( 4 / 3 ) ( x ( t . + l ) - x , + t )  = cqh3x~ '+O(h4) .  

Ignoring the O(h 4) terms we have from (2.7) and (2.8). 

(2.9) ~1(x.+2 c0) - x,+2)/(~1 - ~2) = elh3x~ ' 

and the left hand side of this expression serves as a computable estimate of the 
local truncation error of our cyclic scheme. 

Scheme 2. 

We now consider the derivation of a third order cyclic scheme comprising of 
three distinct iterative integration procedures. As our first scheme, which we 
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denote by C1, we use an implicit predictor-corrector scheme where as a predictor 
w e  u s e  

~ ( 0 )  _ ~.(o)  . . (o)  (o) + f ( t . + i - 1 ,  x .+i-1)}  x;, °) = x ,  ~,+, -~,+,-1 = (h/2){f( t ,+, , .%+3 i=  1,2,3, 

and as a corrector we use 

o o 
x,,+l - X n  = (h/2){x.+l +x .}  - (1/12)A3x~ °) 

When applied to our scalar test equation ~ = 5~x this scheme yields an expression 
of the form 

X n + I / X  n =- Rt(h2 ) 

where 

Rl(h2) = ~ - ( c ~ - 1 ) 3 / ( 1 2 ( 1 - q / 2 ) ) ,  ~ = ( l + q / 2 ) / ( 1 - q / 2 ) ,  q = h 2 .  

In order to calculate an approximation to x.+ z we use the iteration scheme C2 
given by 

x ~ + 2 - x , +  1 = (h/2){}~+2+}~+1}- (A3x~))/12.  

Two important  practical points which we note are 

1) The predicted values {x~ °)} computed for use with scheme C1 are also used 
with scheme C2 and so it is not necessary to compute any additional predicted 
values. 

2) For both scheme C1 and C2 the coefficient matrix of our secondary iteration 
scheme takes the same form i.e. I - M / 2  where J is some suitable 
approximation to the s x s Jacobian matrix (?f~ax. In practice it has often been 

found to be possible to keep this coefficient matrix fixed for both steps and this 
generally results in a considerable saving in computat ional  effort. 

If  we now apply scheme C2 to our scalar test equation we obtain 

where 

X n + 2/Xn = R 2 (h~) 

R2(h2 ) = 0~Rl(h2 ) -  (c~- 1)3/(12(1 - q / 2 ) ) .  

For our third and final iteration scheme we shall consider the third order 
backward differentiation scheme given by 

x. + 3 - 18x, + 2/11 + 9x. + 1/11 - 2x,/11 = 6h} n + 3/11 

which we denote by scheme C3. We note that we already have an initial 
approximation ~n+3x'(O) to X,+a and hopefully this will provide a good initial iterate 
for use with our quasi-Newton iteration scheme. Applying scheme C3 to our 
scalar test equation we obtain 

xn+3/x n = R3(h), ) 
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where 

(2.10) R3(h2 ) = (18R2(h2)/l1-9Rl(h2)/ l l  +2/11) / (1 -6q /11) .  

We note that scheme C1C2C3 requires a maximum of only 2 matrix factorisations 
for each block step if our quasi-Newton iteration scheme converges. Before 
deriving a procedure for estimating the local truncation error in our solution we 
first of all consider another possible scheme C1C2C3 where scheme C2is given by 

Xn+ 2 -  (12/11)X.+1 + x . / l l  = h{6}.+2/11 + 4 } . + t / l l }  -4A3x(.°)/33. 

We note that in common with scheme C1C2C3 considered earlier, the composite 
scheme C1C2C3 requires only two matrix factorisations at the maximum per 
block step if the relevant quasi-Newton secondary iteration schemes converge and 
also it requires only one set of predicted values {x(.°)}. Applying scheme C1C-2C3 
to :~ = 2x we again obtain an expression of the form 

whe re  

(2.11) 

xn+3/X n = R3(h). ) 

R 3 (h2) = (lSR z (h2)/11 - 9R 1 (h2)/11 + 2/11)/(1 - 6q/11) 

and where 

R 2 (h2) = { (12/11 + 4q/11)R~ (h2) - 1/11 - 4(a - 1)3/33}/(1 - 6q/11). 

It is clear that our expressions for the characteristic roots have now become rather 
too complicated to allow an analytic investigation of the stability properties of 
our block schemes and so we have to rely on a numerical method. Since all of the 
schemes which we have considered yield an expression of the form x.+3/x . 
= R 3 (h2) it is easy to plot the locus of q in the complex left hand half plane which 

Region of instability of C1C2C3 

Region of instability of CIC2C3 
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is such that IRa(h~.)l < 1 and this is shown in Figure 1 for each of the methods 
which we have considered. Since the region of instability is symmetric about the 
negative real axis we in fact only show its intersection with the region Re (q)< 0, 
Im(q)>0 .  We now consider the derivation of a Milne type procedure for 
estimating the local truncation error of our third order block schemes. We denote 
the solution obtained at the step point t. + 3 using the cyclic scheme in question by 
x.+3 and the solution obtained at t.+3 using the scheme x .+3-(18/ l l )x .+2 
+ (9/11)x.+ 1 -  (2 / l l ) x .=h(18~ .+2/ l l -  18~.+1/11+6~./11) by ~-.+J."(°) It may be 
shown that a Milne type error estimate of the local truncation error of our cyclic 
scheme is given by T.E. = _  ~.~"(°)+ 3 -x.+3)/4.  We again emphasise the fact that 
both the third order schemes which we have suggested require only one set of 
predicted values to be calculated and as a result a considerable saving in 
computational effort is obtained compared with the schemes proposed in [1]. The 
main reason for finishing off our cyclic scheme with a backward differentiation 
scheme was in an attempt to give the whole scheme the correct asymptotic 
behaviour for large q. If, however, we are prepared to accept A (fl)-stability rather 
than L(fl)-stability we may make a further saving in computational effort by using 
as our third scheme C~3 

O O x .+3-x .+  2 = (h/2){x.+3 + x .+2} -  (A3x(°))/12 . 

The region of absolute stability of our new composite scheme C1C2C3 may be 
found in the way previously explained and may be shown to have a small region 

of instability close to the imaginary axis, 

Scheme 3 

Finally in this section we consider the derivation of a fourth order cyclic scheme 
consisting of four distinct iteration procedures. As our first predictor-corrector 
scheme, which we denote by C1, we use the predictor 

x(O) _ ,AO) (o) (o) .+~ ~.+~-1 = (h/2){f .+~+f.+i-t} i=1 ,2 ,3 ,4  

and as a corrector we use 

x. +1 - x. = (h/2){~. +1 + x.} - I-~{A 3x~) - A4x~)} • 

It is easy to show that this scheme has order 4 and when applied to the scalar test 
equation ~ = 2x it yields an expression of the form 

where 

x.+l/x.  = Rl(h2 ) 

R 1 (h2) = a -  { - a4 + 5~3 _ 9~z + 7 a -  2}/(12(1 - q/2)), 

q =h2, c~ = (1 +q/2)/(1 - q / 2 ) .  
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The region of absolute stability of this scheme may easily be determined using a 

numerical method and it may be shown to be A-stable. In order to calculate our 

approximation x,+2 we consider the use of another predictor-corrector scheme 
where we again impose the restrictions that firstly we do not want to calculate any 
more predicted values and secondly we want to allow ourselves the possibility of 
not having to factorise any more coefficient matrices. With these restrictions in 
mind the scheme, C2, which we use to calculate x,+ 2 is 

x . + 2 _ x . + l  (h /2){~.+2.~  ~ _ I___A a..(o) = ~ n + l J  12  z~ "~n • 

Applying this scheme to our scalar test equation we obtain the expression 

where 

X n + 2/Xn = R 2 (h2) 

R 2 (h2) = c~R 1 (h2) -  (~3 _ 3~2 + 3~ - 1)/(12(1 - q / 2 ) ) .  

It may easily be shown that the scheme CIC2 is A-stable. Following this line of 

approach we may calculate the approximation x, + 3 using the predictor-corrector 
scheme C3 which is given by 

x .+3--x .+2  = (h/2)(:~.+a + x . + 2 ) -  (Aax~)+A4x~°))/12 , 

as corrector with the same predictor as before being used. Applying this scheme to 
our scalar test equation we obtain 

x.+3/x . = Ra(h2 ) 

where 

R 3 ( h , ~ )  = ( x R  2 (h2) - e (~ - 1 )3 / ( 12 (1 - q/2)). 

It  is easy to show using a numerical method that the scheme C1C2C3 is A-stable. 
We now consider two possible schemes C~4 and ~ to calculate the solution x.+4 

and so complete our block step forward. If we demand that our overall scheme 

should be L(fl)-stable for/3 close to rt/2 it would seem to be necessary to use an 
L(fl)-stable scheme (~4. One obvious candidate is the fourth order backward 
differentiation scheme 

x. + 4 -  48x. + 3/25 + 36x. + 2/25 - 16x. + 1/25 + 3x./25 = 12h~. + 4 / 2 5  . 

Applying this scheme to our scalar test equation we obtain 

x.+4/x . = R4(h2 ) 

where 

R4(h2 ) = ( 4 8 R a ( h 2 ) / 2 5 - 3 6 R 2 ( h 2 ) / 2 5 + 1 6 R l ( h 2 ) / Z 5 - 3 / 2 5 ) / ( 1 - 1 2 q / 2 5 ) .  

T-he region of absolute stability of our composite scheme C1C2C3C'4 may now be 
found in the usual way using a numerical method and the region of instability is 
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Region of  instability of  CIC2C3C'4  
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plotted in Figure 2. As an alternative we may use a different scheme C4 to 
calculate x ,+4 which gives rise to a procedure C1C2C3C4 which is A(fl)-stable 

(but not  L(fl)-stable) but  which provides us with the possibility of only having to 

factorise one coefficient matrix for each block step. The scheme which we use is 

o o 

x.  + 4 - x.  + 3 = (h/2) (x. + 4 + x.  + 3) --  (A 3x~O))/12 - ( A 4 x ~ ) ) / 6 .  

If  we now apply our  composi te  scheme C1C2C3C4 to the scalar test equat ion 2 

= 2x we obtain an expression of the form 

x . + J x .  = R4(h2 ) 

where 

R,, (h2)  = o~R3 (h2) - (2~ 4 - 70~ 3 -I- 9~ 2 - 5a + 1)/(12(1 - q /2 ) ) ,  

~¢ = (1 + q/2) / (1  - q / 2 ) .  

The region of  stability of  this method may  be found numerically in the usual way 

and the scheme C1C2C3C4 may be shown to be "almost" A-stable with a small 
region of instability close to the imaginary axis. We now consider a procedure for 

estimating the local t runcation error  of  our  composi te  scheme C1C2C3C'4. We 
denote the solution obtained at the step point  t,+ 4 using our  cyclic scheme by 
x,+4 and that  obtained using the fourth order  explicit scheme 

x.  +,~ - 48x. + 3/25 + 36x, + z /25 - 16x. + 1/25 + 3x,/25 

= h (482. + 3 - 722, + 2 + 48~, + 1 - 122,)/25 

b, ~o) It may  be shown that  a computable  estimate of  the local t runcat ion error Y "~n+4" 

of our  cyclic scheme is given by 

T.E. ~o~ = (x.+,-x.+4)/5. 



ON A CLASS OF CYCLIC METHODS ... 279 

We note that for this scheme an estimate of the local truncation error in our 

solution is obtained at every fourth step point and even if our approximate 
solution is satisfactory at this particular point it may be that approximations at 
previous points in the block are relatively poor. In many practical applications 
this will not matter because we are often only interested in computing the 
solution at the end point of the range of integration for stiff systems. In some 
cases, however, it would be useful to be able to estimate the error at intermediate 
points, especially as this should add to the robustness of the scheme, and the 
possibili~ty of deriving an algorithm which will allow us to do this is at present 
being investigated. Similar remarks also apply to other block methods which have 

been derived in this section. 

3. N u m e r i c a l  resu l t s .  

In this section we illustrate the general approach described in section 2 by 

considering the numerical integration of the first order system of ordinary 
differential equations 

= 0 .01  - (0.01 + x + y ) ( x  2 + 1001x+ 1001), 

= 0.01 - (0.01 + x + y ) ( 1  +y2), 
x(O) = 0 

0_<t< 100, 
y(0) = 0 

using the scheme C1C2C3C~4. This problem, which is very stiff initially but 
becomes less so for large t, has been suggested as a test problem by Bjurel et. al. 
[5]. Two runs of this problem were performed first with a local error tolerance of 
8 =  10 - 4  and then with an error tolerance of e =  10 -6.  At every fourth step an 
estimate, T.E., of the local truncation error was obtained using the procedure 

described in section 2 and, assuming that we are integrating from t, to t,+4, the 
following step control procedure was used: 

1) If IT.E.[>~ halve h and go back to t,. 
2) If e/50 < ]T.E.] < e keep h fixed. 
3) If e/2500<tT.E.I <e/50 double h 
4) otherwise take a value of h four times the old value. 

The results obtained for the solution of this problem are summarised in Table 1. 
As can be seen an increasingly accurate solution is obtained at t = 100 as stricter 
local error tolerances are imposed. The value of t given in Table 1 denotes the end 
point of the block: step being considered and the value of h denotes the step length 
of integration used for that particular block step. As can be seen from the results 
presented the error estimate obtained always provides a reasonable estimate to 
the true error and so is suitable for use with a step control procedure (and this 
was also found to be the case for all step points not shown in Table 1). This 
general conclusion was also reached with all other test problems which have been 
run, 
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T a b l e  1 

Solution obta ined  at t = 1 0 0  with e = 1 0 - *  x = - 0 . 9 9 1 5 4 3 8 1 ,  y=0.98322422 
e = 1 0  -6 x = - 0 . 9 9 1 6 3 9 8 5 ,  y=0.98333382 

t rue solut ion x = - 0 . 9 9 1 6 4 2 0 7 ,  y=0.98333636 

Performance of error estimate 

True error  in Est imated error  in 
t h x y x y 

0.0004 0.0001 0.834" 10 - s  0.703' 10 -11 0.956- 10 - s  0.856" 10 T M  

35.1652 6.5536 0.584" 10 -7 0.584" 10 -7 0.442" 10 -7 0.408" 10 -7 
94.1476 1.6384 0.203" 10 -5 0.203" 10 -5 0.353" 10 -5 0.149" 10 -5 
97.4224 0.8192 0.130" 10 -5 0.129" 10 -5 0.118" 10 -5 0.888" 10 -6 
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