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A N U M E R I C A L  M E T H O D  F O R  T H E  I N T E G R A T I O N  

O F  O S C I L L A T O R Y  F U N C T I O N S  

R. PIESSENS and F. POLEUI~IS 

Abstract. 
A new method for the calculation of the integrals 

b b 

c o s m x d x  
a a 

is p r e sen t ed .  T h e  f u n c t i o n  f ( x )  is a p p r o x i m a t e d  b y  a s u m  of C h e b y s h e v  po lyno-  
mials .  The  C h e b y s h e v  coeff ic ients  a re  t h e n  u s e d  to  ca lcu la te  a N e u m a n n  series  
a p p r o x i m a t i o n  for  I i (m)  a n d  I2(m ). 

T h e  n u m e r i c a l  examples  d e m o n s t r a t e  t h a t  t h i s  m e t h o d  is v e r y  a c c u r a t e  a n d  
eff ic ient .  

1. Introduction. 

The numerical calculation of integrals of the form 

b 

(1) If(x) sinmxdx 
a 

and 

(2) 
b 

I f(x)  eosmxdx 
a 

occurs in many problems of physics and engineering. If m is large, special 
integration methods must be used for the evaluation of (1) and (2), 
since, in view of the strongly oscillatory character of the integrand, 
classical quadrature formulas require too much computation work [1]. 
The best known formulas are based on the piecewise approximation by 
polynomials of f(x)  on the integration interval. The resulting integrals 
are then integrated exactly. Usually, the degree of the approximating 
polynomials is low. The methods given by Filon [2], Flinn [3], Buyst 
and Schotsmans [4], Tuck [5], Einarsson [6], Van de Vooren and Van 
Linde [7] are of this type. Miklosko [8] proposed to use an interpolatory 
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quadrature formula which has as nodes the zeros of the Chebyshev poly- 
nomials. However, the order of his formula is limited, since the calcula- 
tion of the weights for high order formulas is affected by  a large loss of 
significant figures. Other formulas are based on the integration between 
the zeros of cosmx or sinmx [1], [9], [10], [11], [12]. Some additional 
references are [13]-[16]. 

If  f(x) is a very smooth function on the interval [a,b], it would be 
more interesting to approximate f(x) by a polynomial QN(X) of high 
degree N, in the whole integration interval. The integrals (1) and (2) 
are then approximated by  

(3) 
b b 

: S  /X),cos x, X 

If a = - 1 and b = + 1, Bakhvalov and Vasileva [17] proposed to approxi- 
mate f(x) by a sum of Legendre polynomials 

iv 
(4) QN(x) = ~, CkPk(X ) . 

k=O 

The coefficients Ce in (4) are determined by  interpolation in the zeros of 
the Legendre polynomials. The expression (3) becomes 

(5) 

(6) 

b 
i [(N-1)/2] f(x) sinmxdx "~ ~. C~k+l ( -  1) k ]/2--~]m J~k+a/~(m) 

k=O 

b l [2V121 
f(x) cosmxdx ~= ~ Cek ( -  1) k ~ J~k+½(m) 

k=O 

where J,~(x) is the Bessel function of the first kind and order n. 
The advantages of Chebyshev pol~nomials in approximation problems 

are well known [18] and thus it would be interesting to use these poly- 
nomials to approximate f(x). Bakhvalov and Vasileva [17] have exa- 
mined this question and their conclusion is that  the resulting formulas 
are more complicated than with Legendre polynomials and that  there is 
a serious effect of rounding off in the computation. We describe here a 
new method which can be considered as a modification of the method of 
Bakhvalov and Vasileva and which uses Chebyshev polynomials in place 
of Legendre polynomials, without a loss of significance during the com- 
putations. 
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2. Description of the method. 

B y  a simple change of integration variable, it can be shown that  the 
calculation of integrals (1) and (2) can be reduced to the evaluation of 
the integrals 

+1 

S(m) = f f (x)  sinmxdx 
--1 

(7) 

and 

(s) 
+1 

C(m) = I f(x) cosmxdx 
- - t  

where m may have a different value than before. Consider now the fol- 
lowing Chebyshev expansion 

(9) V l - x 2 f ( x )  = ~ '  ckTk(x ) 
k 

the single prime denoting that  the first term is taken with factor ½. 
Since in most cases the series (9) is slowly convergent, coefficients c k 

cannot be efficiently calculated using the orthogonM property of sum- 
mation of the Chebyshev polynomials. We then use the following proce- 
dure. 

The function f (x)  is approximated by the truncated Chebyshev series 

N 

(10) f (x)  ~= Z '  aiTi(x). 
i=O 

Since f (x)  is supposed to be smooth on [ - 1 , 1 ] ,  formula (10) gives a 
good approximation of f(x),  even with a small value of N. The coeffi- 
cients a~ can be approximated by  the formulae [18], [19] 

2 , 
i ;  - (11) a i _- ~ cos cos N 

where the double prime indicates that  both the first and last terms of 
the sum are taken with factor ½, or 

2 2v 
(12) ai = iV+ 1 j=~/(cosx~.)~ cos(ix/) 

where 
2j+1 

xJ = N + I  2" 
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If desired, the fast Fourier transform algorithm (see Cooley and Tuckey 
[20]) can be used in order to compute (11) very efficiently. 

The values of 2Y must be determined in the same way as for the Clen- 
shaw-Curtis quadrature method [21]. Thus, if for a value of N, the 
approximation (10) is found to be insufficient, N must be doubled. 
Only/Y additional function evaluations are then necessary. 

For using formulae (11) or (I2), f ( x )  is required at non-equidistant 
points. This does not present any difficulty if f ( x )  is known analytically. 
If f ( x )  is given as a table with equidistant or even arbitrary non-equi- 
distant values of x, which is a rather general situation when the function 
originates from physical experiments, Clenshaw's curve fitting method 
[22] can be applied in order to construct an approximation of f ( x )  in 
the form (10). 

Since 
+1 

ck = - f ( x ) T d x ) d x  
--1 

(13) 

we have 

(14) 

o r  

(15) 

and 

(16) 

2 N +1 

Ck ~= - ~" at I Tk(x)T~(x)dx 
i = o  - 1  

2 1 1 
C~k = ~r 2i + 2k) 2 -  1 ( 2 i -  2k) ~ - 

--2 [(N-1)/21~ a2i+l [i 1 + ( 2 i _ : k ) 2 _  ] C~k+l = zl i=0 2i + 2k + 2) 9' -- 1 1 

(17) 

o r  

(18) 

The formulas (7) and (9) yield 

~o i 1 s inmxTk(X)  " 
S(m)  ~ ~ :  ck ~ ax 

- 1  ~ / 1  - -  x ~ 

O 0  

S(m)  ~- ~ c2k+1 ( - 1)k~J~k+l(m ) . 
b=O 

In  the same manner, we have 

(19) 
O 0  

c( ) y_' ( 1)~ ( ) m ~ c~k - 7CJ~k m o 

k = o  
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We obtain thus Neumann series approximations for the integrals S(m) 
and C(m). 

From the Riemann-Lebesgue lemma, we know that  c k tends to zero 
for k -+ 0% if f(x) is absolutely integrable from - 1 to 1. We know also 
that  

1 
(20) J~(m) ~ 2~rn V - ' ~  k~n/  n :+ o~. 

Thus series (18) and (19) are convergent and the terms decrease very 
rapidly for increasing k and k>m/2.  Thus, if series (18) and (19) are 
truncated after M terms, where M is only a little larger than m/2, the 
truncation error may be completely neglected. I t  is also evident that  the 
choice of M depends not only on the value of m, but  also on the desired 
accuracy of this result. This problem, however, is already discussed by 
many authors [23-27]. In  the following error anab-sis we assume that  
the errors result only from the truncation of series (10). We neglect also 
the roundoff errors. 

If we denote the error on S(m) and C(m) by  @(m) resp. ec(m), we have 

+1 

%(m) = ~ a i s i nmxTdx )dx .  
, /=N+I 

--I 

(21) 

Since 

(22) 

+1 

f sinmxT2~+l(x)dx 2 sinm 
(2i + 1)2 

--1 

+ 0(i-4), i + 

we have for large N (N >> 2m) 

(23) 
o o  

~2i+1 es(m ) ~ - 2  sinm 
(2i+ 1) 2 i=[(N+l)/2] 

and, in the same way 

(24) %(m) ~ costa ~ a2i 
- - - -  - - o  

2 i=[2V/2]+1 i2 

From these expressions, we conclude that  for 1V-+ ~ ,  the integration 
method converges faster than the Chebyshev series for f(x)  itself. This 
explains the very good results of this method, even for singular integrals, 
as will be showed in the examples. 

I t  is also important to note that, although this method does not im- 
pose any restriction on the values of m, (unlike some other algorithms 
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which require m to be an integer times z), the accuracy depends on m, 
because of the factor sinm in (23) and cosm in (24). 

3. Numerical examples. 

In  this section we give some numerical examples. For the evaluation of 
the Neumann series, we have used the method of Babuskova [27]. 

We calculate 
2z 

(25) f f i(x ) s inmxdx,  i 1(1)4 
o 

for several values of m, where 

f l(x) = x eosx 
f2(x) = x cos50x 

~g 
= 

f4(x) = logx.  

The function f l(x) and f~(x) are analytical and we can thus expect very 
accurate results. The functions fa(x) and f4(x) have a singularity on the 
integration interval but the results, although less accurate, will still be 
useful, for reasons explained above. 

Davis and Rabinowitz [1] have also calculated these integrals using 
other methods, namely Filon's method and a method based on Lobatto 
quadrature. Here we compare our method with Filon's rule (however 
with more function evaluation than in [1]) and with a Gaussian rule 

(26) f (x)  s inxdx '~ ~ w i [ f ( x l ) - f ( - x j ) ]  . 
j = l  

~ X g  

The integrals (25) can be evaluated by applying m times formula (26). 
The number of function evaluations is thus 2mL. Abscissas xt and 
weights w i of (26) are tabulated for L =  1(1)9 in [11]. This Gaussian rule 
is more efficient than Lobatto's rule, as is pointed out in [12]. The cal- 
culations were carried out in double precision on an IBM 360/44 computer. 
In Tables I-IV,  the exact values and the elTors (by error we mean 
lexact value--computed value[) of the different methods are shown. 
The numbers between brackets in the tables give the number of function 
evaluations. The number of terms in (12) and (19) is automatically 
determined by the computer program so tha t  the addition of other 
terms gives no improvement. 
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2g 

T a b l e  I .  I x c o s x  s i n m x d x .  

0 

3 2 3  

m E x a c t  

E r r o r s  

F i l o n ' s  ru le  G a u s s  ru le  N e w  m e t h o d  

1 

2 

4 

16 

64 

256 

- -  1.5707963267948966 

- -4 .1887902047863910 

- -  1.6755160019145564 

- -0 .3942390780975427 

- -0 .0981987447275930 

- -0 .0245440671189132 

9 x 10 -11 (1003) 2 x 10 -15 (12) 5 × 10 -15 (30) 

1 × 10 -1° (1003) 1 × 10 - I s  (16) 9 x I 0  -1~ (30) 

4 x 10 -11 (1003) 3 x 10 -1~ (24) 3 x 10 -15 (30) 

1 x 10 -11 (1003) 7 x 10 - la  (64) 1 × 10 -14 (30) 

2 x 10 -12 (1003) 7 x 10 - la  (256) 3 x 10 -16 (30) 
1 x 10 -12 (1003) 2 x 10 - la  (512) 1 x 10 -15 (30) 

T a b l e  I I .  

2?$ 

I x c o s 5 0 x  s i n m x d x .  

o 

m E x a c t  

E r r o r s  

F i l o n ' s  ru le  G a u s s  ru le  N e w  m e t h o d  

1 

2 

4 

16 

64 

256 

0.002514279834805 4 x 10 -~ (1003) / 3 x l 0  -14 (200) 

0.005034603611522 7 x 10 -6 (1003) 7 x 10 -4 (36) 1 x 10 -14 (200) 

0.010117850736199 2 x 10 -6 (1003) 1 x 10 -a  (72) 9 x 10 -16 (200) 

0.044799895238357 7 x 10 - °  (1003) 2 x 10 -14 (256) 6 x 10 - i s  (200) 

--0.251957305551061 4 x 10 -~ (1003) 3 x 10 -14 (512) 9 x 10 -11 (200) 

- -0 .025517092433498 2 x 10 -6 (1003) 4 x 10 -12 (1024) 2 x 10 -12 (200) 

T a b l e  I I I .  

2~ 

o V 1  - 
- -  s i n m x d x .  

m E x a c t  

E r r o r s  

G a u s s  r u l e  N e w  m e t h o d  

1 -- 13.17038298 1 × 10 -2 (18) 3 × 10 -4 (50) 

2 -- 9.58285045 5 × 10 -a  (36) 5 × 10 -a  (50) 

4 - -6 .87607126 4 × 10 -a (72) 1 × 10 -a (50) 

10 - -4 .38761102 3 x 10 -a  (180) 4 x 10 -5 (200) 

20 -- 3.11175260 2 x 10 -a  (360) 8 × 10 -5 (200) 

30 - -2 .54325962 2 × 10 -a  (540) 1 × 10 -4 (200) 
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2= 

Table IV. f logx sinmxdx. 
0 

E r r o r s  

m E x a c t  G a u s s  ru l e  N e w  m e t h o d  

1 - -2 .437653393 1 x 10 -a  (18) 1 x 10 -a  (50) 

2 - 1.557178276 8 × 10 -5 (36) 3 x 10 -~ (50) 

4 - 0 . 9 5 0 7 3 8 9 1 1  4 x 1 0  -5 (72) 5 × 1 0  -~ (50) 

10 - -0 .471793074 1 x 10 -5 (180) 5 × I 0  -g (200) 

20 - -0 .270544415 7 x 10 -~ (360) 1 x 10 -~ (200) 

30 - -0 .193877275 5 x 10 -~ (540) 3 x 10 - :  (200) 

For f3(x) and f~(x), Fflon's rule is only applicable if we ignore the 
singularities by setting arbitrarily f3(2z)= 0 and f4(0)= 0 (or any other 
value). Since the results, thus obtained, are very bad (only 2 to 3 ac- 
curate significant figures for 1003 function evaluations) they  are not 
shown in the tables I I I  and IV. 

We conclude that  our method is superior to Fflon's rule and also, for 
strongly oscillating integrals (large m) or singular integrals, to the 
Gauss rule. 

Finally, we give an example where f(x) is given as a table of function 
values f(xk) for equidistant values of the argument 

x k = - 1 + 0 • 1 k  k = 0(1)20• 

The function values are generated by calculating 

1 
f ( x k )  = 

x~+3 

and, in order to simulate experimental errors, normally distributed ran- 
dom errors of 0 .1~ are superimposed. Using Clenshaw's curve fitting 
technique, we approximate f(x) by a linear combination of Chebyshev 
polynomials (10) with N =  4, and use (16) and (18) to cMculate 

+1 

I 1 sinmxdx 
x+3 

--1 

In  Table V, the results are compared with those of Filon's rule. The 
superiority of our method is evident. 
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Table V. 

1 
sin mx dx 

f x + 3  
--1 

325 

m Exact Filon's rule 1flew method (2V = 4) 

1 - -0 .071675 - -0 .076150 - -0 .071682 
2 - -0 .103085 - -0 .109804 - -0 .103102 

4 --0.025117 --0.027653 - 0 . 0 2 5 1 3 2  
10 - 0 . 0 1 9 1 2 0  --0.021167 - -0 .019140 

20 0.004379 0.005748 0.004386 
30 0.001627 0.000935 0.001616 

4. Calculation of other types of integrals. 

The same method can be used for the calculation of other types of 
integrals with a strongly varying factor in the integrand, for example 

(27) 

and 

(28) 

+1 

Ii(a) = ! eaxf(x)dx 
--1 

+1 

Is(a) = I 6ax3f (x )dz"  
-1 

These integrals are difficult to calculate with classical methods if lal is 
large. 

We have the following formulas 

M 

(29) I i(a ) ~= ~ '  Ck=Ik(a ) 
k=o 

and 
M 

(30) Is(a ) ~= 2e a/~ ~,' C~k=Ik(a/2 ) 
k=0 

where the coefficients c k are given by (15) and (16) and where Ik(X ) is 
the modified Bessel function of the first kind and order k. 

5. Conclusion. 

We have presented a new method for the evaluation of integrals with 
strongly oscillating integrand. Our method is as economical as accurate 
and has the following advantages: 
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1. T h e  f u n c t i o n  e v a l u a t i o n s  a r e  c o m m o n  for  a l l  v a l u e s  of m a n d  a r e  

a l so  c o m m o n  for  b o t h  i n t e g r a l s  (1) a n d  (2). T h i s  is  p a r t i c u l a r l y  

a d v a n t a g e o u s  for  t h e  c a l c u l a t i o n  of t h e  coe f f i c i en t s  of F o u r i e r  ser ies ,  

w h e r e  b o t h  i n t e g r a l s  (1) a n d  (2) m u s t  b e  c a l c u l a t e d  fo r  v a r i o u s  

v a l u e s  of  m.  

2. I t  is e a s y  t o  w r i t e  a n  " a u t o m a t i c  i n t e g r a t o r "  fo r  t h e  c a l c u l a t i o n  

of  i n t e g r a l s  w i t h  h i g h l y  o s c i l l a t o r y  i n t e g r a n d s ,  b a s e d  o n  o u r  m e t h o d  

(for t h e  d e f i n i t i o n  of  a u t o m a t i c  i n t e g r a t o r ,  see D a v i s  a n d  R a b i n o -  

w i t z  [1]). 
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