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Abstract. 

We describe a cost-optimal parallel algorithm for enumerating all partitions (equivalence relations) of 
the set {1 . . . . .  n}, in lexicographic order. The algorithm is designed to be executed on a linear array of 
processors. It uses n processors, each having constant size memory and each being responsible for 
producing one element of a given set partition. Set partitions are generated with constant delay leading to 
an O(B,) time solution, where B, is the total number of set partitions. The same method can be generalized 
to enumerate some other combinatorial objects such as variations. The algorithm can be made adaptive, 
i.e. to run on any prespecified number of processors. To illustrate the model of parallel computation, 
a simple case of enumerating subsets of the set {1 . . . . .  n} having at most m (< n) elements is also 
described. 

CR categories: C.1, F.2. 
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1. Introduction. 

Recen t ly  a n u m b e r  of  para l le l  a l go r i t hms  for g e n e r a t i n g  c o m b i n a t o r i a l  objects  

have  been  p roposed .  Th e  types  of  objects  s tud i ed  are p e r m u t a t i o n s ,  c o m b i n a t i o n s ,  

subsets ,  set pa r t i t i ons  (i.e. equ iva lence  relat ions) ,  d e r a n g e m e n t s ,  etc. In  order  to 

charac te r ize  k n o w n  approaches ,  we list some  des i rab le  p roper t i e s  of  g e n e r a t i o n  

techniques :  

PROPERTY 1: The  objects  are l isted in  the l ex icographic  order.  

PROPERTY 2: The  a l g o r i t h m  is cos t -op t ima l  (i.e. the n u m b e r  of  p rocessors  it uses 

mu l t i p l i ed  by  its r u n n i n g  t ime  m a t c h e s -  u p  to  a c o n s t a n t  factor  - a lower  b o u n d  o n  

the  n u m b e r  of  o p e r a t i o n s  r equ i r ed  to solve the  problem) .  

1 The research is partialy supported by NSERC operating grant OGPIN 007. 
Received October 1989. Revised February and March 1990. 
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This can be further specified according to way the lower bound is defined. We 
identify two such definitions: 
a) the time to generate objects without need to produce them is counted. Optimal 

sequential algorithms in this sense generate objects in time proportional to the 
number of objects to generate. 

b) the time to actually output the objects is counted. Here, optimal sequential 
algorithms run in time proportional to the total size of output, i.e. the product of 
the number of objects to generate and the size of one combinatorial object. In this 
paper we adopt this measure. 

The latter approach can be further classified according to the i/o architecture. We 
assume that each processor is connected to a distinct output port. This approach is 
advantageous in case when the distributed representation of the objects can be used 
directly as input to another parallel program. A serial algorithm running in one of 
the processors would need O(n) time to distribute each object over the n processors, 
whereas the parallel algorithm produces the distributed object in constant time. 

Alternatively, one could consider a serial computer with a number of parallel 
output ports, each connected to a distinct address in main memory, and an instruc- 
tion that outputs the contents of these memory cells in parallel. Conversely, one 
could well imagine a parallel computer where the output takes place over a serial 
port. This machine would require an output time proportional to the length of the 
object, despite the parallel computational capability. 

PROPERTY 3: The time required by the algorithm between any two consecutive 
objects it produces is constant. A constant time delay between outputs is particular- 
ly important in systolic applications [1]. 

P R O P E R T Y  4 :  The model of parallel computation should be as simple as possible.. 
In order of simplicity, frequently used models are: 

k independent processors (no interconnection network links the processors ex- 
cept a connection to a master processor which distributes the job); 

linear array of m processors, indexed 1 through m, where each processor 
i (1 _< i _< m) is connected by bidirectional links to its immediate left and right 
neighbors (i - 1 and i + 1) if they exist; this model is practical, as it is amenable to 
VLSI implementation [1]; 

SM EREW PRAM (shared memory exclusive read exclusive write parallel ran- 
dom access machine); in this model, a number of processors share a common 
memory and execute the same instruction of an algorithm on different data syn- 
chronously; however, no two processors are allowed to read from or write into the 
same memory location simultaneously. This model is mainly of theoretical interest. 

PROPERTY 5: Each processor neeeds as little memory as possible, preferably 
a constant number of words, each of log n bits capable of storing an integer no larger 
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than n (where n is the size of one object). This implies that no processor can store an 
array of size n, or a counter like n!. 

PROPERTY 6: The algorithm should produce all objects of given type. 

PROPERTY 7: The algorithm is adaptive (an algorithm is adaptive if it can run on 
any number of processors). 

We now review some existing parallel algorithms for generating certain types of 
combinatorial objects and provide a brief assessment of each in light of the proper- 
ties above. 

Two approaches for designing parallel generation algorithms are known in 
literature. In the first approach used there are an arbitrary number (k) of processors 
available; each of them produces an interval of S/k objects, where S is total number 
of objects to be generated (for example, 1024 subsets of 10-elements set are produced 
by 4 processors generating subsets 1-256, 257-512, 513-768 and 769-1024, re- 
spectively). The best known technique is to apply a sequential algorithm on each 
interval (i.e. for each processor), and is used in [2-1 for permutations and combina- 
tions and in [7] for subsets and equivalence relations. This gives cost-optimal 
algorithms under measure 2a); however, the properties 3 and 5 are never satisfied. 
The latter applies also to the other algorithms appearing in the literature. Permuta- 
tions are generated in [5, 10, 14-1 and others references given in [1,2] while 
derangements are generated in [ 11] using a theoretical model more powerfull than 
EREW PRAM. In addition, property 2 is not satisfied for all mentioned algorithms 
(except [5-1 which does not meet property 1). Although more sophisticated ap- 
proaches are used in these papers, surprisingly no better results are achieved 
compared to the simple one above, no matter which of the listed properties is taken 
into consideration. 

In the second approach (that is adopted in the paper) m processors produce an 
m-element combinatorial object ala2.., an, such that processor i is responsible for 
producing element ai. For example, the subset {2, 3, 5} is produced in the following 
way: processor 1 produces 2; processor 2 produces 3; processor 3 produces 5. The 
algorithms are made adaptive by combining this approach with the former one. This 
approach enabled designing an algorithm to satisfy properties 3 and 5, for which the 
former approach fails. 

Using this approach, optimal algorithms (under measure 2b) that satisfy all 
properties 1-7 listed above are designed to generate combinations m out of n el- 
ements in [3] and [12-1, and permutations ofn out ofn elements [4]. The first known 
algorithms to solve these two problems with this approach [6-1 and [2] were not 
cost-optimal and were designed for the more powerful EREW PRAM model. 

In this paper, we consider the problem of generating m-subsets (subsets having at 
most m elements) and equivalence relations (set partitions) of the set { 1, 2 . . . . .  n}, in 
lexicographic order. Various sequential algorithms have been given for these prob- 
lems ([15, 18, 19] for generating subsets; [8, 9, 15, 17] for generating equivalence 
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relations). All these techniques enumerate objects in lexicographic order, which is 
often emphasized for its speed, simplicity and possibility to cut or recover some 
objects easily. Note that, since each of the S(m, n) subsets (B(n) set partitions) requires 
O(m) (O(n)) time to be produced as output, the best possible sequential algorithm 
runs in O(mS(m, n)) (O(nB(n)), respectively) time. If the time to produce the output 
is not counted, then there are faster algorithms, in O(S(m, n)) time for generating 
subsets, and in O(B(n)) time for generating set partitions. However, for set partitions 
the delay between producing two set partitions is O(n), i.e. non-constant, in the worst 
c a s e .  

Recently, the fast generation of subsets and set partitions in parallel (using the first 
approach described above) has been studied in the literature. In [5] a parallel 
algorithm to generate the subsets of at most m out ofn objects is presented. It runs on 
a linear array of k processors (including a selector), each producing an interval of 
consecutive subsets. The algorithm is cost-optimal but each processor requires 
memory of size O(m). The algorithm [7] uses any number of independent processors 
and is also cost-optimal. Again, each processor requires memory of size O(m), and 
has to deal with large integers. The same properties are also valid for the set partition 
algorithm from [7]. 

In this paper we solve the same problems using a different approach (described 
above as the second approach). We use a linear array of m processors, each having 
a constant size local memory (thus, the processors do not need as much memory 
space as in [5, 7]). It is well known that any algorithm for a linear array of processors 
can be simulated without penalty on other theoretical and practical models (SM 
EREW PRAM, hypercube, mesh-connected computer etc.); in other words, the 
model is practical and weaker than other known models. The algorithms require 
constant time per subset/equivalence relation, and therefore are cost-optimal. Thus 
we achieve cost-optimality, optimizing space (constant size memory per processor) 
at the same time, and avoid any calculation with very large integers. All properties 
1-7 listed above are satisfied with our algorithms. 

Our algorithms are cost-optimal under the measure 2b). This measure is consider- 
ed since in applications we are aware of the fact that combinatorial objects generated 
need to be reported (each object with all its elements) for further processing. For 
example, the list of bases of the set of predicate functions (mapping n-valued input to 
binary output) can be constructed using the list of equivalence relations on the set of 
n elements [13]. The subset generation algorithm has a similar application in base 
enumeration [19] and in listing all clique Boolean functions [16]. In addition, our 
parallel algorithm for generating equivalence relations has the advantage of con- 
stant time delay between two relations, which is not the case for any previously 
known sequential or parallel algorithm. 

We further elaborate the approach used in the paper. Consider a parallel algo- 
rithm to generate a class of combinatorial objects (subsets, equivalence relations, or 
some other class of objects) using n processors and n shared variables D1,..., Dn, 
where DID2... Dn represents one of the objects in a given class. Each processor i is 
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responsible for maintaining Di by, we hope, reading only data from processors i - 1 
and i + 1. Each processor has a while loop that at each iteration prints D i so that, 
since the processors act in lock-step fashion, each iteration will print an object D. We 
might naively expect that each processor i would maintain Di. Thus, the body of the 
loop of each processor would be 

Print Di; 
update Di; 

If objects to be generated are subsets, Di can be updated using a known sequential 
algorithm. Suppose that D 1 . . . .  ,Dr, r < n, is the current subset. Then the next 
subset is sequentially obtained in a constant number of operations (see section 2), 
each performed on elements with indices r - 1, r or r + 1; this has a straightforward 
parallelization, and the obtained algorithm is cost-optimal, plus other desirable 
properties listed above. The subset generating algorithm is described here to 
illustrate the model and the approach. However, if equivalence relations are to be 
generated in parallel, the computation of D i by a known sequential generating 
procedure would require too much time ( O ( n )  in the worst case), or shared memory 
with too many (read/write) references (an O (log n) algorithm on an SM EREW 
PRAM model can be designed in a manner that is analogous to the combination and 
permutation procedures from [1]). We therefore look for a slight variation on this 
theme. 

The paper is organized as follows. Section 2 presents a parallel algorithm for 
generating subsets. The algorithm is a straightforward parallelization of an existing 
serial algorithm and is given to illustrate the approach and the model used, and to 
complete the repertoire of combinatorial objects generation algorithms. The main 
contribution of the paper is a parallel technique for generating equivalence relations, 
described in sections 3, 4 and 5. The technique does not follow any existing serial 
algorithm; in fact, it is much simpler than any of them. In section 4 we show that the 
method used to enumerate equivalence relations can be applied for generating some 
other types of combinatorial objects, such as variations; we also describe the criteria 
for suitability of our approach. Section 5 describes how our algorithm can be made 
adaptive. A conclusion containing some open problems is also given. 

2. Subsets. 

In this section we consider the problem of generating all r-subsets (subsets 
containing r elements) of the set {1 . . . . .  n} for all r, 1 < r _< m < n (i.e. all subsets 
with up to m elements) on a linear array ofm processors. We assume that each subset 
will be represented as a sequence a~. . .  at, where 1 < a~ < ... < ar < n. 

Recall the definition of lexicographic order of sequences. For two sequences 

a = (al . . . . .  ap) and b = (b  1 . . . .  , bq), a < b is satisfied if and only if there exists an 
i(1 < i _< q)such that aj = bj.for 1 < j  < iandei ther  a i < b i o r  p = i - 1. This order 
has an important property that enables simple calculation with sequences. 
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A backtracking algori thm for generating all subsets with up to m elements can be 
given as follows (cf. [19]): 

read (n); r :  = O; a, : = O; 
repeat 

if a, < n and r < m 

then {a,+l = ar + 1; r : =  r + 1} (*extend*) 
else if a, < n then a, : =  a~ + 1 (*increase last*) 

else { r : =  r - 1; a , : =  a, + 1}; (*reduce*) 

output  a l , . . . ,  ar 

until a 1 = n 

This a lgori thm has a s traightforward implementat ion on a linear array of  m pro- 
cessors. Each processor j  (1 < j < m) is responsible for producing element aj (ifj < r, 
where r is the number  of  elements in current subset; otherwise it produces no 

element, and we may assume aj = 0 for such processors). Given a subset a l . . .  at, the 
next subset (in lexicographic order) is determined in a constant  number  of  oper- 
ations, and each opera t ion is done  on either at_ 1, at, or  ar + r Thus, all operat ions are 
done on processors r - 1, r and r + 1 which have direct communica t ion  (processor 
r is connected to both  processor  r - 1 and r + 1). In addit ion to the field a~, each 
processor  has a field m for message exchange (m, = 1 and m~ = 0 for j  # r), and fields 

to keep m and n. The parallel a lgori thm can be described as follows. 

for each processor j (1 _~ j _< m) do in parallel 

m r : =  O; a j : =  O; 
terminate j := O; (*termination flag*) 

i f j  = 1 then {mr:=  1; aj:= 1; ou tpu t  ai}; 
(*output  first subset*) 

repeat 
if m~ = 1 (*j = r, index of  last element*) 

then if aj < n and j < m 
then rnj = 2 (*extend*) 

else if aj < n then aj = aj + 1 (*increase last*) 

else m i : =  3 (*reduce*); 
i f j  > 1 then {read m r_ 1; 

if m i_ 1 = 2 then (*extend*) 
{read a~_l; a j : =  aj-1 + 1; 
mj:= 1 (*new last element'))); 

i f j  < n then {read mj+l;  

if mr+ 1 = 3 then (*reduce*) 
{ a j : =  aj+ 1; 

m r : =  1 (*new last element*)}}; 
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if m t > 1 then m t: = 0; (*delete old message*) 
if a t > 0 then output at; 

i f j  = 1 and a t = n then { terminatet := 1; a j :=  0}; 
i f j  > 1 then {read terminate j_  1; 

if terminate t_ ~ > 0 

then terminate t : = terminate t + 1}; 
until terminatet:= n - j  + 1 

In the algorithm all processors will terminate simultaneously. The termination is 
initiated by processor 1 when it recognizes al = n. The termination message is 
communicated in n steps to processor n; during the communication there is no new 
output by any processor since aj = 0 for all of them. 

3. Equivalence relations. 

Let Z = { 1 . . . . .  n}. An equivalence relation (or partition) of the set Z consists of 
classes nl . . . . .  rt k such that the intersection of every two classes is empty and their 
union is equal to Z. The algorithms [8, 9, 15, 17] generate equivalence relations in 
lexicographic order of codewords, where a codeword x l . . .xn  represents an equival- 
ence relation of the set Z if and only if x I = 1 and 1 < xr < 9 , -  1 + 1 for 2 < r < n, 
where xi = j  i f / i s  in rcj, and gr = max(x1, . . . ,xr)  for 1 < r < n. A list of codewords 
and corresponding equivalence relations for n = 4 is given in Fig. 1. 

The next equivalence relation is found from the current one by a backtracking or 
recursive procedure in all known sequential generating techniques that deal with 
lexicographic order of elements; in both cases an increasible element (one for which 
x~ < g j_ 1 is satisfied) with the largest possible index t is found (t < n - 2); we call 
this element the turning point. For example, the turning point of equivalence relation 
1123 is the second element (t = 2). A straightforward implementation of this leads to 
an O(n) worst case delay between two equivalence relations (which is not desirable), 
even in case a linear array of processors is to be used. Also, for processors which do 
not take part in a backtracking step, deciding on exactly when to produce the next 
element, may require either large counters or a sophisticated procedure. 

A standard parallel algorithm would run in O (log n) time per equivalence relation, 
and would also require a more powerfull (and theoretical) SM EREW PRAM model 
(shared memory exclusive read exclusive write parallel random access machine). We 
present a generating procedure in which each processor can produce the correspon- 
ing element in the next equivalence relation in constant time, and on a weaker 
model: linear array of processors. 

By a run o fa  processorj  we mean the output of the processor when x l . . .  x t -  1 are 
fixed (1 < j < n). One run of processorj  (2 < j < n) consists of the elements 1, 2 . . . . .  
g j -  1 + 1, such that each is repeated an appropriate number of times in succession. 
Processor 1 produces the element 1 all the time while processor n always changes its 
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(1234) =1 1 1 1 1 2 1 3 4 3 5 

(123)(4) = 1 t 1 2  
/ 

(124)(3) = 11 21  
\ 

(12)(34) = 1 1 2  2 
\ 

(12)(3)(4) = 1 1 2  3 

(134)(2) = 1 2 1 1  

(13)(24) = 1 2 1 2  

(13)(2)(4) = 1 2 1 3  

(14)(23) = 1 2 2 1  

(1)(234) = 12  2 2 
/ 

(1)(23)(4) = 1 2  2 3 
/ 

(14)(2)(3) = 1 2 3  1 
\ 

(1)(24)(3) =1 2 3 2 
\ 

(1)(2)(34) = 12 3 3 
\ 

(1)(2)(3)(4)= 12 3 4 

Fig. 1. List of codewords and corresponding 
equivalence relations for n = 4. 

1 2 1 3 4 4 1  

1 2 1 3 4 4 2  
/ 

1 2 1 3 4 4 3  
/ 

1 2 1 3 4 4 4  
/ 

1 2 1 3 4 4 5  
\ 

1 2 1 3 4 5 1  
\ 

1 2 1 3 4 5 2  
\ 

1 2 1 3 4 5 3  
\ 

1 2 1 3 4 5 4  

1 2 1 3 4 5 5  

1 2 1 3 4 5 6  

1 2 2 1 1 1 1  

1 2 2 1 1 1 2  

1 2 2 1 1 1 3  

1 2 2 1 1 2 1  

1 2 2 1 1 2 2  
/ 

1 2 2 1 1 2 3  
\ 

1 2 2 1 1 3 1  
\ 

1 2 2 1 2 1 1  

Fig. 2. Fragment of equivalence 
relations of the 7-element set. 

e lement  x, .  O the r  processors  will p roduce  several  runs. The to ta l  number  of  runs of 

p rocessor  j is B j_ 1, where  B, is the number  of  equivalence re la t ions  of  a set of 

n e lements  (Stir l ing number  of  the second kind). I t  is obvious  tha t  processor  j can 

p roduce  a run independen t ly  on the da t a  in o the r  processors  p rov ided  it is given 

g~- 1 for the run. However ,  this a p p r o a c h  would  lead to  deal ing with large integers 

(the to ta l  number  of equivalence  re la t ions  is exponen t ia l  in n). W e  therefore choose  

ano the r  approach .  I t  is easy to show tha t  processors  j + 1, j + 2, . . . ,  n will a lways 

finish their  cur rent  runs  whenever  processor  j does  (for example ,  processors  3 and  

4 have finished their  cur rent  runs  in equivalence re la t ion  1123 s imul taneously;  the 

next  re la t ion  is 1211). Here  we descr ibe a very s imple  technique to achieve cons tan t  
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time delay in generating any equivalence relation, thus leading to an optimal O(B,) 
time generating algorithm. 

In order to make simultaneous changes, the processors j for t < j < n should 
receive appropriate  message in good time. The message is initiated from processor n, 
routed to the processor t (turning point) and sent back toward processor n. There 
are, obviously, at least 2(n - t) steps necessary to broadcast all the information 
needed for simultaneous change (the indices t and 97). Here one step corresponds to 
the output of one set partition and routing the message from a processor to 
a neighboring one. I f t  is less than n/2 (the limit is not strict), one run of processor n is 
too short to communicate the message to processor t and back to n; there will be 
a delay. Two runs of processor n are, on the other hand, sufficient for this. 

The method is illustrated in Figures 1 and 2 and described below in more detail. 
Fig. 2 shows a fragment of equivalence relations of the 7-element set. Messages 
looking for the turning point are depicted as "/" while messages with desired 
information are marked by " \" .  

4. Algorithm for generating equivalence relations. 

Initially x r = 1 and 9r = 1 for each processor j (1 < j < n). At a given step, each 
processor j communicates its immediate neighbors j - 1 and j + 1 (if they exist) to 
check whether any change in the "system" has appeared. In general, messages will be 
rarely sent, and processors will not change their status unless appropriate  messages 
are received. Messages are communicated through the field m. If m r = 0, then 
processor j sends a "no change" message to its neighbors. 

There are two kinds of"active" messages (mr = 1: "looking for the turning point"; 
rnj = 2: "the turning point has been found"). When a message of the first kind from 
j + 1 (mr+ 1 = 1) is received, processorj  will immediately check whether x r < 9j -  1 is 
satisfied, in which case it is the desired turning point. I f j  is not a turning point, it will 
pass (in the next step) the same message to its lower numbered neighbor j - 1 (by 

assigning m r: = 1). 
On the other hand, ifj is indeed the turning point, then it will send an appropriate 

message back to processorj  + 1 by assigning mr: = 2, t r: = j (to mark  the turning 
point), and 9r: -- max (gr, xr + 1). Every processorj  for j  > k receives the mentioned 
message "package" from processorj  - 1, at the time when mj_ 1 = 2. The index t of 
the turning point and new value of9~ (gr = 9r-1) are passed to processorj  together 
with the message (the new value is not in effect during the waiting period). Processor 
j will still produce the same element during the waiting time which is equal to 
w r = 2t - 3 + n - j  steps (so that the change is done synchronously). Note that 
a processor may keep the status of carrying active message (mr = 1 or m r = 2) for one 
step only; in the next step m r is set back to 0. 

Processors n and n - 1 play somewhat different roles. In addition to the described 
general job, processor n - 1 also increases its element x,_ 1 during the process of 
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collecting information;  it happens when x.  = g ._  1 + 1. Processor  n - t also initi- 
ates the search for turning point. A message will be activated (m._ 1 : = 1) if x.  = 2 

and x ._  1 = g . -  1. The processor n will increase its field x.  by 1 if it did not  reach 
g . -  a + 1 yet; otherwise it starts a new run from x.  : =  1. 

Summarizing,  we obtain the following theorem. 

THEOREM. The algorithm described above generates all equivalence relations o f  

n objects with constant delay per equivalence relation (thus, in optimal O(B,) time) on 

a linear array o f  n processors, where each processor 

- has memory of  constant size, and 

- can generate elements without need to deal with large integers, e.g. Bi (1 < i _< n). 

PROOF. Using mathemat ical  induct ion we prove that at step k the output  of the 
algori thm is exactly the kth equivalence relation. This is obviously satisfied for the 
first equivalence relation by the initial conditions. Assuming that this is true for the 

first k - 1 relations, we prove that the kth ou tpu t  is precisely the kth equivalence 
relation, in lexicographic order. We consider the output  of  each processor j for 

1 < j < n. For  j = n the element x,  is increased by 1 unless it has the maximal  
possible value g,_ 1 + 1, in which case the next value is 1. This proper ty  of  lexi- 
cographic  order  enumera t ion  of  relations is exactly followed in the described 

algorithm. 
Assume now j < n. In lexicographic order, the element xj  will not  change for 

a number  of  relations, in both  the lexicographic order  and in the described algo- 
rithm. It  will change its value only when xt = gt-x + 1 for each t > j (i.e. if all 
processors j  + 1,j + 2 . . . . .  n produce the maximal  possible values). It is easy to show 
that xt = gj + t - j = g,_ 1 + t - n + 1 is then satisfied for t > j (since x t = gt when 
xt has maximal  value);; f rom xt > 0 it follows that  n - t < g,_ 1 + 1 and thus 

2(n - t) < 2g,_ 1 + 1. When this happens,  xj increases by 1 unless it has already 
reached its maximal  possible value g j_ 1 + 1, in which case it changes its value to 1. 
We check whether this proper ty  of  lexicographic order  is properly followed by the 

algorithm. At the momen t  of change of  x j, by induction, x ._  1 has correct value g._ 1, 
which is its maximal  possible value, i.e. the end of  its current run of g ._  1 + 1 
relations. The former run contained g ._  1 relations. Thus the two last runs contained 
29 . -  1 + 1 relations. The message was initiated by processor n - 1 at the beginning 

of  the next to the last run, Since 2(n - t) < 2 0 . -  ~ + 1 there was sufficient time for the 
initiated message to reach processor t (n - t steps) and to return back (another n - t 

steps). The waiting time can also be checked similarly. Therefore the information 
about  change is available to the processor  j together with the exact m o m e n t  for 
change. This means that  both  lexicographic order and algori thm will do the same 
change, which completes the p roof  of  correctness of  the algorithm. The other  two 

statements are obvious  from he description, • 
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5. Formal description of the algorithm. 

A formal statement of  the algori thm described in the previous section is given 
below. 

For each processor j (1 ~ j < n) do in parallel 

x j : =  1; g j : =  1; m j : =  0; w i : =  0; t~:= 0; new_g j :=  0; 
repeat 

print xj; read mj+l;  read mj_l;  read gl-~;  m j : =  0; 
ifj = n then {if x s = n then stop; 

ifx~ <__ gj_~ then x j : =  x s + I else x j : =  1;} 
i f j  = n - 1 then {read xj+l;  

i fx i+  1 = gj + 1 and xj  < gj-1  
then {xs :=  x s + 1; g s : =  max(gs, xs) } 

if x s + 1 = 2 and x s = gs-1 then 
(*activate search*) mj:=  1} 

ifj < n then 
{if mj+ 1 = 1 then i f x  s < g ) - i  a n d j  < n - 2 then 

{(*search successful*) r a t :=  2; 
{(*set up turning point*) t~: = j; 
(*set up waiting time*) wj: = j - 3 + n; 

(*new value of  g*) new_g j: = max(g i, xj + 1);} else m s : = 1; 

if ms_ x = 2 then {new_gs:= g~-l; m s : =  2; read ts_l; 
(*read the index of  turning point*) tj: = t s_ ~; 

(*set up waiting time*) w s : =  2t s - 3 + n - j ; }  
if tj > 0 then if w~ > 0 then w s: = w j_ 

else {gS:= new_g j; 
if t j : = j  then x s : =  xj + 1 else x j : =  1; 
t j : =  0}} 

until tj = 1 and wj = 0 

6. Variations. 

In this section we show that our  me thod  can be used to enumerate some other  
types of  combinator ia l  objects, in lexicographic order. As an illustration we choose 
variat ions of the set { 1 . . . . .  n}. A variat ion of  m out  of n elements is any sequence 
x~ . . . . .  Xm such that  1 _< xj _< n for 1 < j  _< m. Obviously,  there are n m such vari- 
ations. The turning point  of  a variat ion is the element with greatest index for which 
xj < n is satisfied. A search for turning point  can again be initiated (in advance) by 
the processor  m - 1 when this processor  started to produce its run for the value 

n - 1. There are n values of Xm when Xm-x = n - 1 and n values of Xm when 
Xm-X = n. These 2n values are sufficient for the message to search for the turning 
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point and return with its value. The other modifications of the set partition algo- 
rithm are also obvious. 

In general, any combinatorial enumeration problem (for generating m out of 
n objects) for which there are between t2(m) and O(n ¢) objects (c any positive integer) 
when the values of x 1 . . . .  xm_ 1 are fixed (or, at least, when element xm-1 has the 
maximal or next to the maximal possible value) can be solved using our technique. 
The listed property seems to be the key for applying the described method, f2(m) is 
necessary since searching for the turning point may require that much time. The 
other limit O(n c) on the number of objects is needed to avoid counters that are very 
large numbers. For instance, permutations of n elements do not meet this require- 
ment since the number of mentioned objects is O(1). 

7. Adaptive algorithms. 

The described algorithms are designed to be executed on a linear array of exactly 
m (in case of subsets) and n (in case of set partitions) processors. In order to obtain 
adaptive algorithms (an algorithm is adaptive if it can run on any number of 
processors), one can divide the number k of available processors into k/m groups for 
subsets and kin groups for set partitions, with rn and n processors, respectively, in 
each group. Each group will run the corresponding algorithm described in this 
paper, starting with an object and finishing with another one. Dividing the job into 
a given number of equal parts, i.e. determining the first and the last object of a given 
group of processors, has been described in [7] (a numbering system, i.e. unranking 
procedure from [ 15] can also be used). This calculation involves very large numbers; 
however this is done once as a preprocessing step (and can even be done in parallel 
by the whole linear array of processors) and therefore does not significantly increase 
the time complexity of our algorithms. 

8. Conclusion. 

We succeeded in deriving an optimal algorithm for generating subsets and 
equivalence relations ofn objects on a linear array of processors. The algorithm uses 
n processors and produces relations in lexicographic order and in constant time per 
relation. Algorithms with the same characteristics were designed for some other 
types of combinatorial objects: combinations [3, 12] and permutations [4]. 

One of the remaining open problems is generating all derangements of m out of 
n objects, by an algorithm satisfying properties 1-7. A recent paper [11] does not 
meet properties 2 (in both sences), 3, 4, and 5. Another similar problem is generating 
all permutations of m out of n elements, and all cyclic permutations of n elements 
satisfying properties 1-7. Partitions and compositions of integers are further prob- 
lems to consider. Finally, many of the mentioned problems are not solved optimally 
if different kinds of cost measures (discussed in the introduction) are applied. 
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