
BIT 30 (1990), 424-436

AN OPTIMAL ALGORITHM FOR GENERATING
EQUIVALENCE RELATIONS ON A LINEAR

ARRAY OF PROCESSORS

IVAN STOJMENOVI(? 1

Computer Science Department, University of Ottawa, Ottawa, Ontario, Canada K I N 9B4,
and Institute of Mathematics, University of Novi Sad, Yugoslavia

Abstract.

We describe a cost-optimal parallel algorithm for enumerating all partitions (equivalence relations) of
the set {1 n}, in lexicographic order. The algorithm is designed to be executed on a linear array of
processors. It uses n processors, each having constant size memory and each being responsible for
producing one element of a given set partition. Set partitions are generated with constant delay leading to
an O(B,) time solution, where B, is the total number of set partitions. The same method can be generalized
to enumerate some other combinatorial objects such as variations. The algorithm can be made adaptive,
i.e. to run on any prespecified number of processors. To illustrate the model of parallel computation,
a simple case of enumerating subsets of the set {1 n} having at most m (< n) elements is also
described.

CR categories: C.1, F.2.

Keywords and phrases: parallel algorithm, linear array, subsets, equivalence relations.

1. Introduction.

Recen t ly a n u m b e r of para l le l a l go r i t hms for g e n e r a t i n g c o m b i n a t o r i a l objects

have been p roposed . Th e types of objects s tud i ed are p e r m u t a t i o n s , c o m b i n a t i o n s ,

subsets , set pa r t i t i ons (i.e. equ iva lence relat ions) , d e r a n g e m e n t s , etc. In order to

charac te r ize k n o w n approaches , we list some des i rab le p roper t i e s of g e n e r a t i o n

techniques :

PROPERTY 1: The objects are l isted in the l ex icographic order.

PROPERTY 2: The a l g o r i t h m is cos t -op t ima l (i.e. the n u m b e r of p rocessors it uses

mu l t i p l i ed by its r u n n i n g t ime m a t c h e s - u p to a c o n s t a n t factor - a lower b o u n d o n

the n u m b e r of o p e r a t i o n s r equ i r ed to solve the problem) .

1 The research is partialy supported by NSERC operating grant OGPIN 007.
Received October 1989. Revised February and March 1990.

A N O P T I M A L A L G O R I T H M F O R G E N E R A T I N G E Q U I V A L E N C E R E L A T I O N S . . . 425

This can be further specified according to way the lower bound is defined. We
identify two such definitions:
a) the time to generate objects without need to produce them is counted. Optimal

sequential algorithms in this sense generate objects in time proportional to the
number of objects to generate.

b) the time to actually output the objects is counted. Here, optimal sequential
algorithms run in time proportional to the total size of output, i.e. the product of
the number of objects to generate and the size of one combinatorial object. In this
paper we adopt this measure.

The latter approach can be further classified according to the i/o architecture. We
assume that each processor is connected to a distinct output port. This approach is
advantageous in case when the distributed representation of the objects can be used
directly as input to another parallel program. A serial algorithm running in one of
the processors would need O(n) time to distribute each object over the n processors,
whereas the parallel algorithm produces the distributed object in constant time.

Alternatively, one could consider a serial computer with a number of parallel
output ports, each connected to a distinct address in main memory, and an instruc-
tion that outputs the contents of these memory cells in parallel. Conversely, one
could well imagine a parallel computer where the output takes place over a serial
port. This machine would require an output time proportional to the length of the
object, despite the parallel computational capability.

PROPERTY 3: The time required by the algorithm between any two consecutive
objects it produces is constant. A constant time delay between outputs is particular-
ly important in systolic applications [1].

P R O P E R T Y 4 : The model of parallel computation should be as simple as possible..
In order of simplicity, frequently used models are:

k independent processors (no interconnection network links the processors ex-
cept a connection to a master processor which distributes the job);

linear array of m processors, indexed 1 through m, where each processor
i (1 _< i _< m) is connected by bidirectional links to its immediate left and right
neighbors (i - 1 and i + 1) if they exist; this model is practical, as it is amenable to
VLSI implementation [1];

SM EREW PRAM (shared memory exclusive read exclusive write parallel ran-
dom access machine); in this model, a number of processors share a common
memory and execute the same instruction of an algorithm on different data syn-
chronously; however, no two processors are allowed to read from or write into the
same memory location simultaneously. This model is mainly of theoretical interest.

PROPERTY 5: Each processor neeeds as little memory as possible, preferably
a constant number of words, each of log n bits capable of storing an integer no larger

426 IVAN STOJMENOVIC

than n (where n is the size of one object). This implies that no processor can store an
array of size n, or a counter like n!.

PROPERTY 6: The algorithm should produce all objects of given type.

PROPERTY 7: The algorithm is adaptive (an algorithm is adaptive if it can run on
any number of processors).

We now review some existing parallel algorithms for generating certain types of
combinatorial objects and provide a brief assessment of each in light of the proper-
ties above.

Two approaches for designing parallel generation algorithms are known in
literature. In the first approach used there are an arbitrary number (k) of processors
available; each of them produces an interval of S/k objects, where S is total number
of objects to be generated (for example, 1024 subsets of 10-elements set are produced
by 4 processors generating subsets 1-256, 257-512, 513-768 and 769-1024, re-
spectively). The best known technique is to apply a sequential algorithm on each
interval (i.e. for each processor), and is used in [2-1 for permutations and combina-
tions and in [7] for subsets and equivalence relations. This gives cost-optimal
algorithms under measure 2a); however, the properties 3 and 5 are never satisfied.
The latter applies also to the other algorithms appearing in the literature. Permuta-
tions are generated in [5, 10, 14-1 and others references given in [1,2] while
derangements are generated in [11] using a theoretical model more powerfull than
EREW PRAM. In addition, property 2 is not satisfied for all mentioned algorithms
(except [5-1 which does not meet property 1). Although more sophisticated ap-
proaches are used in these papers, surprisingly no better results are achieved
compared to the simple one above, no matter which of the listed properties is taken
into consideration.

In the second approach (that is adopted in the paper) m processors produce an
m-element combinatorial object ala2.., an, such that processor i is responsible for
producing element ai. For example, the subset {2, 3, 5} is produced in the following
way: processor 1 produces 2; processor 2 produces 3; processor 3 produces 5. The
algorithms are made adaptive by combining this approach with the former one. This
approach enabled designing an algorithm to satisfy properties 3 and 5, for which the
former approach fails.

Using this approach, optimal algorithms (under measure 2b) that satisfy all
properties 1-7 listed above are designed to generate combinations m out of n el-
ements in [3] and [12-1, and permutations ofn out ofn elements [4]. The first known
algorithms to solve these two problems with this approach [6-1 and [2] were not
cost-optimal and were designed for the more powerful EREW PRAM model.

In this paper, we consider the problem of generating m-subsets (subsets having at
most m elements) and equivalence relations (set partitions) of the set { 1, 2 n}, in
lexicographic order. Various sequential algorithms have been given for these prob-
lems ([15, 18, 19] for generating subsets; [8, 9, 15, 17] for generating equivalence

AN OPTIMAL ALGORITHM FOR GENERATING EQUIVALENCE R E L A T I O N S . . . 4 2 7

relations). All these techniques enumerate objects in lexicographic order, which is
often emphasized for its speed, simplicity and possibility to cut or recover some
objects easily. Note that, since each of the S(m, n) subsets (B(n) set partitions) requires
O(m) (O(n)) time to be produced as output, the best possible sequential algorithm
runs in O(mS(m, n)) (O(nB(n)), respectively) time. If the time to produce the output
is not counted, then there are faster algorithms, in O(S(m, n)) time for generating
subsets, and in O(B(n)) time for generating set partitions. However, for set partitions
the delay between producing two set partitions is O(n), i.e. non-constant, in the worst
c a s e .

Recently, the fast generation of subsets and set partitions in parallel (using the first
approach described above) has been studied in the literature. In [5] a parallel
algorithm to generate the subsets of at most m out ofn objects is presented. It runs on
a linear array of k processors (including a selector), each producing an interval of
consecutive subsets. The algorithm is cost-optimal but each processor requires
memory of size O(m). The algorithm [7] uses any number of independent processors
and is also cost-optimal. Again, each processor requires memory of size O(m), and
has to deal with large integers. The same properties are also valid for the set partition
algorithm from [7].

In this paper we solve the same problems using a different approach (described
above as the second approach). We use a linear array of m processors, each having
a constant size local memory (thus, the processors do not need as much memory
space as in [5, 7]). It is well known that any algorithm for a linear array of processors
can be simulated without penalty on other theoretical and practical models (SM
EREW PRAM, hypercube, mesh-connected computer etc.); in other words, the
model is practical and weaker than other known models. The algorithms require
constant time per subset/equivalence relation, and therefore are cost-optimal. Thus
we achieve cost-optimality, optimizing space (constant size memory per processor)
at the same time, and avoid any calculation with very large integers. All properties
1-7 listed above are satisfied with our algorithms.

Our algorithms are cost-optimal under the measure 2b). This measure is consider-
ed since in applications we are aware of the fact that combinatorial objects generated
need to be reported (each object with all its elements) for further processing. For
example, the list of bases of the set of predicate functions (mapping n-valued input to
binary output) can be constructed using the list of equivalence relations on the set of
n elements [13]. The subset generation algorithm has a similar application in base
enumeration [19] and in listing all clique Boolean functions [16]. In addition, our
parallel algorithm for generating equivalence relations has the advantage of con-
stant time delay between two relations, which is not the case for any previously
known sequential or parallel algorithm.

We further elaborate the approach used in the paper. Consider a parallel algo-
rithm to generate a class of combinatorial objects (subsets, equivalence relations, or
some other class of objects) using n processors and n shared variables D1,..., Dn,
where DID2... Dn represents one of the objects in a given class. Each processor i is

428 IVAN STOJMENOVIC

responsible for maintaining Di by, we hope, reading only data from processors i - 1
and i + 1. Each processor has a while loop that at each iteration prints D i so that,
since the processors act in lock-step fashion, each iteration will print an object D. We
might naively expect that each processor i would maintain Di. Thus, the body of the
loop of each processor would be

Print Di;
update Di;

If objects to be generated are subsets, Di can be updated using a known sequential
algorithm. Suppose that D 1 ,Dr, r < n, is the current subset. Then the next
subset is sequentially obtained in a constant number of operations (see section 2),
each performed on elements with indices r - 1, r or r + 1; this has a straightforward
parallelization, and the obtained algorithm is cost-optimal, plus other desirable
properties listed above. The subset generating algorithm is described here to
illustrate the model and the approach. However, if equivalence relations are to be
generated in parallel, the computation of D i by a known sequential generating
procedure would require too much time (O (n) in the worst case), or shared memory
with too many (read/write) references (an O (log n) algorithm on an SM EREW
PRAM model can be designed in a manner that is analogous to the combination and
permutation procedures from [1]). We therefore look for a slight variation on this
theme.

The paper is organized as follows. Section 2 presents a parallel algorithm for
generating subsets. The algorithm is a straightforward parallelization of an existing
serial algorithm and is given to illustrate the approach and the model used, and to
complete the repertoire of combinatorial objects generation algorithms. The main
contribution of the paper is a parallel technique for generating equivalence relations,
described in sections 3, 4 and 5. The technique does not follow any existing serial
algorithm; in fact, it is much simpler than any of them. In section 4 we show that the
method used to enumerate equivalence relations can be applied for generating some
other types of combinatorial objects, such as variations; we also describe the criteria
for suitability of our approach. Section 5 describes how our algorithm can be made
adaptive. A conclusion containing some open problems is also given.

2. Subsets.

In this section we consider the problem of generating all r-subsets (subsets
containing r elements) of the set {1 n} for all r, 1 < r _< m < n (i.e. all subsets
with up to m elements) on a linear array ofm processors. We assume that each subset
will be represented as a sequence a~. . . at, where 1 < a~ < ... < ar < n.

Recall the definition of lexicographic order of sequences. For two sequences

a = (al ap) and b = (b 1 , bq), a < b is satisfied if and only if there exists an
i(1 < i _< q)such that aj = bj.for 1 < j < iandei ther a i < b i o r p = i - 1. This order
has an important property that enables simple calculation with sequences.

AN OPTIMAL ALGORITHM FOR GENERATING EQUIVALENCE RELATIONS . . . 4 2 9

A backtracking algori thm for generating all subsets with up to m elements can be
given as follows (cf. [19]):

read (n); r : = O; a, : = O;
repeat

if a, < n and r < m

then {a,+l = ar + 1; r : = r + 1} (*extend*)
else if a, < n then a, : = a~ + 1 (*increase last*)

else { r : = r - 1; a , : = a, + 1}; (*reduce*)

output a l , . . . , ar

until a 1 = n

This a lgori thm has a s traightforward implementat ion on a linear array of m pro-
cessors. Each processor j (1 < j < m) is responsible for producing element aj (ifj < r,
where r is the number of elements in current subset; otherwise it produces no

element, and we may assume aj = 0 for such processors). Given a subset a l . . . at, the
next subset (in lexicographic order) is determined in a constant number of oper-
ations, and each opera t ion is done on either at_ 1, at, or ar + r Thus, all operat ions are
done on processors r - 1, r and r + 1 which have direct communica t ion (processor
r is connected to both processor r - 1 and r + 1). In addit ion to the field a~, each
processor has a field m for message exchange (m, = 1 and m~ = 0 for j # r), and fields

to keep m and n. The parallel a lgori thm can be described as follows.

for each processor j (1 _~ j _< m) do in parallel

m r : = O; a j : = O;
terminate j := O; (*termination flag*)

i f j = 1 then {mr:= 1; aj:= 1; ou tpu t ai};
(*output first subset*)

repeat
if m~ = 1 (*j = r, index of last element*)

then if aj < n and j < m
then rnj = 2 (*extend*)

else if aj < n then aj = aj + 1 (*increase last*)

else m i : = 3 (*reduce*);
i f j > 1 then {read m r_ 1;

if m i_ 1 = 2 then (*extend*)
{read a~_l; a j : = aj-1 + 1;
mj:= 1 (*new last element')));

i f j < n then {read mj+l;

if mr+ 1 = 3 then (*reduce*)
{ a j : = aj+ 1;

m r : = 1 (*new last element*)}};

430 IVAN STOJMENOVIC

if m t > 1 then m t: = 0; (*delete old message*)
if a t > 0 then output at;

i f j = 1 and a t = n then { terminatet := 1; a j := 0};
i f j > 1 then {read terminate j_ 1;

if terminate t_ ~ > 0

then terminate t : = terminate t + 1};
until terminatet:= n - j + 1

In the algorithm all processors will terminate simultaneously. The termination is
initiated by processor 1 when it recognizes al = n. The termination message is
communicated in n steps to processor n; during the communication there is no new
output by any processor since aj = 0 for all of them.

3. Equivalence relations.

Let Z = { 1 n}. An equivalence relation (or partition) of the set Z consists of
classes nl rt k such that the intersection of every two classes is empty and their
union is equal to Z. The algorithms [8, 9, 15, 17] generate equivalence relations in
lexicographic order of codewords, where a codeword x l . . .xn represents an equival-
ence relation of the set Z if and only if x I = 1 and 1 < xr < 9 , - 1 + 1 for 2 < r < n,
where xi = j i f / i s in rcj, and gr = max(x1, . . . ,xr) for 1 < r < n. A list of codewords
and corresponding equivalence relations for n = 4 is given in Fig. 1.

The next equivalence relation is found from the current one by a backtracking or
recursive procedure in all known sequential generating techniques that deal with
lexicographic order of elements; in both cases an increasible element (one for which
x~ < g j_ 1 is satisfied) with the largest possible index t is found (t < n - 2); we call
this element the turning point. For example, the turning point of equivalence relation
1123 is the second element (t = 2). A straightforward implementation of this leads to
an O(n) worst case delay between two equivalence relations (which is not desirable),
even in case a linear array of processors is to be used. Also, for processors which do
not take part in a backtracking step, deciding on exactly when to produce the next
element, may require either large counters or a sophisticated procedure.

A standard parallel algorithm would run in O (log n) time per equivalence relation,
and would also require a more powerfull (and theoretical) SM EREW PRAM model
(shared memory exclusive read exclusive write parallel random access machine). We
present a generating procedure in which each processor can produce the correspon-
ing element in the next equivalence relation in constant time, and on a weaker
model: linear array of processors.

By a run o fa processorj we mean the output of the processor when x l . . . x t - 1 are
fixed (1 < j < n). One run of processorj (2 < j < n) consists of the elements 1, 2
g j - 1 + 1, such that each is repeated an appropriate number of times in succession.
Processor 1 produces the element 1 all the time while processor n always changes its

A N O P T I M A L A L G O R I T H M F O R G E N E R A T I N G E Q U I V A L E N C E R E L A T I O N S . . . 4 3 1

(1234) =1 1 1 1 1 2 1 3 4 3 5

(123)(4) = 1 t 1 2
/

(124)(3) = 11 21
\

(12)(34) = 1 1 2 2
\

(12)(3)(4) = 1 1 2 3

(134)(2) = 1 2 1 1

(13)(24) = 1 2 1 2

(13)(2)(4) = 1 2 1 3

(14)(23) = 1 2 2 1

(1)(234) = 12 2 2
/

(1)(23)(4) = 1 2 2 3
/

(14)(2)(3) = 1 2 3 1
\

(1)(24)(3) =1 2 3 2
\

(1)(2)(34) = 12 3 3
\

(1)(2)(3)(4)= 12 3 4

Fig. 1. List of codewords and corresponding
equivalence relations for n = 4.

1 2 1 3 4 4 1

1 2 1 3 4 4 2
/

1 2 1 3 4 4 3
/

1 2 1 3 4 4 4
/

1 2 1 3 4 4 5
\

1 2 1 3 4 5 1
\

1 2 1 3 4 5 2
\

1 2 1 3 4 5 3
\

1 2 1 3 4 5 4

1 2 1 3 4 5 5

1 2 1 3 4 5 6

1 2 2 1 1 1 1

1 2 2 1 1 1 2

1 2 2 1 1 1 3

1 2 2 1 1 2 1

1 2 2 1 1 2 2
/

1 2 2 1 1 2 3
\

1 2 2 1 1 3 1
\

1 2 2 1 2 1 1

Fig. 2. Fragment of equivalence
relations of the 7-element set.

e lement x, . O the r processors will p roduce several runs. The to ta l number of runs of

p rocessor j is B j_ 1, where B, is the number of equivalence re la t ions of a set of

n e lements (Stir l ing number of the second kind). I t is obvious tha t processor j can

p roduce a run independen t ly on the da t a in o the r processors p rov ided it is given

g~- 1 for the run. However , this a p p r o a c h would lead to deal ing with large integers

(the to ta l number of equivalence re la t ions is exponen t ia l in n). W e therefore choose

ano the r approach . I t is easy to show tha t processors j + 1, j + 2, . . . , n will a lways

finish their cur rent runs whenever processor j does (for example , processors 3 and

4 have finished their cur rent runs in equivalence re la t ion 1123 s imul taneously; the

next re la t ion is 1211). Here we descr ibe a very s imple technique to achieve cons tan t

432 IVAN STOJMENOVIC

time delay in generating any equivalence relation, thus leading to an optimal O(B,)
time generating algorithm.

In order to make simultaneous changes, the processors j for t < j < n should
receive appropriate message in good time. The message is initiated from processor n,
routed to the processor t (turning point) and sent back toward processor n. There
are, obviously, at least 2(n - t) steps necessary to broadcast all the information
needed for simultaneous change (the indices t and 97). Here one step corresponds to
the output of one set partition and routing the message from a processor to
a neighboring one. I f t is less than n/2 (the limit is not strict), one run of processor n is
too short to communicate the message to processor t and back to n; there will be
a delay. Two runs of processor n are, on the other hand, sufficient for this.

The method is illustrated in Figures 1 and 2 and described below in more detail.
Fig. 2 shows a fragment of equivalence relations of the 7-element set. Messages
looking for the turning point are depicted as "/" while messages with desired
information are marked by " \" .

4. Algorithm for generating equivalence relations.

Initially x r = 1 and 9r = 1 for each processor j (1 < j < n). At a given step, each
processor j communicates its immediate neighbors j - 1 and j + 1 (if they exist) to
check whether any change in the "system" has appeared. In general, messages will be
rarely sent, and processors will not change their status unless appropriate messages
are received. Messages are communicated through the field m. If m r = 0, then
processor j sends a "no change" message to its neighbors.

There are two kinds of"active" messages (mr = 1: "looking for the turning point";
rnj = 2: "the turning point has been found"). When a message of the first kind from
j + 1 (mr+ 1 = 1) is received, processorj will immediately check whether x r < 9j - 1 is
satisfied, in which case it is the desired turning point. I f j is not a turning point, it will
pass (in the next step) the same message to its lower numbered neighbor j - 1 (by

assigning m r: = 1).
On the other hand, ifj is indeed the turning point, then it will send an appropriate

message back to processorj + 1 by assigning mr: = 2, t r: = j (to mark the turning
point), and 9r: -- max (gr, xr + 1). Every processorj for j > k receives the mentioned
message "package" from processorj - 1, at the time when mj_ 1 = 2. The index t of
the turning point and new value of9~ (gr = 9r-1) are passed to processorj together
with the message (the new value is not in effect during the waiting period). Processor
j will still produce the same element during the waiting time which is equal to
w r = 2t - 3 + n - j steps (so that the change is done synchronously). Note that
a processor may keep the status of carrying active message (mr = 1 or m r = 2) for one
step only; in the next step m r is set back to 0.

Processors n and n - 1 play somewhat different roles. In addition to the described
general job, processor n - 1 also increases its element x,_ 1 during the process of

A N O P T I M A L A L G O R I T H M F O R G E N E R A T I N G E Q U I V A L E N C E R E L A T I O N S . . . 433

collecting information; it happens when x. = g ._ 1 + 1. Processor n - t also initi-
ates the search for turning point. A message will be activated (m._ 1 : = 1) if x. = 2

and x ._ 1 = g . - 1. The processor n will increase its field x. by 1 if it did not reach
g . - a + 1 yet; otherwise it starts a new run from x. : = 1.

Summarizing, we obtain the following theorem.

THEOREM. The algorithm described above generates all equivalence relations o f

n objects with constant delay per equivalence relation (thus, in optimal O(B,) time) on

a linear array o f n processors, where each processor

- has memory of constant size, and

- can generate elements without need to deal with large integers, e.g. Bi (1 < i _< n).

PROOF. Using mathemat ical induct ion we prove that at step k the output of the
algori thm is exactly the kth equivalence relation. This is obviously satisfied for the
first equivalence relation by the initial conditions. Assuming that this is true for the

first k - 1 relations, we prove that the kth ou tpu t is precisely the kth equivalence
relation, in lexicographic order. We consider the output of each processor j for

1 < j < n. For j = n the element x, is increased by 1 unless it has the maximal
possible value g,_ 1 + 1, in which case the next value is 1. This proper ty of lexi-
cographic order enumera t ion of relations is exactly followed in the described

algorithm.
Assume now j < n. In lexicographic order, the element xj will not change for

a number of relations, in both the lexicographic order and in the described algo-
rithm. It will change its value only when xt = gt-x + 1 for each t > j (i.e. if all
processors j + 1,j + 2 n produce the maximal possible values). It is easy to show
that xt = gj + t - j = g,_ 1 + t - n + 1 is then satisfied for t > j (since x t = gt when
xt has maximal value);; f rom xt > 0 it follows that n - t < g,_ 1 + 1 and thus

2(n - t) < 2g,_ 1 + 1. When this happens, xj increases by 1 unless it has already
reached its maximal possible value g j_ 1 + 1, in which case it changes its value to 1.
We check whether this proper ty of lexicographic order is properly followed by the

algorithm. At the momen t of change of x j, by induction, x ._ 1 has correct value g._ 1,
which is its maximal possible value, i.e. the end of its current run of g ._ 1 + 1
relations. The former run contained g ._ 1 relations. Thus the two last runs contained
29 . - 1 + 1 relations. The message was initiated by processor n - 1 at the beginning

of the next to the last run, Since 2(n - t) < 2 0 . - ~ + 1 there was sufficient time for the
initiated message to reach processor t (n - t steps) and to return back (another n - t

steps). The waiting time can also be checked similarly. Therefore the information
about change is available to the processor j together with the exact m o m e n t for
change. This means that both lexicographic order and algori thm will do the same
change, which completes the p roof of correctness of the algorithm. The other two

statements are obvious from he description, •

434 IVAN STOJMENOVIC

5. Formal description of the algorithm.

A formal statement of the algori thm described in the previous section is given
below.

For each processor j (1 ~ j < n) do in parallel

x j : = 1; g j : = 1; m j : = 0; w i : = 0; t~:= 0; new_g j := 0;
repeat

print xj; read mj+l; read mj_l; read gl-~; m j : = 0;
ifj = n then {if x s = n then stop;

ifx~ <__ gj_~ then x j : = x s + I else x j : = 1;}
i f j = n - 1 then {read xj+l;

i fx i+ 1 = gj + 1 and xj < gj-1
then {xs := x s + 1; g s : = max(gs, xs) }

if x s + 1 = 2 and x s = gs-1 then
(*activate search*) mj:= 1}

ifj < n then
{if mj+ 1 = 1 then i f x s < g) - i a n d j < n - 2 then

{(*search successful*) r a t := 2;
{(*set up turning point*) t~: = j;
(*set up waiting time*) wj: = j - 3 + n;

(*new value of g*) new_g j: = max(g i, xj + 1);} else m s : = 1;

if ms_ x = 2 then {new_gs:= g~-l; m s : = 2; read ts_l;
(*read the index of turning point*) tj: = t s_ ~;

(*set up waiting time*) w s : = 2t s - 3 + n - j ; }
if tj > 0 then if w~ > 0 then w s: = w j_

else {gS:= new_g j;
if t j : = j then x s : = xj + 1 else x j : = 1;
t j : = 0}}

until tj = 1 and wj = 0

6. Variations.

In this section we show that our me thod can be used to enumerate some other
types of combinator ia l objects, in lexicographic order. As an illustration we choose
variat ions of the set { 1 n}. A variat ion of m out of n elements is any sequence
x~ Xm such that 1 _< xj _< n for 1 < j _< m. Obviously, there are n m such vari-
ations. The turning point of a variat ion is the element with greatest index for which
xj < n is satisfied. A search for turning point can again be initiated (in advance) by
the processor m - 1 when this processor started to produce its run for the value

n - 1. There are n values of Xm when Xm-x = n - 1 and n values of Xm when
Xm-X = n. These 2n values are sufficient for the message to search for the turning

AN OPTIMAL ALGORITHM FOR GENERATING EQUIVALENCE RELATIONS . . . 4 3 5

point and return with its value. The other modifications of the set partition algo-
rithm are also obvious.

In general, any combinatorial enumeration problem (for generating m out of
n objects) for which there are between t2(m) and O(n ¢) objects (c any positive integer)
when the values of x 1 xm_ 1 are fixed (or, at least, when element xm-1 has the
maximal or next to the maximal possible value) can be solved using our technique.
The listed property seems to be the key for applying the described method, f2(m) is
necessary since searching for the turning point may require that much time. The
other limit O(n c) on the number of objects is needed to avoid counters that are very
large numbers. For instance, permutations of n elements do not meet this require-
ment since the number of mentioned objects is O(1).

7. Adaptive algorithms.

The described algorithms are designed to be executed on a linear array of exactly
m (in case of subsets) and n (in case of set partitions) processors. In order to obtain
adaptive algorithms (an algorithm is adaptive if it can run on any number of
processors), one can divide the number k of available processors into k/m groups for
subsets and kin groups for set partitions, with rn and n processors, respectively, in
each group. Each group will run the corresponding algorithm described in this
paper, starting with an object and finishing with another one. Dividing the job into
a given number of equal parts, i.e. determining the first and the last object of a given
group of processors, has been described in [7] (a numbering system, i.e. unranking
procedure from [15] can also be used). This calculation involves very large numbers;
however this is done once as a preprocessing step (and can even be done in parallel
by the whole linear array of processors) and therefore does not significantly increase
the time complexity of our algorithms.

8. Conclusion.

We succeeded in deriving an optimal algorithm for generating subsets and
equivalence relations ofn objects on a linear array of processors. The algorithm uses
n processors and produces relations in lexicographic order and in constant time per
relation. Algorithms with the same characteristics were designed for some other
types of combinatorial objects: combinations [3, 12] and permutations [4].

One of the remaining open problems is generating all derangements of m out of
n objects, by an algorithm satisfying properties 1-7. A recent paper [11] does not
meet properties 2 (in both sences), 3, 4, and 5. Another similar problem is generating
all permutations of m out of n elements, and all cyclic permutations of n elements
satisfying properties 1-7. Partitions and compositions of integers are further prob-
lems to consider. Finally, many of the mentioned problems are not solved optimally
if different kinds of cost measures (discussed in the introduction) are applied.

436 IVAN STOJMENOVIC

Acknowledgement.

T h e a u t h o r a p p r e c i a t e s the c o m m e n t s m a d e by a referee, especia l ly on the

m e a s u r e o f op t ima l i t y .

REFERENCES

1. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Engtewood Cliffs, New
Jersey, 1989.

2. S. G. Akl, Adaptive and optimal parallel algorithms for enumerating permutations and combinations,
The Computer Journal, 30, 5, 433-436, 1987.

3. S. G. Akl, D. Gries and I. Stojmenovi~, An optimal parallel algorithm for generating combinations,
Information Processing Letters, 33 (1989/90) 135-139.

4. S. G. Akl, H. Meijer and I. Stojmenovi~, Optimal parallel algorithms for generating permutations,
Technical report No. 90-270, Dept. Comp. and Inf. Sci., Queen's Univ., Kingston, January 1990.

5. G. H. Chen and M.-S. Chern, Parallel generation of permutations and combinations, BIT, VoL 26,
1986, 277-283.

6. B. Chan and S. G. Akl, Generating combinations in parallel, BIT, 26, I, 2-6, 1986.
7. B. DjokiL, M. Miyakawa, S. Sekiguchi, I. Semba and I. Stojmenovi~, Parallel algorithms for

generating subsets and set partitions, Proc. SIGAL Int. Symp. on Algorithms, Tokyo, Japan, August
1990.

8. B. Djoki~, M. Miyakawa, S. Sekiguchi, I. Semba and I. Stojmenovi~, A fast iterative algorithm for
generating set partitions, The Computer Journal, Vol. 32, No. 3, 1989, 281-282.

9. M.C. Er, Fast algorithm for generating set partitions, The Computer Journal, 3I, 3, 283-284, 1988.
10. P. GuptaandG. P. Bhattacharjee, Parallel generation of permutations, The Computer Journal Vol.

26, No. 2, 1983, 97--105.
11. P. Gupta and G. P. Bhattacharjee, A parallel derangement generation algorithm, BIT, Vot. 29, 1989,

14-22,
12. C. J. Lin and J. C. Tsay, A systolic generation of combinations, BIT, Vol. 29, 1989, 23-36.
13. M. Miyakawa and I. Stojmenovi~, Classification of Pk2, Discrete Applied Mathematics, 23, 1989,

179-192.
t4. M. Mot and A. S. Fraenkel, Permutation generation on vector processors, The Computer Journal,

Vol. 25, No. 4, 1982, 423-428.
15. A. Nijenhius and H. S. Wilf, Combinatorial Algorithms, Academic Press, N.Y., 1978.
16. G. Pogosyan, M. Miyakawa and A. Nozaki, On the number of clique Boolean functions, Discrete

Applied Mathematics, to appear.
17. I. Semba, An efficient algorithm for generating all partitions of the set { 1 n), Journal of Informa-

tion Processing, 7, 41-42, 1984.
18. I. Semba, An efficient algorithm for generating all k-subsets (1 < k <_ m <_ n) of the set {1, 2 n} in

lexicographic order, Journal of Algorithms, 5, 281-283, 1984.
19. I. StojmenoviL and M. Miyakawa, Applications of subset generating algorithm to base enumeration,

knapsack and minimal covering problems, The Computer Journal, 31, l, 65-70, 1988.

