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Abstract. 

Three different finite difference schemes for solving the heat equation in one space dimension with 
boundary  conditions containing integrals over the interior of the interval are considered. The schemes are 
based on the forward Euler, the backward Euler and the Crank-Nicolson methods. Error estimates are 
derived in m a x i m u m  norm. Results from a numerical experiment are presented. 
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1. Introduction. 

In this paper we introduce three different finite difference methods for solving the 
heat equation with integral boundary conditions 

~u ~2u 
(1.1) c3t ~3x2 - f ( x ,  t), x E [0, 1], 0 < t < T, 

u(O, t) = J o  ko(x)u(x , t ) dx  + go(t), 0 < t < T, 

;o u(1, t) = k l ( x ) u ( x , t ) d x  + 01(0, 0 < t <_ T, 

u(x,O) = Uo(X), x e [0, 1], 

and we give error estimates in the maximum norm for each of these methods. 
This kind of problem arises in quasi-static thermoelasticity, for example when u is 

the entropy of a homogeneous and isotropic slab, see Day [1], [2]. Day shows that 
the maximum modulus, max,~to ' 1] lu(x, t)l, is a decreasing function in t. In [3] 
Friedman extends this result to a general parabolic equation (in n dimensions) using 
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a method based on the maximum principle. He also shows existence and uniqueness 
of the solution to his extended version of the problem. An example of a related 
problem is found in [5]. 

For the interior part of the problem, our discrete methods use the forward Euler, 
the backward Euler and the Crank-Nicolson schemes, respectively. The integrals in 
the boundary equations for x = 0, 1 are approximated by the trapezoidal rule. We 
have chosen this approximation since it is simple and of the same, second, order of 
accuracy in space as the methods used for the interior part of the problem. 

By maximum principle arguments we show that, if the mesh ratio 2 = k/h 2 <_ ½, 
then the error in the forward Euler method is of second order in space, and that the 
error in the backward Euler method is of first order in time and second order in space 
without any restriction on 2. Since the maximum principle for the Crank-Nicolson 
method is valid only if 2 _< 1, and since we want to be able to choose the mesh 
parameters h, k independently, we use energy arguments to show that the maximum 
norm of the error for the Crank-Nicolson method is second order in both space and 
time. 

This note has the following outline: Section 2 is devoted to the forward Euler 
method while the backward Euler method is treated in Section 3. Section 4 deals 
with the Crank-Nicolson method. In Section 5 we give some numerical results. 

2. The forward Euler method. 

Our first and simplest numerical approximation of (1.1) is based on the explicit 
forward Euler scheme. We start by dividing [0, 1] x [0, T] into an M x N mesh 
with step sizes h = 1/M and k = 1IN in space and time, respectively. The integrals 
on the right hand side of the expressions for u(0, t) and u(1, t) are approximated by the 
trapezoidal rule, that is 

f(x) dx ~ Jh(f): = f(O) + h ~ f(xj) + ~ f ( ) ,  
j = l  

where x~ = jh. For the quadrature error, 

;o eh(f) = ' J d f )  - f(x) dx, 

we have the bound 

(2.1) tedf)l -< Ch e ItfIIw~ °, 

where the norm If' IIw~.", is defined by 

(2.2) llutlw~." : = Y~ ~ u  
1 +~2 N m L~o~,[0, 11 x [ 0 , r l )  

~ 2 N n  
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To simplify our notation, we introduce a discrete inner product, ( ' , . ) ,  for vectors 
V = (V0, Vl,..., VM), by 

h M-1 h 
(2.3) (V, W> = - ~  VoWo + h • VjWj + -~ VMWM. 

j = l  

We may then write 

Jh(f)  = ( f  1}. 

The forward and backward difference quotients are denoted by 

axU; = h-~(U;+, - V;), 

iYxU; = h-~(U;  - U;_ O, 

and similarly for the difference quotients in time, for instance, 

~ , V ;  = k -  l ( V ;  + ~ - V;).  

For the mesh point (jh, nk) we introduce the notation (x j, t,), and set 2 = k/h 2. Our 
approximate solution is defined by the following system of equations: 

(2.4) 

where 

(2.5) 

(2.6) 

and 

(2.7) 

u~ = (Ko, u " )  + G~, 

U~t = ( K u ,  U"} + G~t, 

v ° = Uo(Xg, 

j =  1 . . . . .  M - 1 , 0 _ < n < N - 1 ,  

l <_n<_N, 

l < _ n < _ N ,  

j = O, . . . ,M,  

Ko,j = ko(Xj), KMO = kl(xj), 

G"o = go(t,), G~t = gl(t,), 

F~ = f(x~, t,). 

On each time level, the solution at interior mesh points is given by explicit equations. 
The two boundary values are the solution ofa 2 x 2 linear system of equations. That 
is, given U" we can use the following scheme to compute U "+ 1: First compute the 
interior part of U" + 1 by 

b~ "+1 = 2(U~_ 1 + Us+l) + (1 - 22)b~" + kF], j = 1 . . . .  , M  - 1. 

Then let 

M - I  

Yo = h ~ Ko,jU~ + a + G~o +1, 
j = l  

M - 1  

~,, = h E KM~JU; +1 + %+1 
j = l  



248 GUNNAR EKOLIN 

The boundary values Ug + 1 and U~ ÷ ~ are now computed from the equations 

U~+I = 70(1 - hKM, M) + ~MhKo,M 

1 - -  h(Ko,o + KM,M) + h2(Ko.MK~,o - Ko, oKM, M) ' 

U~+ I = yohKM,o + 7M(1 -- hKo, o) 

1 -- h(Ko, o + KM, M) + h2(Ko,MKM, o -- Ko,oKM, M) " 

The results in this section will be expressed in terms of the maximum norm, 
defined by 

tVI~ = maxlKI. 
sE,.~ a 

The sets [0 , . . . ,  M] and [0 , . . . ,  N] will be denoted by ~ and ~f~, respectively. We 
define discrete operators 5 ° = 50kh, 

(2.9) (50U)] = O,U] -- O, LU] ,  

(loU)" = U~ - (Ko ,  U"),  

(lMUY = U~ -- (KM,  U"),  

Io = lo, h, IM = 1M, h by 

j =  1 . . . .  , M -  1 , 0 _ < n _  N -  1, 

O<_n<_N,  

O < n < _ N .  

The existence theorem and error estimate for the solution of(2.4) are based on the 
following a priori estimate. 

LEMMA 2.1. 

(2.10) 

Then we have 

Assume that 0 < 2 < ½ and 

<lKol, 1) < 0 < 1, <lKml, 1> < Q < 1. 

1 
(2.11) IU[~xw ~ 1 - Q (150Ul~×~ + ]loUl~ -4- [1MUI~ + lU°l~). 

The proof of Lemma 2.1 is based on the wellknown maximum principle for the 
forward Euler method given in the following lemma. 

LEMMA 2.2 I fO < 2 _< 1/2 and 50V < 0, then we have 

max Vj" < max (V~, V~t, Vj°). 
j ~ 4 ,  n ~ W  j~d4,  ~ E W  

PROOF. From the definition of 50Vand the difference quotients we have that the 
condition 50 V < 0 can be written as 

Vj n + l  ~_~ (1 - 22)Vj" + 2(Vj"+ 1 + Vj"_ 1). 

Assume that the maximum is attained at the interior mesh point (x i, t,+ 1). Then 
since the coefficients to the right add up to one and are all non-negatie, and since the 
values of V present on the right hand side are at most Vj" + 1, they all have to equal this 
number. Repeated use of this implies that Vj" must take its maximum somewhere on 
the left or right boundary or on the initial line. • 
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We are now prepared to prove the a priori estimate of Lemma 2.1. 
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PROOF. Let Hj = -½xj(1 -- xj) and set o 7 = U] + xHj where x = I~UI~×~.  
Since (L, aH)7 = -- 1 we have 

(2.12) (~o)7  = (Z.ceU)7 - t~ < 0. 

By the definition of Hj we also have that Ho = HM = 0, Hj < 0 for j  = 0 . . . . .  M, 
and m ax j ( -H i )  = 1/8. From inequality (2.12) and Lemma 2.2 we have 

n n 0 n maxo 7 _< max(oo,  oM, o j )  = max (U~, U~, U ° + xHj) 
n,j n,j n,j 

< max(U~, U~, U °) < max (]Uo]~, IUM]~) + IU°l~, 
n,j 

and hence max U~ < max o 7 + x max ( -  Hi) 
n,j n,j j 

K 
_< max(IUol~,lgMl~) + IU°I~ + -- .  

8 

If we replace U~ by - U~ in the definition o f o  7 above, we will get the same bound 
for m a x , , j ( -  U~), so that we may conclude 

(2.13) 
1 

IUI~×H ~ max(IUol~,lUMl.~) + IU°I~ + ~ I ~ U I ~ × ~ .  

But by the definition of lo and (2.10) we have 

and hence 

(2.14) 

IUgl ~ <lKol, 1)IU"I~ + t(loUYl ~ QIUI~×y + IloUIx, 

IUol~ ~ QIUI~×y + IloUl~, 

and similarly for IUMI~. We now combine inequality (2.13) with (2.14) and the 
corresponding estimate for I uMI~ to obtain 

1 
IUl~×x _< QIUl~×x + I/oUl~ + II~Ul~ + IU°l~ + ~-ILeUI~×~. 

Moving the first term on the right hand side over to the left and dividing by 
1 - Q ~ 0 completes the proof. • 

We will now give an existence theorem for the solution of our discrete problem 
(2.4). 

THEOREM 2.3. Assume 0 < 2 <_ ½ and that (2.10) holds, then our discrete problem 
(2.4) admits a unique solution. 
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PROOF. The discrete system (2.4) is a system of(M + 1) linear equations in (M + t) 
unknowns at each time step. In order to show existence it suffices to show unique- 
ness, that is, that the homogeneous problem has only the trivial solution. But if 
U ° = F] = G~ = G~t = 0, then ~ U  = loU = lMU = 0, and hence, by Lemma 2.1, 
u ~ - 0 .  • 

REMARK. If ko and k~ in the model problem are continuous functions such that 

(2.15) f [  lko(x)ldx < l, f ]  lkdx)ldx < l, 

then there exist Q and ho such that, for all h with 0 < h <_ ho, assumption (2. t0) is 
valid. Hence for h _< ho our discrete problem defined by (2.4)-(2.7) has a unique 
solution. The condition in (2.15) is necessary to get a continuous solution of (1.1) 
such that the maximum modulus maxx~Lo ' tl [u(x, t)l is a decreasing function in t; see 
[3] or [2]. 

We will now give an error estimate for our discrete approximation of (1.1). 

THEOREM 2.4. Assume that ko, kl  ~ C2([0, 1]) are such that 

[[kotlL~([o, ll) < 1 and []klHL~(to, q) < 1. 

Let U] be the solution of(2.4)-(2.7) and u ~ C 4' 2([0, l] x [0, T]) the solution of(1.1). 

I fO < 2 < ½, then there exists an ho such that 

IU - ul~×~, <-- Ch 2 liuilw~2for h <_ ho. 

PROOF. By the above remark there exists ho > 0 such that assumption (2.10) is 

valid for all h < ho. 
Let Z~ = U~ - u(xj, t,) denote the error at the mesh point (x s, t,). We will apply 

Lemma 2.1 to Z~, and hence we need estimates of the terms on the right hand side of 
(2.11). We start with [£fZ[~ × or. From the definition of £P and Z~ and (I, I) and (2.4) 
we have 

(sez)~ = (~u)~  - ~u(xj ,  t.) 

= f (x j ,  t,) - C~u(xi, t,) = ~t &2 j - G u  - GGu) = rj. 

By expanding the local discretization error z~ in Taylor series we get 

(2.16) bWZ[~t×~ <- Ch 2 I[U]lw~ 2. 

We now consider the term ]IoZ[~. By the definition of to and Z~ and (1.1) and (2.4) 
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we have 

(loZ) ~ = U~ - (Ko ,  U ~) + (Ko ,  u(', t . ) )  - u(O, t~) 

= G"o + (Ko ,  u(', tn)) - f ~  ko(x)u(x, t,) dx go(t.) 

= (Ko ,  u(',  t . ) )  -- i 1 ko(x)u(x, t.) dx ~h(kou), 
.1o 

and hence by (2.1) 

(2 .17)  tloZlj¢ <_ Ch 2 IikoulJw~O < Ch 2 IlUltw~ O. 

Similarly, for IIMZIx we have 

(2 .18)  I1MZl• <- C h  a I ik lu I Iw~ ° --- C h  z I lul lw~ °, 

and for the initial value Z ° we find 

(2 .19)  z ° = v ° - u ( ~ j , 0 )  = v ° - Uo(Xj) = o. 

From Lemma 2.1 and (2.16)-(2.19) we now conclude 

[U -- u i~×d <- Ch z Ilullw 4,2, 

which completes the proof. • 

3. The backward Euler method. 

In this section we will study the application ofthe implicit backward Euler scheme 
to our model problem. The integrals on the right hand side of the expression for 
u(0, t) and u(1, t) are again approximated by the trapezoidal rule. In this case we 
obtain the following system of equations: 

(3.1) -~tU; - Ox-~xU7 = F ;, j = l ,  . . . .  M - l ,  l < n < N,  

U~ = ( K o ,  U n ) + a ~ ,  1 < n < N ,  

U~ = ( KM, U") + G~, l <_ n <_ N, 

v ° = uo(xj) ,  j = o,  . . . .  M, 

where Ko, j, KM,j, G~o, G~ and F~ are defined by (2.5)-(2.7). 
We define the operator ~ = L?kh, associated with the interior part of our system of 

equations, by 

(3.2) ( ~ U ) 7 = ~ U ~ - 3 x ~ U ~ ,  j =  1 .. . . .  M - l ,  l < n < N .  
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The results in this section will be based on the well-known maximum principle for 
the backward Euler method: 

LEMMA 3.1. I f  c~V <<_ O, then we have 

max Vj" < max (V g, V~, Vj°). 
jev/t, neX jed/, neX 

PROOF. The condition ~ V  _< 0 is equivalent to 

(1 + 22)V]' < V] ' -1 + 2(V3~ , + Vj"+I). 

The proof is completed in the same way as that of Lemma 2.2. [] 

Our next lemma is an a priori estimate, which will be used to show existence, 
uniqueness, and an error estimate for the solution U~ of our system of equations 
(3.1), together with (2. 5)-(2.7). 

LEMMA 3.2. Assume that 

(IKot, 1) _< e < 1 and (IKMI, 1) < ~ < t. (3.3) 

Then 

1 
IUl~×x ~ -~ ....... ( l ~ U l ~ × ~  + IU°[~ + [/oU[~ + IIMUI~). 

The proof of this lemma is analogous to that of Lemma 2.1 and will not be 
presented. Our next theorem gives existence and uniqueness for the solution of our 
discrete problem (3.1). 

THEOREM 3.3. I f  assumption (3.3) is satisfied, then (3.1) has a unique solution. 

This theorem is proved in the same way as Theorem 2.3. We will now give an error 
estimate for the backward Euler method. 

THEOREM 3.4. Assume that ko, k1~C2( [0 ,  1]) are such that 

(3.4) t]koltL~([O, ll) < 1 and Itkll]r~([o, ll) < 1. 

Let U~ be the solution of(3.1), (2.5)-(2.7) and u ~ C 4' 2([0, 1] x [0, r ] )  be the solution 

of(1.1). Then there exists ho > 0 such that 

IU - u l ~ x d  ~ C(h 2 + k)IlUl]w~ 2 for h <_ ho. 

PROOF. As in the proof of Theorem 2.4 there exists an ho such that for h _< ho 



FINITE DIFFERENCE METHODS FOR A NONLOCAL BOUNDARY.. .  

assumption (3.3) is valid. With Z~ = U~ - u(xj, t . )  we also have 

IloZlx < Ch 2 [tUllw2, °, 
O3 

IIMZI~ <_ Ch 2 Ilullw~; o, 

(3.5) 

0.6) 

and 

(3.7) 

For (~Z)~ we have 

Z ° = 0. 
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( c2Z) 7 = ( ~ u )  7 - ~ u ( x j ,  t .)  = F~ -- C~u(xj, t .) = f ( x j ,  tn) - ~ u ( x j ,  t .) 

- Ot Ox2J -- (~,u -- ax~xU) = vj. 

The truncation error ~ is expanded in Taylor series as in the proof of Theorem 2.4 
and it follows that 

(3.8) I~Zl~×y ~ C(h 2 -1- k)[lUllw~2. 

The a priori estimate of Lemma 3.2, and (3.5)-(3.8) now give 

[ U -- U[~ xW <-- C(h 2 q- k)[lUlIw~2, 

which completes the proof of Theorem 3.4. • 

4. The Crank-Nicolson method. 

In the previous section we discussed an implicit O(h 2 -1- k) method, based on the 
implicit backward Euler scheme. We will now present another implicit method, 
based on the Crank-Nicolson scheme, which is of order O(h 2 q- k2). In addition to 
the mesh points (x j, 6) = (jh, nk) we define t,+ 1/2 = ( n  -t- 1/2)k. The discrete solution 
is now given by the following system of equations: 

(4.1) 
/'t." + 1 + U"-J.) 

F;, 

Ug = ( K o ,  U n)+G"o,  

uT~ = (KM, U")  + GT~, 

c ° = Uo(XA, 

j = 1 . . . .  , M -  1, 
0 _ < n _ < N - 1 ,  

l <_n<_N, 

l < _ n < N ,  

j = 0  . . . . .  M, 

where K0, KM, G"o, G~  are defined by (2.5), (2.6), and F~ by 

(4.2) F~' = f ( x j ,  t .  + t/2). 
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Since the maximum principle for the Crank-Nicolson method is only valid for the 
mesh ratio 2 < 1, we will use the energy method to derive an error estimate in 
maximum norm. For  vectors V = (Vo, 1/1 . . . . .  VM) we thus introduce the norm 

Ilgll=(V,v) 1/2= (Vo: + V~)+h Z Vj 
j= l  

corresponding to the inner product ( - , - ) ,  defined in (2.3). We also define discrete 
analogues of the L2-norm on [0, T] and [0, 1] x [0, T] by 

and 

/ n \x/2 
"V'IN = ~k,~=o(V")z ) , 

(k 2 )1/2 
III vIIIN = II V"ll 2 

In order to be able to give expressions such as @~ V, W} a meaning we extend the 
vectors V and W by V-1 = VM+l = W-1 = WM+I = O. In the case when 
Vo = VM = Wo = W~t = O, we then have by partial summation that 

M V j + I _  V j M W j _  Wj_ 1 
(4.3) < ~  v,, w ) =  h j:o ~ h wj = - h  j:oY~ ~ h 

= - (v ,~xw) .  

As in the previous sections we define a discrete operator ~ = L~akh, associated with 
the left hand side of the first equation in our discrete problem (4.1), 

(4.4) ( # U ) ~ = ~ t U ~ - ~ x 3 ~  - J  2 . . . . . . .  0 < n < X - 1 .  

The operators lo and IM are defined by (2.9). 
We are now prepared to state an a priori estimate for (4.1). 

LEMMA 4.1. Assume that there exist ho and e < 1 such that for all h <_ ho 

(4.5) IIKoll + IIKMll --< 0(3/(4 + 2ho2)) 1/2. 

Then we have, for h < ho, 

(4.6) IUI~×~ -< C{III~UIIIN + IFU°II + II~U°II 

+ II~doUIIN + II~d~UIIN}. 

The proof of this a priori estimate is based on the following two lemmas. The first 
is an energy estimate. 
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LEMMA 4.2. Assume that W~ = W~t = O, for l < n. Then 

(4.7) III0,Wlll.2_x + II?xW"ll 2 _ II?xW°l[ 2 + IIIflWIII,2-x. 

PRoof. By the definition of fl°W we have 

( W j l + l - l - W j l )  (flW)),  j 1 . . . . .  M Z, l>_O. 
o,  w j ' -  - ,, : '  = = - 
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Multiply this equation by hot W] and sum overj. By use of partial summation as in 
(4.3) we find, since W] vanishes for j = 0 and M, that 

/ _  W 1+1 W l 
(4.8) II0,W'II 2 + kOx- + 2 '-~xOtWl = ((flW)l'OtWl)" 

i 
We now rewrite the second term on the left hand side as follows: 

I wl+lJffwl ) (  wl+l'Jvwl wl+l--W l ) 
?~ 2 '-~O'W~ = ~ 2 ,-O~ 

1 _ (#~W'+Xl l2  - # x W t l l  2) 
2k 

Together with (4.8) this shows 

and hence 

= ~0, II?xWZlL 2, 

II~,Wtll z + ½0, II~xWt[I = ~ II(flW)tll [10,W~ll 

~ II(flW)tll z + ½ II0,W'll z, 

IlO, W'll m + 6, II~xW*ll 2 ~ II(flw)*ll 2, 

Multiplication of this equation by k, and summation over l, from 0 to n - 1 gives 
the desired result. • 

LEMMA 4.3. Assume that W~ = ~ = O. Then 

max IWi"l-< II~xW"ll. 
jEd/ 

PROOF. Since W~ = 0 we have that 

J 
W~j -- h ~ -O~, W~ ~, j - -1 ,  . . ., M 

1 = 1  
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Hence, since W~ = W~t = 0, 

maxlWj'I = max 3~Wt" < h 
j~.Al I <_j<_M-I l = l  

I~xW?l 

h 
= ([-~xW"], 15 - ~-(l~xW~[ + I~xW~l) 

<l~xW'l, 15 _< II~xWnll Illlf = II~W'll.  • 

We will now prove Lemma  4.1. 
PROOF. Set 

(4.9) IzVj" = U 7 - (1 -- x j ) { ( K o ,  U"> - (loU) ~} - x j { ( K M ,  U"> -- (IMU)"}. 

Then we have 

(4 .10)  ( ~ W )  7 = (~@U)y - (1 - x j ) { < K o ,  ~ tU ~) -- ~t( loU)  n} 

- x j  { ( K M ,  9t U n> - 9t(lu U)~}. 

Since the function Wj ~ vanishes f o r j  = 0 and M we may  apply Lemma  4.2 to get 

(4.11) 1119tWl[l~-i + II~W~ll 2 -< II~xW°ll 2 + I l l ' W i l l ' - l ,  1 _< n < N. 

We will now estimate the right hand side of (4.11). We first note that  

II1 - xjll = Ilxjll = (0 + (Mh) 2) + h 3 E j2 = ((2 + h2)/6) 1/2 -- yh. 
J 

We also note  that  

I<g,,9,Un>l < IIg, l1119,U~II, i = 0, M. 

Let  ah = ~'h(llgo II + IIKM II). F r o m  equat ion (4.10) we thus obtain 

(4.12) IIIL~Wllln-x - IIl~UIIIn-x + ~'h{(llgoll + IIKMII)IIIg, UI[I,- ,  

+ H9doUll~-x + llg,/~UIl~-l} 

-< 1112Ut11~-1 + ahlllg, UIII,-x 

+ ~,h(l[9,/oUl[~-i + 1lg, IMUII,,-x). 

We now need an estimate of III 9tUIII~_ ~ in terms of 1119,Wlll~-1. By taking a time 
difference in (4.9) we have 

9,V¢]' = tgtU 7 - (1 - xj){  <Ko, 9tun> -- tgt(loU)"} -- Xj{ <KM, etU"> -- et(IMU)"}, 

and hence 

1119,UIII~-~ -< 11tg, WIIl~-x + ~hlllg, UIIIn-1 + ~,'h(llg, loUII,-~ + 119,1MUIt,,-x). 
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By assumption we have ah < 1/2, and hence 

1 
IIl~,Ul[l~-i < - - { l l l ~ , W l l l n - x  + yh(ll~,/oUII,-x + II0t/MUII,-x)}. 

Using this in (4.12) gives 

~h IIl~tWIIl~-x +lll~uIII,-1 Ill'Willy-1 -< 1 - ~h 

+ 1 Y _ ~ h  (llO,/oUl[,-x + IIO, IMUII,,-O. 

For  the second term on the right hand side of (4.11) we now have 

( ~h "~ 2 
(4.13) III£~Wlll~_x < (1 + 5) \  1 __-i---~hj IIIO, WIII~-~ 

+ C(~){III~UIII~-I + II0~/oUII~-~ + II~,IMUII~}, 

where 5 > 0 is an arbitrary number. For  h < ho we have ah < Q/2 < 1/2 and hence 

ah - -  < fl < 1. This makes it possible to choose 6, uniformly in h, such that 
1 - eh 

( 1 + 5 )  _ < g < l .  

Combining (4.1 l) with (4.13) yields 

Ill .w% 2 < II~w°ll 2 + c(111.~uIII2_1 + II(~tlou[12_i + HOrlMUH~_x), 

and hence 

(4.14) II~W"ll < II~W°ll + C(II[~UIIIN + IIO~/oUIIN + ilO,/MUIIN), n < N. 

From (4.9) we have 

il~xW°ll < II~U°II + ~hlIU°II + I(loU)°l + I(/MU)°I, 

which gives 

II~xWnll ~ c(III-~uIIIN + IIU°ll + II~xU°ll + Ila,/oUIIN 

+ II~,IMUIIN + I(loU)°l + I(/MU)°I), n < N. 

By Lemma 4.3, we thus have 

IWl~×~ _< C(lllLfUIIIN + IIU°ll + II~U°ll + II~,/oUIIN 

+ I(/oU)°l + II~,/MUIIN + I(IMU)°I). 
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Finally, we have to replace W in the inequality above by U. From the definition of 
Ws", (4.9), we have 

[Ul~×~ _< IWl~×~ + (llKoll ÷ IIKMI[)IUI~x~ + ]loUl~- ÷ [1MU[~), 

and, since by assumption I[Koll + IIK~ll -< x/3/2 < 1, we get 

I U l ~ × ~  -< c(III~UIIIN + IIU°ll + II~xU°ll 

+ IloU[~ + II~,loUIIu + IIMUI~ + II61~,u5,). 

The terms JloNl~, IIMUI~ above can be estimated in terms of tl U°II, I[0xU°lJ and 
]1 dtlo UIN, I[ d,l~t UIIN. TO prove this, use the definition of lo, lM and estimates analog- 
ous to Lemma 4.3. This concludes the proof of Lemma 4.1. [] 

The existence and uniqueness of the solution to equations (4.1) now follows from 
Lemma 4.1. 

THEOREM 4.4. I f  there exist ho and 0 < 1 such that, 

Ilgoll + IIKMII --< fl(3/(4 + 2hg)) 1/2, for h <_ ho, 

then our discrete problem (4.1) admits a unique solution. 

The proof of Theorem 4.4 is analogous to that of Theorem 2.3. 
We are now prepared to give an error estimate. 

THEOREM 4.5. Assume that ko, kl ~ C2([0, 1]) are such that 

(4.15) Ilko [[L2tto. Xl) ÷ Ilk111L2tto, U) < X/3/2" 

Let u ~ C4's([0, 1] x [0, T]) be the solution of(1.1) and U~ that of(4.1). Then there 

exists ho > 0 such that 

(4.16) [U -- Ul~x~ _< C(h 2 + k 2) Ilullw~; 3, for h <_ ho. 

PROOF. The proof is an application of Lemma 4.1 to the error Z~ = U] - u(xj, t,). 
We first note that from (4.15) it follows that there exist ho > 0 and fl < 1 such that for 
h < ho assumption (4.5) is true. We have 

(~Tz) 7 = (~7u)7 - ~u(x j ,  t.) = ~.  

The local truncation error, ~, is rewritten as in the proof of Theorem 2.4 and 
expanded in Taylor series around (x,, t,+ 1/2). This shows 

(4.17) III~IIIN = III~ZIIIN - C(h = + k 2) Ilullw ~,3. 
oo 

For the initial value Z ° we find 

Z ° =  U ° - u ( x j , O ) =  U ° - u o ( x j ) = O ,  j = O  . . . . .  M, 
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and hence 

(4.18) IIZ°ll = II~xZ°ll = 0. 

We shall now estimate the term in (4.6) associated with the boundary x = 0. From 

(2.17) we have 

(loZ)" = eh(kou(., t,)) 

and hence 

~,(loZ)" = eh(koO~U(., tn)), 

where eh is the quadrature error. By (2.1) we have 

Id,(loZ)"l-< Ch 2 IlkoO,U(.,t.)llw~; o <- Ch 2 II~,u(.,t .)llw~; o. 

But 

tn+ 1 ~U 

]Btu(x,t,)] = k -1 ;t ,  ~ - ( x , z ) d z  ~u x 
<- T [ ( , ' )  Loo([O, T]) 

and hence 

(4.19) II~,loZllN < Ch 2 Ilullw~ 1. 

The estimate of II~,IMUIIN is analogous. Theorem 4.5 now follows from Lemma 
4.1 and (4.17), (4.18), (4.19). • 

5. A numerical example. 

In this section, we will present numerical experiments where we apply our three 
discrete methods to a specific problem, namely 

(5.1) ~?u~t Ox 202u - e  -t x ( x - 1 ) +  6 ( 1 + 6 2  ) + 2  , xe[O, 1], t > O ,  

u(0, t) = -- 62 f ~  u(x, t) dx, t > O, 

t) = - 6 2  f~ u(x,t)dx, t > O, U(1, 

52 
u(x, O) = x(x - 1) + 6(1 + 52) ' x e [0, 1], 

where 5 = 0.12. The boundary kernels, ko = kl -- - 62, are taken from an example 
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in Day I-1]. The exact solution of (5.1) is given by 

u(x, t )  = e -~ x ( x  - 1 )  + 6(1+62) . " 

The forward Euler system is solved as described in Section 2. The backward Euler 
system (3.1) and the Crank-Nicolson system (4.1) are treated as general linear 
systems of equations, with full matrices, and solved by the NAG-library routines 
F03AFF, for triangular decomposition, and F04AHF, for calculating the solution. 

Below are three tables, representing sample calculations using each of the discrete 
methods. The first column in each table lists the mesh parameter M, the second 
shows the error, measured in maximum norm on the M × N mesh, covering 
[0, 1] × [0, T]. In the third column the number of time steps required to compute 
the solution to time T = 1.0 are listed, and the last column shows the amount of 
CPU-time used, in seconds, for the computation on an IBM 3090 computer. Since 
the implementation of the backward Euler and Crank-Nicolson methods do not 
take advantage of the structure of the matrices involved (tridiagonal with full top 

M 

2 
4 
8 

16 

32 
65 

130 

T a b l e  1. Forward Euler method, k = 0 .4h  2. 

Error Number of CPU-t ime 
[U - ula~ × • time steps (seconds) 

1.1.10 -3 
1.5- 10 -4 
3.7" 10- 5 
9.4- 10 -6 
2.3" 10 - 6  

5.7" 10 -~ 
1.5" 10- 7 

11 
41 

161 
641 

2561 
10563 
42251 

0.07 
0.04 
0.03 
0.22 

1.62 
13.15 

103.75 

M 

2 
4 
8 

16 
32 
65 

130 

T a b l e  2. Backward Euler method, k = x/h 

Error Number  of CPU-t ime 

[U - ulna × ~- time steps (seconds) 

3.5.10 -3 
1.3.10 -3 
4.4" 10 -4 

1.6.10 - a  
5.6' 10 -5 
1.9- 10 -5 
6.7" 10 - 6  

3 
8 

23 
64 

182 
525 

1483 

0.08 
0.08 

0.09 
0.18 
0.92 
8.34 

81.90 
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Table 3. Crank-Nicolson method, h = k. 

M Error Number of CPU-time 
IU - ul~ ×jr time steps (seconds) 

2 7.5- 10 -3 
4 1.7" 10 -3 
8 3.6" 10 -4 

16 8.4-10- 5 
32 2.1" 10 -5 
65 5.0" 10 -6 

130 1.3" 10 -6 

2 
4 
8 

16 
32 
66 

131 

0.07 
0.07 
0.08 
0.10 
0.22 
1.13 
7.51 
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and bottom rows), the CPU-time used by these two methods is not fully comparable 
to that of the the forward Euler method. 
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