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Abstract. Genetic differences between 20 species of cichlid fish, representing all the 12 tribes proposed for the cichlid 
fish fauna of Lake Tanganyika, were studied by allozyme electrophoresis. Most species were genetically very 
differentiated from each other. Phylogenetic analysis based on the allozyme data indicated that at least seven old, 
ancestral lineages have contributed to the present cichlid fauna of the lake. Lake Tanganyika, the oldest of the 
rift-valley lakes, can be recognized as an evolutionary reservoir of major lineages of cichlids in East Africa. 
Key words. Cichlid fish; Lake Tanganyika; allozyme; genetic difference; phylogenetic relationship. 

The presence of vast numbers of endemic species belong- 
ing to a single fish family, the Cichlidae, within each 
African riff-valley lake presents a unique challenge to 
evolutionary biologists 1 - 3. Though considerable atten- 
tion has been directed to the phenomenon, the general 
phylogenetic framework of these fishes has yet to be 
determined, primarily because of the difficulty of identi- 
fying morphological features for phylogenetic analysis. 

Most cichlid species in Lakes Victoria and Malawi have 
been regarded as belonging to a single genus, Hap- 
lochromis, or being closely related to this genus 2. Recent- 
ly, Meyer et al. 4 examined mitochondrial DNA differ- 
ences among representative cichlids in Lake Victoria and 
some in Lakes Malawi and Tanganyika. Lake Victoria 
cichlids were shown to be genetically quite similar to each 
other and more akin to those from Lake Malawi than 
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those from Lake Tanganyika. Cichlids from Lake 
Malawi were also more closely related to each other than 
to any non-Malawi species studied. 
In contrast to the cichlids of Lakes Victoria and Malawi, 
those of Lake Tanganyika were recognized by early re- 
searchers 5- 7 to belong to many different genera, because 
of their considerable diversification, particularly in mor- 
phological features z' 8. Poll 9 has recently proposed 12 
tribes of Tanganyika cichlids. To clarify the genetic and 
phylogenetic basis of their large diversification in mor- 
phology and taxonomy, I examined allozyme variation in 
20 species from Lake Tanganyika, representing 20 (36 %) 
genera and all of the 12 tribes proposed by Poll 9. The 
usefulness of allozyme analysis for genetic and phyloge- 
netic investigations has been demonstrated in numerous 
studies 1 o- 1 2  

Materials and methods 
Samples. Specimens were collected using gill nets or a 
seine, or from local fisherman, at three locations in the 
northwestern part of Lake Tanganyika: Ruzizi, including 
the Kilomoni and Uvira coasts (R), Luhanga (L), and 
Bemba (B). For each species, specimens collected from a 
single locality were used for analysis. The tribes (with 
their code number) and species (species and locality ab- 
breviations and number of individuals) examined are as 
follow: 1) Tilapiini - Boulengerochromis microlepis 
(BOMI, R, 18), Oreochromis niloticus (ORNI, R, 25); 2) 
Haplochromini Astatotilapia burtoni(ASBU, R, 12); 3) 
Tylochromini Tylochromis polylepis (TYPO, R, 17); 4) 
Lamprologini - Neolamprologus brichardi (NEBR, L, 
43), Telmatochromis temporalis (TETE, L, 8), 
Julidochromis marlieri (JUMA, L, 6); 5) Tropheini - Tro- 
pheus moorii (TRMO, L, 93), Simochromis babaulti 
(SIBA, R, 11), Petrochromis trewavasae (PETR, L, 10); 
6) Eretmodini-  Eretmodus cyanostictus (ERCY, B, 12); 
7) Ectodini - Ectodus descampsi (ECDE, R, 9), Lestradea 
perspicax (LEPE, B, 16), Grammatotria lemairii (GRLE, 
R, 8); 8) Trematocarini - Trematocara nigrifrons (TRNI, 
R, 10); 9) Bathybatini - Bathybates graueri (BAGR, R, 
10); 10) Limnochromini - Limnochromis auritus (LIAU, 
R, 2); 11) Cyprichromini-  Cyprichromis microlepidotus 
(CYMI, L, 10); 12)Perissodini-  Perissodus microlepis 
(PEMI, L, 21), Plecodus straeleni (PLST, B, 2). Voucher 
specimens have been registered and deposited in the col- 
lection of the Department of Marine Sciences, University 
of the Ryukyus. 
Electrophoresis. Tissue extracts of eye, liver and skeletal 
muscle were prepared from each specimen. Twenty-one 
enzyme loci were analyzed by starch gel electrophoresis, 
using the method previously described 13, essentially ac- 
cording to standard procedures 14-16. The following en- 
zymes (EC numbers and loci) were examined: aspartate 
aminotransferase (EC 2.6.1A ; Aat-1, Aat-2, Aat-3), alco- 
hol dehydrogenase (EC 1.1.1.1; Adh), aconitate hy- 
dratase (EC 4.2.1.3; Ah), creatine kinase (EC 2.7.3.2; 
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Ck-2), fructose-l,6-diphosphatase (EC 3.1.3.11; Fdp-2), 
fumarate hydratase (EC 4.2.1.2; Fh), glucosephosphate 
isomerase (EC 5.3.1.9; Gpi-1, Gpi-2), isocitrate dehydro- 
genase (EC 1.1.1.42; Idh-1, Idh-2), lactate dehydrogenase 
(EC 1.1.1.27; Ldh-1, Ldh-3), malate dehydrogenase (EC 
1.1.1.37 Mdh-1, Mdh-2, Mdh-3), mannosephosphate 
isomerase (EC 5.3.1.8; Mpi), phosphoglucose dehydro- 
genase (EC 1.1.1.44; Pgdh), phosphoglucomutase 
(EC2.7.5.1; Pgm), and superoxide dismutase (EC 
1.15.1.1; Sod). 
Data analysis. From individual genotypes, allele frequen- 
cies were determined for all species, and based on these, 
the genetic distances of Nei 17 (DN) and Rogers 18 (DR) 
were calculated. Though DN is not a metric, in contrast 
to D R, it is a measure of codon substitution per locus, 
and may possibly be linearly correlated to time. 
The matrix of D N was used to construct an UPGMA 19 
(unweighted pair-group method using arithmetic aver- 
ages) tree. UPGMA was originally developed as a phe- 
netic clustering method, but may provide a good evolu- 
tionary tree 2~ assuming that the rate of molecular 
evolution is approximately constant 22-24 and the genet- 
ic distance measure used is proportional to evolutionary 
change as in D s. 
The molecular clock, however, may not be applicable 
and consequently, a kind of minimum evolution tree by 
the neighbor-joining (N J) method 25 and character-state 
Wagner parsimony trees by the PAUP algorithm 26 were 
also constructed to examine phylogenetic relationships 
among species. In neither of these methods is the rate of 
evolution assumed to be constant. The D R matrix was 
used for NJ analysis. In the PAUP analysis, loci were 
considered as characters and alleles as unordered charac- 
ter states. For each locus, the state assigned was that of 
the most common allele. MULPARS/GLOBAL SWAP 
options were used in this analysis. Undirected trees from 
these analyses were rooted with Tylochromis as an out- 
group. The genus is suggested to represent the sister 
group of the remaining African lineage by Stiassny 27. 

Results 
The allele frequencies at 21 loci in 20 species are listed in 
table 1. All 21 loci scored were variable for species exam- 
ined. Nei's and Rogers' genetic distance measures among 
the 20 species are shown in table 2. Most species showed 
considerable genetic divergence from one another with 
the exception of Lestradea, which was quite close geneti- 
cally to Ectodus. Most D N values considerably exceeded 
those observed in cichlids of Lakes Victoria 2s' 29 and 
Malawi 30 
The UPGMA tree derived from DN is presented in fig- 
ure 1 a. Seven lineages with high divergence points at 
around DN = 1.0 or more were apparent in the tree. Of 
these, six were represented only by species of a single 
tribe, while the remaining one consisted of many species 
from various tribes. (For convenience, this large lineage 
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is h e r e a f t e r  r e f e r r ed  to  as the  H- l i neage  since it  i nc ludes  

the  h a p l o c h r o m i n e  l ineage) .  

T h e  seven  l ineages  were  a l so  r ecogn ized  in  a n  N J  t ree  

(fig. 2), t h o u g h  the  b a n c h i n g  o r d e r  a m o n g  the  l ineages  

a n d  w i t h i n  the  H- l i neage  d i f fe red  s o m e w h a t  f r o m  t h a t  in  

the  U P G M A  tree.  

C h a r a c t e r - s t a t e  W a g n e r  p a r s i m o n y  ana lys i s  cons i s t en t l y  

s u p p o r t e d  the  seven  m a j o r  l ineages  o b s e r v e d  in  the  dis- 

t ance  analys is .  U s i n g  the  P A U P  a l g o r i t h m ,  the  90 equa l ly  

m o s t  p a r s i m o n i o u s  t rees  were  o b t a i n e d  ( each  w i t h  116 

steps,  cons i s t ency  index  CI  = 0.69). These  t rees  d i f fe red  

on ly  in the  a r r a n g e m e n t  o f  the  m a j o r  l ineages  or  species 
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w i t h i n  the  H- l ineage .  A s t r ic t  c o n s e n s u s  t ree  f r o m  all 90 

W a g n e r  p a r s i m o n y  t rees  as well  as the  U P G M A  a n d  N J  

t rees  was  o b t a i n e d  us ing  the  C O N T R E E  s u b r o u t i n e  in  

the  P A U P  p r o g r a m ,  a n d  is s h o w n  in f igure  3. 

D i s c u s s i o n  

T h e  p r e s e n t  resu l t s  i nd i ca t e  t h a t  t he re  a re  m a n y  - a t  leas t  

seven  - o ld  l ineages  in  the  c ich l id  f a u n a  o f  L a k e  Tan-  

gany ika ,  a n d  t h a t  one  o f  t h e m ,  the  H- l ineage ,  is com-  

p r i sed  o f  v a r i o u s  g r o u p s  o f  cichl ids.  Th i s  f i n d i n g  is sup-  

p o r t e d  by  the  bas ic  a g r e e m e n t  o f  the  resu l t s  o f  ana lys i s  b y  

t h r ee  d i f fe ren t  p h y l o g e n e t i  c m e t h o d s .  Th i s  a g r e e m e n t  in-  

Table 1. Allele frequencies, expressed as percentages, at 21 genetic loci in 20 cichlid fishes of Lake Tanganyika. Species abbreviations are as in text. 
Alleles are designated alphabetically in the order of decreasing anodal mobility of their protein products. Where the allele frequencies are not given, 
the frequency is 100. 

Locus Species examined 
BOMI ORNI ASBU TYPO NEBR TETE JUMA TRMO SIBA PETR 

Aat-1 b d b b d d(67) d b b b 
e(33) 

Aat-2 e a(07) c(04) b e(01) g g e c e 
c(89) e(96) g(95) 
e(04) i(03) 

d d c f c e e c c e 
d g(63) f f c(99) e(81) a d f f 

h(37) d(01) f(19) 
e c(07) g a e(98) e e(83) e(02) g g 

e(75) g(02) g(17) g(92) 
g(14) i(06) 
i(04) 

Ck-2 e b(98) c f a a a c c(82) c 
c(02) e(18) 

Fdp-2 g(94) f a(04) b a a a d(61) c(05) d(30) 
h(06) c(04) e(39) d(95) e(70) 

d(92) 
Fh c b(60) b b - c e c 

c(40) 
Gpi-1 f(97) g(90) h m m c c c(90) 

m(03) h(lO) f(lO) 

Aat-3 
Adh 

Ah 

Gpb2 g b b(96) 
el04) 

Idh-1 a(81) b(06) e 
c(19) c(94) 

Idh-2 b b b 

Ldh-i a b b 
Ldh-3 el03) e b 

f(97) 
Mdh-1 g d(16) b(04) 

e(84) d(96) 

Mdh- 2 c a 

Mdh-3 b a(92) 
c(08) 

Mpt b b 

Pgdh e f 

Pgrn 1 b 

Sod d d(78) 
g(22) 

C 

a(06) 
b(94) 
f 

d 

c b 

f h(07) 
k(22) 
1(20) 
m(50) 
n(01) 

e b(98) a(13) b b b b 
c(02) b(88) 

al09) el08) g g c(99) c c 
b(29) g(92) el01) 
c(62) 
d(09) b b b e(99) b d 
el91) f(01) 
c b b b b b b 
e c c c b b b(39) 

c(61) 
b a(02) d d d d d(61) 

b(07) f(39) 
d(87) 
f(03) 

d d(99) d d d d d 
f(o~) 

b a c a c c c 

c b a(08) a b b b 
b(92) 

a cO1) c(19) c(33) e e e 
d(57) d(81) d(67) 
e(02) 

e a(01) b(13) d d d d 
d(99) d(68) 

~13) 
d a d d c c c 
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Table 1. continued. 
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ERCY ECDE LEPE G R L E  TRNI  BAGR LIAU CYMI PEMI PLST 

Aat-I  b b b(97) b d d b b b b 
d(03) 

Aat-2 f c(06) c(03) e h(95) j h h h(60) i 
e(94) e(97) j(05) i(40) 

Aat-3 c c c c d c c c c c 
Adh f(96) f(11) h h(94) - d h h f f 

h(04) h(89) i(06) 
Ah e(33) f(28) g f(29) c e h c(10) g g 

g(61) g(67) g(71) e(85) 
h(06) g(05) 

Ck-2 b(09) f f g e(70) f e f f f 
cO1) f(30) 

Fdp-2 c c a(09) c(88) d f c c c c 
c(88) e(13) 
d(03) 

Fh b b b b b c b b b b 
Gpi-! f(33) c(94) c(94) c j f d(25) c c(05) c(25) 

h(67) e(06) e(06) f(75) e(95) e(75) 
Gpi-2 a b(22) b(63) e a a(65) a b b b 

e(50) e(28) b(35) 
g(28) g(09) 

Idh-1 c e e c(83) c c g c c(06) c 
d(17) e(94) 

Idh- 2 d b b b a a b c b b 
Ldh-1 b b b b c c(20) b b b b 

d(80) 
Ldh-3 e e e g c(45) e e c e e 

e(55) 
Mdh-1 f c(11) d d c d d d d d 

d(89) 
Mdh-2 d d(94) d d d d d d d d 

f(06) 
Mdh- 3 c a a a a c c c c c 
Mpi  b c c b(40) a(70) b 

c(60) b(30) 
Pgdh d d d d d b(95) d b b a 

e(O5) 
Pgm d b(11) d(97) i e e(95) d d d d 

d(89) g(03) f(05) 
Sod d(38) d d d e(75) d d b d d 

f(62) g(25) 

Table2.  Nei's 17 (above diagonal) and Rogers ' i s  (below diagonal) genetic distances between 20 cichlid fishes of Lake Tanganyika. For  species 
abbreviations, see text. 

BOMI ORNI ASBU TYPO NEBR TETE JUMA TRMO SIBA PETR ERCY ECDE LEPE GRLE TRNI BAGR LIAU CYMI PEMI PLST 

BOMI 1.32 1.66 1.37 1.88 1.61 1.91 1.36 1.34 1.33 1.81 1.53 1.60 1.28 2.24 1.30 1.41 2.16 1.62 1,80 
ORNI  0.73 1.16 1.94 0.93 0.98 1.04 1,40 1.07 1.38 1.24 1.08 1.05 1.12 1.20 1.03 1,30 1.33 1.04 1.01 
ASBU 0.80 0.69 - 1.89 0.80 0.83 1.14 0.35 0.28 0.42 0.58 0.61 0.56 0.79 1.82 1.50 0.78 0.78 0,39 0.49 
TYPO 0.74 0.84 0.84 2.92 2.19 2.26 1.50 1.49 1.42 1.30 1.09 1.17 1.35 1.39 0.90 1.41 1.72 1.21 0.93 
NEBR 0.83 0.61 0.55 0.92 - 0.25 0.25 1.00 0.93 1.14 1.02 0.81 0.75 0.90 1.24 1.27 0.81 0.79 0.79 0.87 
TETE 0.78 0.64 0.57 0.87 0.27 0.16 1.08 0.95 0.89 0.94 0.93 0.87 0.98 1.46 1.12 0.67 0.81 0.71 0.76 
J U M A  0.85 0.64 0.68 0.88 0.25 0.19 - 1.25 1.14 1.08 1.44 0.87 0.80 1.02 1.41 1.25 0.87 0.95 0.99 0.94 
T R M O  0.74 0.75 0.31 0.77 0.63 0.66 0.72 0.23 0.26 0.74 0.84 0.76 0.80 1.93 0.96 1.02 0.67 0.70 0.65 
SIBA 0.74 0.66 0.25 0.77 0.60 0.62 0.68 0.22 - 0.22 0.57 0.98 0.90 0.94 1.91 1.30 1.20 0.74 0.71 0,65 
PETR 0.73 0,74 0.37 0.75 0.67 0.61 0.67 0.26 0.24 - 0.65 0.81 0,75 0.80 1.77 1.10 0.87 0.67 0.52 0.46 
E R C Y  0,84 0.70 0.46 0.73 0.64 0.63 0.76 0,52 0.45 0.49 - 0.67 0.69 0.77 1.14 1.02 0.48 0.72 0.50 0.46 
ECDE 0.77 0.67 0.48 0.66 0.56 0.60 0.60 0,58 0.63 0.57 0.50 0.01 0.24 1.26 1.14 0.39 0.59 0.35 0,36 
LEPE 0.79 0.67 0.44 0.69 0.54 0.59 0.57 0.54 0.60 0.53 0.51 0.06 - 0.26 1.28 1.11 0,41 0.56 0,33 0.34 
G R L E  0.72 0.69 0,56 0.74 0.60 0.62 0.64 0.56 0.63 0.56 0.55 0.25 0.27 1.30 1.37 0.57 0.70 0.68 0.59 
TRNI  0.88 0.70 0.82 0.75 0.71 0.77 0.75 0.84 0.83 0.82 0.67 0.71 0.72 0.72 0.97 1.07 1.33 1.64 1.54 
BAGR 0.73 0.66 0.77 0.60 0.71 0.67 0.71 0.62 0.73 0.67 0.65 0.67 0.66 0.74 0.64 0.96 0.86 0.83 0.83 
LIAU 0.75 0.73 0.54 0.75 0.56 0.50 0.59 0.64 0.70 0.58 0.40 0.35 0.34 0.45 0.66 0.62 - 0.58 0.43 0.49 
C Y M I  0.89 0.74 0.55 0.82 0.55 0.57 0.61 0.50 0.54 0.50 0.52 0.47 0.44 0.51 0.74 0.59 0.44 - 0.44 0.47 
PEMI 0.79 0.65 0.33 0.70 0.55 0.52 0.63 0.51 0.52 0.41 0.41 0.33 0.30 0.51 0.81 0.57 0.36 0.38 - 0.12 
PLST 0.83 0.65 0.40 0.61 0.58 0.55 0.61 0.49 0.49 0.38 0.39 0.34 0.31 0,47 0,79 0.57 0.39 0.38 0.14 



978 

a 

Experientia 47 (1991), Birkhfiuser Verlag, CH-4010 Basel/Switzerland Research Articles 

I 
1:5 
7'.5 

b 

i 
7 . 5  

1[o 0.5 

2'.s 

Boulengerochromis [ 1 ]  
Oreochromis [1] 
Astatotilapia [2]< 
Tropheus [5] 
Si~ochromis [5] 
Petrochromis [5] 
Eretmodus [6] 
Ectodus [7 ]  

[ Lestradea [7] 
Grammatotria [7] 

E Perissedus [12] 
Plecodus [12] 
Limnochrom~s [i0] 
Cyprichromis [ii] 
Neolamprologus [4]~----~ 

,,Telmatochromis[4] I[ 
dulidochromis [4]( 
Tylochromis [3] 
Bathybates [9] 
Trematocara [8] 

6Nei's genetic distance 

6 Myr 

--.-----J-I Victoria ---~ 
U haplochromines (14spp.) ] 

I I I I Ma law i  & <  
k=l I I I haplochrorn ines (24 spo.) [ 

I ~ Astatoreochromis (v)j 
Neolamprelogus (T) < 
Julidochromis (T) �9 

' ' 6 Myr 5 2 .5  

Figure I. a A UPGMA tree derived from Nei's genetic distances between 
20 cichlid fishes of Lake Tanganyika. The numeral after a genus name is 
the code number of tribes as shown in text. For the time scale, see 
'Discussion' in text. b An evolutionary tree based on mitochondrial D N A  

data from cichlids in Lakes Victoria (V), Malawi and Tanganyika (T) 
(after Meyer et al.4). Arrows denote corresponding nodes or branches 
between the two trees. 
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number of tribes as shown in text. 
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Figure 3. A strict consensus tree for 20 cichlid fishes of Lake Tanganyika 
based on the 90 equally most parsimonious trees generated from charac- 
ter-state,Wagner parsimony analysis by PAUP and UPGMA and NJ trees 
in figures 1 and 2. The arrow shows the presumed place at which the 
haploehromine lineage of Lake Victoria and Lake Malawi is connected 
to the consensus tree of Tanganyika cichlids. 

dicates the possibility that there has been no considerable 
variation in the rates of  allozyme evolution among 
lineages of  these fishes. 
Assuming an approximately constant rate of  allozyme 
evolution, the time of divergence can be estimated by 
calibrating DN in two ways, empirical and theoretical. 
In the present analysis, the former method was em- 
ployed, using time estimation from mitochondrial D N A  
(mtDNA) divergence by Meyer et al. 4 for comparison. 
They used the same species or groups as in the present 
study (Neolampro logus  brichardi  and Jul idochromis  in 
Lamprologini as well as many haplochromines in Hap- 
lochromini) and estimated the divergence time between 
Lamprologini and Haplochromini as being about 4.5 
million years ago based on m t D N A  data (fig. 1 b). Here, 
the D N value between these two lineages was approx- 
imately 0.9 (fig. la) ,  which gave a calibration of  
1DN = 5 Myr. This result is identical to the theoretical 
calibration proposed by Nei20. Though Nei's formula 
gives a time less than that obtained by the empirical 
method in other studies 31' 32, close agreement with the 
time estimation from m t D N A  shows this formula to be 
applicable to time estimation from the present data as a 
first approximation. The time scale in figure I a was 
based on this formula. 
The seven lineages observed in cichlids of  Lake Tan- 
ganyika appear to be quite old, as much as 5 million years 
or more, based on the above time estimation (fig. I a). 
Lake Tanganyika has been estimated to have been 
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formed about 2 million years ago 8, 33. These lineages 
may thus possibly have already been in existence before 
its formation. The tribes Tylochromini, Tilapiini, Lam- 
prologini and Haplochromini are not endemic to Lake 
Tanganyika, and their ancestors have been suggested to 
have contributed independently to the cichlid fauna of 
this lake 2, 6, 34. It is apparent from this study that there 
are at least three further lineages as probable ancestral 
groups for the fauna. I conclude that the cichlid flock of 
Lake Tanganyika is a polyphyletic conglomerate with 
many ancestral lineages. 
The evolutionary tree mainly for Victoria and Malawi 
cichlids by Meyer et al. 4 (fig. 1 b) can be superimposed 
over the present one for Tanganyika cichlids (fig. 1 a) 
using the shared time framework based on commonly 
examined groups. In this manner, a composite tree 
(fig. 3) can be obtained, whose branch of hap- 
lochromines in Lake Victoria and Lake Malawi exam- 
ined by Meyer et al. 4 is only a part of that of the H-lin- 
eage found in Tanganyika cichlids. 
It is of interest that the H-lineage also leads many groups 
of Lake Tanganyika. More than half the tribes proposed 
by Poll 9 are in this lineage. Some branches in this lineage 
in Lake Tanganyika may possibly be shared by the cich- 
lid fauna in Lake Malawi 35.36. Extensive inter-lacustrine 
genetic studies should be conducted to fully examine the 
validity of the proposed tribes, particularly those in the 
H-lineage, in the inter-lacustrine perspective. 
From the present finding of many old lineages, Lake 
Tanganyika, the oldest among the rift-valley lakes 33, ap- 
pears to have inherited its major lineages of cichlids from 
various ancestral lakes that once existed in the area. In- 
deed, multiple origins has been suggested for the present 
Lake Tanganyika 33. The lake may be concluded to have 
served as an evolutionary reservoir of old ancestral lin- 
eages of East African cichlids. Diverse cichlid groups in 
this lake should provide useful data for reconstructing 
the fundamental phylogeny of East African cichlids, 
which is essential to a more detailed study of the evolu- 
tion of these fishes. 
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