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Abstract. Let Y = (X, {R;}o<;<4) denote a P-polynomial association scheme. By a kite
of length i 2 <i<d)in Y, we mean a 4-tuple xyzu (x,y,z,u € X) such that (x,y) e R;,
(x,2)e Ry, y,2)e Ry, (w,y) e R;_;,(u,2) € R;_,, (u,x) e R,.

Our main result in this paper is the following.

Theorem. Let Y be a P- and Q-polynomial association scheme. Suppose Y has diam-
eter d > 3, and suppose Y has intersection number a, # 0.
Then the following (i)—(iii) are equivalent.

(i} Y has classical parameters (d, b, a, ), and either b < —1, or Y is a dual polar
scheme or a Hamming scheme.

(ii) Y has no kites of length 2 and no kites of length 3.

(iii) Y has no kites of any lengthi (2 < i < d).

1. Introduction

It is shown by P. Terwilliger [Kite-Free Distance-Regular Graphs, preprint] that
a P- and Q-polynomial scheme with classical parameters (d,b,a, ), such that
d = 3 and b < —1, has no kites of any length i (2 < i < d). In this paper we show
that if Y is not a dual polar scheme or a Hamming scheme, then the converse is
also true. Theorem 2.6 is our main result.

For the rest of this section, we recall some definitions and basic concepts con-
cerning the theory of P- and Q-polynomial schemes. See Bannai and Ito[1], or
Terwilliger[3] for more background information.

Let d denote a non-negative integer. A symmetric, d-class assocation scheme
(or simply a scheme) is a configuration Y = (X, {R;}o<i<q4), Where X is a non-
empty set and Ry, R,, ..., R; are non-empty subsets of the Cartesian product
X x X, possessing the following properties. '

(i) (x,y)eRyifandonlyifx=y (x,yeX).
@) (x,y)e R;forexactlyonei (0<i<d) (x,yeX). ,
(i) Ri=R; (0<i<d),where Ri={(y,%)|(x,)eR;} 0<i<d).
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(iv) For all integers i, j, k (0 <i,j,k <d), and all x, ye X with (x,y) € R, the
number pf of ze X such that (x,z)e R; and (z,y) € R; is a constant that
depends only on i, j, k.

V) pi=pf O<ijk<d)

The elements of X, the constants pf, and the constant d are known as the
vertices, the intersection numbers, and the diameter, of Y.

Let Mat,(R) denote the algebra of all the matrices over the real number field
with the rows and columns indexed by the elements of X. The associate matrices
of Y are the matrices Ay, A4, .., 4; € Maty(R), defined by the rule

)1 i (e y)e R .
(A")"y‘{o YT

where x, ye X.
Then by (i)—(v) we have

Ao =1,
Ag+ A4, + -+ A;,=J (J=all I's matrix),
Ai=4; 0<i<gd),
A A= Zd: P4, O<ij<d),
and "
AiA;= A4, 0<ij<ad).

The algebra M spanned by the associate matrices over the real number field R
is a commutative semi-simple subalgebra of Maty(R), and is known as the Bose-
Mesner algebra of Y. By [1, p59, p64], M has a second basis E,, E,, ..., E, such
that

E,=|X|71J,
EE;=6;E; (0<i,j<d),
Eo+E +-+E; =1,
Ei=E (0<i<d).
We refer to E; as the ith primitive idempotent of Y (0 < i < d).
Let o denote entry-wise multiplication in Maty(R). Then
Ao A;=6;4; (0<ij<ad),

so M is closed under o. Thus there exists q{‘j e R(0 <i,j,k < d) such that
d
EjoE;=|X|™ ) q4E, (0<ij<d).
¥=0

A scheme Y is said to be P-polynomial with respect to the ordering 4y, 4, ...,
A, of the associate matrices if for all integer i, j, k (0 <i,j,k < d), pf = 0 (resp.
p% # 0) whenever one of i, j, k is greater than (resp. equal to) the sum of the other
two.
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Let Y = (X, {R;}o<i<q) be a P-polynomial scheme. For convenience, set
bi=pLi(O0<i<d-1), g=pi,0<i<d), ¢= Pl (1<i<ad)
The P-polynomial property implies
b>00<i<d-1), ¢>0(1<i<d),
bp=b+a+c(l<i<d—1). (LD

By a kite of length i in a P-polynomial scheme Y = (X, {R:}o<i<a)» We mean a
4-tuple xyzu (x, y,z,u € X) such that

(x, y)’ (x, 2)7 (ya Z) € Rl’ (uz X) € Rb
(wy)eRi.;, (w2)eR;_,.

A scheme Y is said to be Q-polynomial with respect to the given ordering E,,
E,, ..., E; of the primitive idempotents, if for all integers i, j, k (0 < i, j,k < d),
q{‘j = 0 (resp. g}; # 0) whenever one of i, j, k is greater than (resp. equal to) the sum
of the other two.

Suppose Y is Q-polynomial with respect to E,, E,, ..., E;. Then the dual
eigenvalues 6 € R (0 < i < d) are defined by

d
E1 = IXI-I Z 91‘*Ai~
i=0

By [3, p384], the dual eigenvalues 6% (0 <i < d) are mutually distinct real
numbers.

One class of P- and Q-polynomial schemes are the Hamming schemes(see [1,
H1.2]), defined in the following way. Take S a finite set of cardinality ¢ > 2. Let X
denote the set of all d-tuples of elements taken from S. The ith relation R; on X is
defined as follows:

(x,y) € R; < x, y differ in precisely i coordinates.

Another class of P- and Q-polynomial schemes are the schemes of dual polar
spaces(see [1, I11.6]), defined in the following way. Let W be a vector space over
a finite field equipped with a nondegenerate form F(quadratic, symplectic, or
Hermitian). Let X denote the set of all maximal isotropic subspaces of F in W,
and let d denote the common dimension of these subspaces. The ith relation R,
on X is defined as follows:

(x,y)eR; = dim(xNy)=d —i.

We refer the reader to Bannai and Ito[1, II1.6] for more examples of P- and
Q-polynomial schemes.

2. The Main Theorem

We divide the main Theorem 2.6 into a few Lemmas. Qur work is based on the
following theorem of Terwilliger[4, Theorem 3.3(viii)], [5, Theorem 2.11].
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Theorem 2.1. Let Y = (X, {R;}o<i<4) denote a P- and Q-polynomial scheme with
diameter d > 3 and dual eigenvalues. 6%, 8%, ..., ¥. Then we have the following

(1)—(ii).
@)
0, —0r, =00k, — 6%, B<n<d 2.1)

for appropriate o € R\ {0}.
(i1) Suppose the intersection number a, # 0, and pick any 3-tuple xyz such that
(x, ), (3,2), (x,2z) € R;. Set

e(xyz) = (ph_y) {ulu e X, xyzu is a kite of lengthi}| (2 <i < d).
Then

exyz) = qey(xyz)+ B 2<i<d), (2.2)
where
(0Ff — 65)(05 + 6 — 6=, — 6F)
= s 2.3
S Y Ty @3
g = (05 — 67)(03 — 6F) — (0F — 05)(0F — 6%1) 24)

(65 — 03)(6%, — 67)

Lemma 2.2. With the notation of Theorem 2.1(ii), suppose e,(xyz)=0 and
e3(xyz) = 0. Then there exists b € R\{0, — 1} such that

0¥ — 0% = (0F — 93‘)[;]1_7“" O0<i<d), 2.5)
where
[;]:= L+b+b%++ b 2.6)
Proof. Set
,_0r=0
o5 — 0¥
Then we have
o3 — 65 = (6} — 93)[‘:‘] b, )
The above b exists since 6%, 6f, ..., 0f are distinct. Observe that b # 0 and
b#—1
Setting i = 3 in (2.2) we have f§; = 0, so setting i = 3 in (2.4) we find
(6% — 61)(0F — 6%) = (6 — 03). (2.8)

Evaluating (2.8) using (2.1) with 7 = 3, we get _
(63 — 61 (@™ (6F — 63) — (65 — 63)) = (6F — 6%)°,
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or equivalently we have
(6 — 63> — (1 + 7 )(0F — 63)(6F — 63) + (1 + a™)(6f — 0> = 0. (29)
Combining (2.7), (2.9) we have
1+b+b>=0""h,
so1+b+b>+#0and
oo b
b>+b+ 1
Now we prove (2.5) by induction on i. The cases i =0, 1 are trivial and the
case i = 2 is from (2.7). Now suppose i > 3. Then (2.1) implies

0F = 67\ 0%, — 0%,) + O%5. @11

(2.10)

Evaluate (2.11) using (2.10) and the induction hypothesis, we find 8* — 6% is as in
(2.5). ’ '

Definition 2.3. A P-polynomial scheme Y is said to have classical parameters
(d,b,a, B) whenever the diameter of Y is d, and the intersection numbers of Y

satisfy
ci=[::l(1+“[i_ll]) O<i<d), (2.12)
d i [ .
T R

where [ ] as in (2.6).

Lemma 2.4. Let Y denote a P- and Q-polynomial scheme with diameter d > 3 and
dual eigenvalues 0%, 0%, ..., 8F. Suppose that the intersection number a, # 0, and
further suppose Y has no kites of length 2 or 3. Then Y has classical parameters
(d, b, a, B), for some b e R\{0, —1}, and some o, f € R.

Proof. In view of Terwilliger[4, Theorem 4.2(iii)], it suffices to prove that there
exists b € R\ {0, —1} such that

0F — 0% = (6F — g)[;]bl-'ﬂ 0<i<d),

where [ ] as in (2.6).
But this is immediate from Lemma 2.2.
The following lemma comes from a simple observation.

Lemma 25. Let Y = (X,{R;}o<i<cas) denote a P-polynomial scheme, where d > 2.
Suppose Y has no kites of length 2. Then a, — a,c, > 0.

Proof. Fix x, ye Y with (x,y) € R,. For u, z € X with (x,z), (x,u), (u,z2), (z,y) € R,
we have (4, y) € R,, otherwise xzuy is a kite of length 2. For any z' € X with (x,z’),
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(u,z'),(z’,y) € R, we have z = z' by a similar argument. Now
ayc; = [{ue X:(x,u), (z,u), (x,2),(z,y) € R, for some z € X}|
S{ueX:(x,u)e Ry, (0, y) € R}
= (12.
Theorem 2.6. Let Y be a P- and Q-polynomial association scheme. Suppose Y has

diameter d > 3, and suppose Y has intersection number a, # 0. Then the following
(i)-(iii) are equivalent.

(1) Y has classical parameters (d,b,o, B), and either b < —1, or Y is a dual polar
scheme or a Hamming scheme.

(i) Y has no kites of length 2 and no kites of length 3.

(iil) Y has no kites of any length i (2 < i < d).

Proqf. (i) —(i). Suppose (ii) is true. Then by Lemma 2.4, Y has classical parame-
ters (d, b, a, f). First suppose a = 0. Then by [2, Theorem 9.4.4], Y is a dual polar
scheme or a Hamming scheme. Now suppose « # 0. From (1.1), (2.12), (2.13), and
Lemma 2.5, we have

(=)t +D)b+a, +1)=a,—ayc,
=0. (2.14)
By direct calculation from (2.12), and by (1.1) we get
(ca—b)b*+b+1)=0c4

>0 (2.15)
Since b is an integer {2, p195], we have
b>+b+1>0.
Then from (2.15), we get
¢, >b. (2.16)

Using (2.12), (2.16) we get
cx(l +b)=C2“"b'—l

= 0.
Butas£0,b% —1,s0
ol + b) > 0.
Applying this to (2.14), we find
b+a +1<0.

Therefore we have b < ~(a, + 1) < — 1, since a, # G.
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(i) = (ii). For b < ~1, Y has no kites of any length i (2 < i < d) by [5, Theorem
2.12]. 1t is well known that the Hamming schemes and the dual polar schemes
have no kites. See [2, Theorem 9.2.1, Theorem 9.4.3] for details.

(iif) — (ii). Clear.
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