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Abstract. Let Y = (X, {Ri}o~a) denote a P-polynomial association scheme. By a kite 
of length i (2 < i < d) in Y, we mean a 4-tuple xyzu (x,y,z,u ~X) such that (x,y)~RI,  
(x,z) ~ R 1, (y,z) ~ R I, (u,y) ~ Ri_ 1, (u,z) ~ Ri-l, (u,x) ~ R i. 
Our main result in this paper is the following. 

Theorem. Let Y be a P- and Q-polynomial association scheme. Suppose Y has diam- 
eter d >_ 3, and suppose Y has intersection number al ~ O. 
Then the following (i)-(iii) are equivalent. 

(i) Y has classical parameters (d, b, ~t, fl), and either b < - 1, or Y is a dual polar 
scheme or a Hamming scheme. 

(ii) Y has no kites of  length 2 and no kites of length 3. 
(iii) Y has no kites of any length i (2 < i < d). 

I. Introduction 

It is shown by P. Terwilliger [Kite-Free Distance-Regular Graphs, preprint] that 
a P- and Q-polynomial scheme with classical parameters (d,b, ct,~), such that 
d _> 3 and b < - 1, has no kites of any length i (2 < i < d). In this paper we show 
that if Y is not a dual polar scheme or a Hamming scheme, then the converse is 
also true. Theorem 2.6 is our main result. 

For  the rest of this section, we recall some definitions and basic concepts con- 
cerning the theory of P- and Q-polynomial schemes. See Bannai and Itol ' l],  or 
Terwilligerl3] for more background information. 

Let d denote a non-negative integer. A symmetric, d-class assocation scheme 
(or simply a scheme) is a configuration Y = (X, {Ri)o_<~d), where X is a non- 
empty set and Ro, R1, . . . ,  Rd are non-empty subsets of the Cartesian product 
X x X, possessing the following properties. 

(i) (x, y) ~ Ro if and only if x = y (x, y ~ X). 
(ii) (x, y) e R i for exactly one i (0 <~ i _< d), (x, y e X). 
(iii) R~ = R, (0 < i < d), where R~ = ((y,x)l(x,y) e R,} (0 < i < d). 
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(iv) For  all integers i, j, k (0 < i, j, k < d), and all x, y e X with (x, y) e Rk, the 
number pk of Z e X such that (x, z )e  Ri and (z ,y)e R~ is a constant that 

depends  only on i, j, k. 
(v) p~=p)~ ( O < i , j , k < d ) .  

The elements of X, the constants p~, and the constant d are known as the 
vertices, the intersection numbers, and the diameter, of Y. 

Let Matx(R ) denote the algebra of all the matrices over the real number field 
with the rows and columns indexed by the elements of X. The associate matrices 
of Y are the matrices Ao, A1 . . . . .  Aa e Matx(R), defined by the rule 

{ ~  i f ( x , y ) e R i  O<_i<_d, 
(A3~y if (x, y) 6 R~ 

where x, y e X. 
Then by (i)-(v) we have 

Ao = I, 

Ao + A I + " "  + A d = J 

A ~ = A  i (O<i<_d),  
d 

A , A j =  X p~Ak (O < i,j < d), 
k=O 

and 

(J = all l 's matrix), 

A , &  = AjA,. (0 ~ i, j <_ d). 

The algebra M spanned by the associate matrices over the real number field 
is a commutative semi-simple subalgebra of Matx(R), and is known as the Bose- 
Mesner algebra of Y. By [1, p59, p64], M has a second basis E0, Ex, . . . ,  E d such 
that 

E o = IXl- tJ ,  

EiEj = 6ijEi (0 <_ i, j < d), 

E o + E I + ' " + E a = I ,  

E ~ = E i  (0 < i <_ d). 

We refer to Ei as the ith primitive idempotent of Y (0 < i _< d). 
Let o denote entry-wise multiplication in Matx(R). Then 

Ai o A j  = 60A , (0 < i, j < d), 

so M is closed under o. Thus there exists q~ ~ R (0 < i, j, k < d) such that 

d 

E~oEj=IXI-X ~ qoEkk (O<i,j<d)._ _ 
k=O 

A scheme Y is said to be P-polynomial with respect to the ordering A0, A t , . . . ,  
Ad of the associate matrices if for all integer i, j, k (0 < i,j, k < d), p~ = 0 (resp. 
p~ ~ 0) whenever one of i, j, k is greater than (resp. equal to) the sum of the other 
two. 
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Let Y = (X, {Ri}o<i<_d ) be a P-polynomial scheme. For convenience, set 

b i = p ] , , + l ( O < i < d - 1 ) ,  a , = p ~ . , ( 0 < i < d ) ,  c~=p~. ,_1( l_<i<d) .  

The P-polynomial property implies 

b i>O(O<_i<_d-1 ) ,  c i > O ( l  <i<_d), 

b 0 = b i + a ~ + c ~ ( l < i < d - 1 ) .  (1.1) 

By a kite of  lenoth i in a P-polynomial scheme Y = (X, (Ri}o<i<n), we mean a 
4-tuple xyzu (x, y, z, u e X) such that 

(x,Y),(x,z),(Y,z)e R1, (u,x) e Ri, 

(u ,y)eRi-1,  (u,z)eRi_l .  

A scheme Y is said to be Q-polynomial with respect to the given ordering Eo, 
E1 . . . . .  Ea of the primitive idempotents, if for all integers i, j, k (0 < i , j ,k  < d), 
qk = 0 (resp. qk ~ 0) whenever one of i, j, k is greater than (resp. equal to) the sum 
of the other two. 

Suppose Y is Q-polynomial with respect to Eo, E~ . . . . .  Ea. Then the dual 
eigenvalues O* e • (0 <_ i < d) are defined by 

d 

El = Ixt -~ Y~ o'a,. 
, = 0  

By [3, p384], the dual eigenvalues 0* (0 _< i < d) are mutually distinct real 
numbers. 

One class of P- and Q-polynomial schemes are the Hamming schemes(see l-l, 
III.2]), defined in the following way. Take S a finite set of cardinality q > 2. Let X 
denote the set of all d-tuples of elements taken from S. The ith relation R i on X is 
defined as follows: 

(x, y) e Ri ~ x, y differ in precisely i coordinates. 

Another class of P- and Q-polynomial schemes are the schemes of dual polar  
spaces(see [1, III.6]), defined in the following way. Let W be a vector space over 
a finite field equipped with a nondegenerate form F(quadratic, symplectic, or 
Hermitian). Let X denote the set of all maximal isotropic subspaces of F in W, 
and let d denote the common dimension of these subspaces. The ith relation R~ 
on X is defined as follows: 

(x,y) e R i ¢:" dim(x f3 y) = d - i. 

We refer the reader to Bannai and Ito[1, III.6] for more examples of P- and 
Q-polynomial schemes. 

2. The Main Theorem 

We divide the main Theorem 2.6 into a few Lemmas. Our work is based on the 
following theorem of Terwilliger[4, Theorem 3.3(viii)], [5, Theorem 2.11]. 
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T h e o r e m  2.1. Let Y = (X, {Ri}o__.i<_e) denote a P- and Q-polynomial scheme with 
diameter d > 3 and dual eigenvalues 0~, O* . . . .  , 0". Then we have the following 
(i)-(ii). 

(i) 

0 " _  2 - 0~*_~ = a ( O * _  3 - 0 " ) ,  (3 _< t/_< d) (2.1) 

for appropriate a ~ N\{O}. 
(ii) Suppose the intersection number a I ~ O, and pick any 3-tuple xyz such that 

(x, y), (y, z), (x, z) ~ R 1. Set 

e,(xyz) := (p~_~)-ll{u[u ~ X, xyzu is a kite of length i}l (2 _< i _< d). 

Then 

where 

e,(xyz) = a~e2(xYz) + fl (2 < i < d), (2.2) 

( o r  - o ~ ) ( o ~  + o f  - o*_1 - o * )  

o:, = ( o i  - o*) (o*_1  - o * )  ' 

( o i  - o * ) ( o *  - o* )  - ( o r  - o ~ ) ( o *  - o*_~) 

( o i  - o2 ) (o ,_~  - o~)  

Lemma 2.2. With the notation of Theorem 2.1(ii), suppose 
e3(xYz ) = O. Then there exists b ~ N\{0, - 1 }  such that 

o *  - o *  = ( o r  - o~)  b 1"' (o  <_ i <_ d) ,  

where 

Proof. Set 

I i  l : = l + b + b 2 + . . . + b  ~-~. 

b - Of" - 0~' 

O~ - Of'" 

(2.3) 

(2.4) 

ez(xyz ) = 0 and 

(2.5) 

(2.6) 

Then we have 

0~"- 0~' = (0~'-  0~) I211 b-~. (2.7) 

The above b exists since 0~', 0* . . . . .  0* are distinct. Observe that b-¢ 0 and 
be- - 1 .  

Setting i = 3 in (2.2) we have f13 = O, so setting i = 3 in (2.4) we find 

(0~ - 0~')(0~" - 0~') = (0~' - -  0~') 2. (2.8) 

Evaluating (2.8) using (2.1) with ~/= 3, we get 

(o~ - O * ) ( ~ r - l ( o t  - 0~)  - (0~ - 0 " ) )  = (0" - 0~)  2, 
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or equivalently we have 

(0~'  - -  0~')  2 - -  (1 + t r - l ) ( O  * - -  0 ~ ' ) ( 0 ~  - -  0~')  + (1 + t r - ' ) ( O *  - -  0~')  2 = O. 

Combin ing  (2.7), (2.9) we have 

s o l  + b + b  2 q : 0 a n d  

(2.9) 

I + b + b 2 = a - l b ,  

b 
o- - b2 -{- b -I- 1" ( 2 . 1 0 )  

Now we prove  (2.5) by induct ion on i. The cases i = 0, 1 are trivial and the 
case i = 2 is f rom (2.7). N o w  suppose  i _> 3. Then  (2.1) implies 

O* = a-x(O*_x -- 0*2) + 0"_ 3. (2.1 I) 

Evaluate  (2.11) using (2.10) and the induct ion hypothesis,  we find O* - 0 6 is as in 
(2.5). 

Definition 2.3. A P -po lynomia l  scheme Y is said to have classical parameters 
(d,b,~,fl)  whenever  the d iameter  of  Y is d, and the intersection numbers  of  Y 
satisfy 

c i =  1 + e  1 

b i = - fl - ~ (0 _< i < d), (2.13) 

where [ ] as in (2.6). 

L e m m a  2.4. Let Y denote a P- and Q-polynomial scheme with diameter d > 3 and 
dual eigenvalues 06, O* . . . . .  0". Suppose that the intersection number a s ¢ 0, and 
further suppose Y has no kites of length 2 or 3. Then Y has classical parameters 
(d,b,~,fl), for .some b e R\{0 ,  - 1 }, and some ~, f l e  R. 

Proof. In view of Terwil l iger[4,  Theorem 4.2(iii)], it suffices to p rove  that  there 
exists b e R\{0 ,  - 1 } such that  

where [ ] as in (2.6). 
But this is immedia te  f rom L e m m a  2.2. 
The  following l e m m a  comes  f rom a simple observat ion.  

L e m m a  2.5. Let Y = (X, {Ri}o~i<d) denote a P-polynomial scheme, where d > 2. 
Suppose Y has no kites of length 2. Then a 2 - al c 2 >_ O. 

Proof. Fix x, y e Y with (x,y) e R 2. For  u, z e X with (x,z), (x, u), (u, z), (z,y) e R 1, 
we have (u,y) ~ R2, otherwise xzuy is a kite of  length 2. For  any  z '  e X with (x, z'), 
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(u,z'), (z',y) e R 1, we have z = z' by a similar argument.  Now 

alc 2 = [{u e X: (x,u), (z,u), (x,z),(z,y) e R 1 for some z e X}[ 

< i{u e X: (x,u) ~ R 1, (u,y) ~ R2}I 

= a 2 . 

T h e o r e m  2.6. Let Y be a P- and Q-polynomial association scheme. Suppose Y has 
diameter d > 3, and suppose Y has intersection number al ~ O. Then the followin 9 
(i)-(iii) are equivalent. 

(i) Y has classical parameters (d, b, ct, fl), and either b < - 1, or Y is a dual polar 
scheme or a Hammin9 scheme. 

(ii) Y has no kites of  lenyth 2 and no kites of  length 3. 
(iii) Y has no kites of  any length i (2 < i _< d). 

Proof. (ii) --* (i). Suppose (ii) is true. Then by Lemma 2.4, Y has classical parame- 
ters (d, b, ~, fl). First suppose ~ = 0. Then by [2, Theorem 9.4.4], Y is a dual polar 
scheme or a Hamming scheme. Now suppose ct :~ 0. F rom (1.1), (2.12), (2.13), and 
Lemma 2.5, we have 

( - e ) (1  + b)(b + a I + 1) = a 2 - alcz 

.>_0. 

By direct calculation from (2.12), and by (1.1) we get 

( c 2 - b ) ( b  2 + b +  l ) = c  3 

Since b is an integer [2, p195], we have 

b 2 + b + l  > 0 .  

Then from (2.15), we get 

Using (2.12), (2.16) we get 

c 2 > b .  

But  c~ ¢ 0,  b :~ - 1, so  

> 0 .  

e ( l  + b ) = c  2 - b - I  

> 0 .  

a(1 + b) > 0. 

Applying this to (2.14), we find 

b + a l + l _ < 0 .  

Therefore We have b < - ( a  1 + 1) < - 1, since al ¢ b. 

(2.14) 

(2.15) 

(2.16) 
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(i) ~ (iii). For b < - 1, Y has no kites of any length i (2 < i < d) by [5, Theorem 
2.12]. It is well known that the Hamming schemes and the dual polar schemes 
have no kites. See I'2, Theorem 9.2.1, Theorem 9.4.3] for details. 

(iii) ~ (ii). Clear. 
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