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Abstract. The numbers which are traditionally named in honor of Paul Turfin were intro- 
duced by him as a generalization of a problem he solved in 1941. The general problem of 
Tur~in having an extremely simple formulation but being extremely hard to solve, has be- 
come one of the most fascinating extremal problems in combinatorics. We describe the 
present situation and list conjectures which are not so hopeless. 

1. The Definition and Equivalent Formulations 

A system of r-element subsets (blocks) of an n-element set Xn is called a Turin  
(n, k, r)-system if every k-element subset of X, contains at least one of the blocks. 
The Turrn number T(n, k, r) is the minimum size of such a system. The problem of 
determining T(n, k, r) was posed by Paul T u r i n  [57]. 

The Tur~m numbers sometimes appear in different notation. For  instance, the 
covering number C(n, m, p) is defined as the minimum number of m-element sub- 
sets of X, needed to cover all p-element subsets (n > m > p). Obviously, 

C(n,m,p) = T ( n , n  - p ,n  - m). 

Let U(n, q, r) be the minimum number of subsets of Xn whose sizes are at least r 
and for which the size of any transversal (i.e. a subset intersecting each of them) is 
at least q. It is easy to see that 

U(n,q,r)  = T(n,n  - q + 1,r). (1) 

It was shown in I45] that T(n, k, r) is equal to the minimal length of a disjunctive 
normal form with n Boolean variables, which takes value 1 if at least k variables 
are equal to 1, and takes value 0 if less than r variables are equal to 1. 

2. Recursive Inequalities 

Schrnheim [39], and independently, Katona, Nemetz and Simonovits [19] showed 
that 

I 1 r(n,  k, r) > r (n  - 1, k, r) . (2) 
n ~ r  
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Indeed, if we omit  one element f rom a Turhn  (n, k, r)-system together  With all 
books containing this element, we get a Turhn  ( n -  1, k, r)-system. Omit t ing an 
element in n possible ways, we get n such subsystems; each of t hem has at least 
T(n - 1, k, r) blocks. Every block of the (n, k, r)-system appears  in n - r of  the con- 
sidered subsystems. Hence (n - r)T(n, k, r) > nT(n - 1, k, r). Inequal i ty  (2) implies 

I /  \ 

that  the ratio T(n ,k , r ) / l :  ) is non-decreasing.  Thus  the limit 

T(n,k,r) 
t(k, r) = lim - -  

exists and 

(n) 
T(n, k, r) _< t(k, r). (3) 

r 

The  values  t(k, r) were obta ined only for r = 2 (except the trivial case k = r). 
E r d f s  [9] offered a reward for determining t(k, r) for a single pair  (k, r) with 
k > r > 2 .  /(o) is A stronger version of Ineq. (2) was given in [43]: if the ratio T(m, k, r) r 

constant  for m = n - l . . . . .  n - 1 (which means that  the extremal (n - 1, k, r)-sys- 

/ ( n )  ~ T(n - 1 , k , r ) / ( n  - l )  then tern is an exact / -scheme) and T(n, k, r) r r ' 

T ( n , k , r ) > _ [ n T ( n n l ' k ' r ) + l  ] 
" - - r " ( 4 )  

Given a Turhn  (n - 1, k, r)-system ~¢ and a T u ran  (n - 1, k - 1, r)-system 9~, a 
Tur /m (n, k, r)-system can be produced  in a simple way ([41]). We assume that  ~¢ 
and ~ share the same element set. By adding a new element v to every block of 
we get a system 9~ + v whose blocks are r-element subsets. The  union of  ~¢ and 

+ v is a T u r i n  (n, k, 0-system. This gives the inequali ty 

T(n, k, r) <_ T(n - 1, k, r) + T(n - 1, k - 1, r - 1). (5) 

Applying (2), we have 

Thus  

r_ T(n,  k, r) = T(n,  k, r) - n - r T(n,  k, r) <_ T(n,  k, r) - T(n  - 1, k, r) 
t l  r l  

< T ( n -  1, k -  1, r). 

T(n, k, r) <_ T(n - l, k - 1, r - 1) 

(:/ (:_- I) 
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which results in 

t(k, r) <_ t(k - 1, r - 1). (6) 

Obviously, the union of disjoint Tur in  (n',k',r)- and (n", k",r)-systems is a 
Tunin (n '+ n ' , k ' +  k " - 1 , r ) - s y s t e m .  Moreover, the union of l disjoint Turfin 
systems with parameters (n~, e~ + 1, r) where i = 1, 2 . . . .  , l, is a Tur in  system 
with parameters (n I + n2 + "'" + nz, el  + e2 + "'" + ez + 1,1"). This implies the 
inequality 

T ni, 2 ei + 1, r < 2 T(ni, e~ + 1, r). (7) 
i=I i=I 

3. Lower Bounds 

The best known general lower bound is 

T(n,k,r)  > n - k + l ( n ) / ( k - ~ )  
- n - r + i  r r - -  " (8) 

A particular case of  (8) was proven for k = 5, r = 4 by Giraud [15], and then 
generalized for k = r + 1 by Sidorenko [42]. In the most general case, Ineq. (8) 
was proven by de Caen [3]. 

It is sufficient to use (7) and (8) to get the correct magnitude of T(k ~, k, r) with 

a fixed 7 and k ~ o0. Namely, inequality (7) with l = [ r  _--Z-T j ,  ~(1 = e2 = " "  = 

e I = r - 1 yields 

1 ( ~ )  r c ' k  (~-1)'+1 T(k ~, k, r) < l'~. < . 

On the other hand, Ineq. (8) gives 

T(kr, k, r) >__ (1 + o(1))k(k~-l)' _> cnk(Y-l)r +I. 
r 

It also follows from (8) that 

1 

1 
t(r + l ,r) > - .  

r 

For odd r, the last inequality was slightly improved by Giraud [17]: 

2 
t(r + 1, r) > 

' r(1 + x/r/(r + 4))' 
r --- 1 mod2. 

(9) 

(10) 

(11) 
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The corresponding upper bound (see the next section) is 

t(r + 1,r) <, (½ + o(1))lnr 
g 

A. Sidorenko 

Conjecture 1. 

lim r" t(r + 1, r) = oo 

This was posed by de Caen [5] and he offered a reward for the first proof or 
disproof. 

4.  Upper Bounds 

According to (3), any upper bound for t(k, r) yields an upper bound for T(n, k, r). 
Thus we are concentrating on the bounds for t(k, r). We start with k = r + 1 and 
then proceed to the general case. 

4.1. The Case k = r + 1 

It was found first that t(r + 1,r) = (9(r -1/2) (see [41]). This fact follows from the 
inequality 

t (2s+ 1,2s) < ( 2 : ) 2  -2" (12) 

and Ineq. (6). A major improvement came when Kim and Roush [20] proved 

1 + 21nr 
t(r + 1, r) < 

Their result was consecutively improved by Frankl an R6dl [12]: 

and by Sidorenko ([46]): 

lnr  + 0(1) 
t(r + 1,r) ~ , (13) 

r 

I n  r 
t(r + 1,r) < -~r(1 + o(1)). (14) 

For small r, a stronger result was obtained in [7]: 

1 2_~" (15) t(2s + 1, 2s) _< ~ + 

This gives the best known bound for t(5, 4) and t(7, 6). Starting s = 4, inequality 
(15) can be improved. 

Bounds (12), (13), and (15) are based on Constructions 1-3. 
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Construction 1 [41]. Most  of the known constructions of Tur/m systems have a 
relatively small number of classes of equivalent elements. In a typical system, the 
set of elements is partitioned into a fixed number of groups, and whether r ele- 
ments form a block depends only on the groups they belong to. In contrast, our 
construction is based on the ordering of the elements. We denote them 1, 2, . . . ,  n. 
Elements ix < i2 < " ' "  < i2s form a block of the system if the Boolean vector 

((i x + 1)mod2,(i2 + 2)mod2 . . . . .  (i2s + 2s)mod2) 

contains exactly s zeros and s ones. It is easy to prove by induction on s that the 

resultingsystemisaTurfin(n,2s+l,2s)-system. Itssizeis((2;)2-2S+o(1))(;s) 
which gives (12). 

Construction 2 [7]. We identify the n elements with the lines (rows and columns) 

of an x -matrix M whose entries are zeros and ones. We say that a 

submatrix of M is even if the number of its rows, the number of its columns and 
the sum of its entries are even numbers. Now let 2s lines of M form a block of the 
system if either all of them are rows, or all of them are columns, or they induce an 
even submatrix. Obviously, the resulting system is a Tur~in (n, 2s + 1, 2s)-system. 
Its size depends on the matrix M. Let the entries of M be independent random 
variables taking values 0 and 1 with probability ½ each. Then any 2i rows and any 
2(s - i) columns (with 1 < i _< s - 1) induce an even submatrix with probability 
½. Thus the expected number of blocks is 

(kn/2J~ (rn2/2]) l s~  (kn /2J~(  rn/2] 
2s f + + 2 i = ~ \  2i , ] \ 2 ( s - i ) J  

- l ( ( k n / 2 J '  ~ (!n2/s2])) 1 ~  (Ln/2J'~( ~n/2] 
2 \ \  2 s  J + + 2 ~ = o \  2i / \ 2 ( s - i ) / /  

_ + + 1 n 

which yields (15). 

C o n s t r u c t i o n  3 [12]. We assume that n = 0 m o d l  and divide the n elements into 1 
equal groups A 0, Ax . . . . .  A , .  For a subset B ~ A o U Ax O'." t_J A , ,  we denote 
by d(B) the number of indices i ~ {0, 1 . . . . .  l - 1} satisfying Ai N B = Z,  and set 

l - 1  

w ( ~ =  ~ i[A~NBI. 
i = 0  

Let  d~ k denote the family of all k-element subsets of A o U A t U.-. U Az-~. Let a 
subfamily :~i consist of those B e ~ '  which satisfy 

w(B) + j = O, 1 . . . .  or d(B) (mod I). (16) 
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We claim that ~j  is a TurAn (n, r + 1, r)-system. Indeed, for any C ~ ~¢,+1, there 
are n - d(C) indices i such that B N A~ ~ ~ and thus at least one such index can 
be found among 

(w(C) + j ) m o d / ,  (w(C) + j - 1)mod/, . . . .  (w(C) + j - d(C))modl.  

For any x ~ (Bf~A~), the subset B = C \ x  satisfies (16), since w(B)= w ( C ) -  i 
(rood l) and d(B)> d(C). 

We denote ~¢" = {B ~ ~¢': B fqAi = ~}. Now, to estimate min{l~ol, I~xl,-.. ,  
1~-11}, we use the fact that any B e ~¢' belongs to exactly d(B)+ 1 families 
among ~o, ~ i  . . . . .  ~1-1. Thus 

I - 1  

[&~l = ~ (d(B) + 1) = I~¢'t + I~¢~1 + I~¢iI + " " +  Ise;-xl 
j = O  B~ s¢r 

= ( : ) + l . ( n ( l  r 1 ) / / ) < ( 1  + / ' ( 1 - - ~ ) ~ ) ( n )  (17) 

and 

min{l~°l' J ~ x l ' " "  I~l-~[} < ] -j=~0 I&l < + 1 - 7  r "  

It gives 

( t ( r + l , r ) £ ~ +  1 -  

/ .  

The substitution 1 = 1--~r (1 + o(1)) produces (13). 

To obtain (14), we combine the main ideas of Constructions 1-3. Consider a 
system of r-element blocks. Its automorphism is a permutation of the elements 
which preserves the set of blocks. The automorphism group generates an equiva- 
lence relation on the elements as well as on the blocks. We denote the classes of 
equivalent elements by A1, A2, . . . ,  A~. Then any equivalence class ~ of blocks 
corresponds to an integer partition r = bl + b2 + " "  + b~ such that 

= a(bl,b~ . . . . .  b~) = {B: I Bn , i l l  = b~,lBnA~] = b2 . . . . .  IBna~l = b~}. 

Suppose that the considered system is a Tur in  (n; r + 1, r)-system. We claim tha t  
one may omit at least half of the blocks from every present class ~(b~,b2 . . . .  ,b~) 
whenever bl > 2, b2 > 2 . . . .  , b~ > 2. As a result, we will have a Tur in  (n, r + 1, r)- 
system of a smaller size. Let us first suppose that r = 21 and b~ = b2 . . . . .  b~ = 2. 
We pick up an/-dimensional matrix M whose ith dimension corresponds to the 
equivalence class Ai. A block B e 8(2, 2 . . . . .  2) corresponds to a (2 x 2 x ... x 2)- 
submatrix of M. We say that B is even or odd ff the sum of the entries of the 
corresponding submatrix is such. Similarly to Construction 2, we may omit all 
odd blocks from ~(2, 2 . . . .  ,2). Now let r > 2/, and bl, b2 . . . .  , bl satisfiy bl + 
b2 + "'" + b~ = r and b i > 2 with i = 1, 2 . . . .  I. Similarly to Construction 1, we 
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linearly order the elements within each class Ai. For a block B e ~(bl,  b2 . . . . .  hi), 
we name its 2-project!on the (2/)-element subset which includes the two maximal 
elements from each intersection B fqA  i. We omit all blocks B e & ( b l , b  2 . . . . .  bz) 
which have odd 2-projections (with respect to the/-dimensional matrix M). If the 
entries of M are independent random variables equal to zero or one with proba- 
bility ~,, the expected number of omitted blocks is ~i~(b~,b2 . . . .  ,b~)l. Applying this 
to Construction 3 and choosing l =  r/(lnr + lnlnr), we get (14) (see [46] for 
details). 

If we are able to strengthen one of the intermediate assertions, we would im- 
prove inequality (14). Namely, having n elements divided into I equal groups, we 
need to find a family of (ml)-element subsets, when (a) every subset contains m 
elements from each group, and (b) any (ml + 1)-element subset, that contains at 
least m elements from each group, has to contain at least one of the chosen (ml)- 
element subsets. If we find such a family of size 

(Cm + o(1)) as n, 1 --* oo, 

we will get by similar arguments the upper bound 

In r 
t(r + 1,r) < (C,, + o ( 1 ) ) - - .  

r 

To obtain (14), we used m = 2 and C2 = ½. 

4.2. The General Case 

The simplest general upper bound 

< ( r -  i y  -~ 
t(k, r) _ \ ~ - - ~ , /  

was obtained in [41]. The construction is based on the elementary fact: 

(18) 

l.emma. Let  bo, bl . . . . .  bz-1 be (cyclically ordered) reals, and b = (bo + bl + " "  + 
bl_l)/l. Then there exists an index m such that 

Vs = 1, 2 , . . . ,  l: b,~ + bm+l + "'" + b,,+s-i > sb 

(we denote bt = bo, bz+l = bl and so on). 

Proof. Choose m, q s {0, 1 . . . .  , l  - 1} to minimize the value bm-q + b,,-,+l + "'" + 
bm-1 - qb. Then 

b.,_q + bin-q+1 + " "  + bm-~ + b.  + " "  + b,.+,_~ - (q + s)b 

> b m - , +  bm-,+1 + "'" + bm-1 - qb 

which implies the statement of the Lemma. 
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Construction 4141] .  We  select integers I and  d such tha t  r = [dk/l] and divide the 
n elements into l app rox ima te ly  equal  groups  Ao, AI  . . . . .  A,_I.  An r-element  
block B is included into the sys tem if the sizes of intersections b~ = IB N All (i = 
0, 1 . . . . .  l --  1) satisfy the condit ion:  there exists an index m such tha t  

k 
Vs = 1, 2 . . . .  , d: F~ b .+i -1  > s 7 

i=1  

(we again denote  bz = bo, b~+a = bl and  so on). I t  follows f rom L e m m a  tha t  this is 
a T u r i n  (n, k, r)-system. Count ing  the blocks, we get 

T(n,k,r)  < 1 + ¢ n 7 ~ (19) 
- -  a l t a 2 [ . . . a d [  

where the s u m  is t aken  over  all sequences of  non-negat ive  integers (a~, a2 . . . . .  ad) 
k 

satisfying al  + a2 + "'" + ad = r and  a 1 + a 2 + " " a  s > s T with s = 1, 2, . . . ,  d. If  

1 

we choose l --- k - 1 and  d = r - 1, the value of the sum is equal  to ~ ( r  - 1) ' -1 

which gives (18). F o r  some k and  r, there is a bet ter  choice. In  part icular ,  (19) with 
121  k = 7, r = 5, l = 5, d = 3 yields t(7, 5) _< 2~-~. 

Frankl  an R6dl  [12] used probabi l is t ic  a rguments  to p rove  the bound  

a(a + 4 + o(1)) lnr  
t(r + a, r) <_ as r ~ ~ ,  a = const. (20) (:) 

Their  a rguments  were extended by  Sidorenko [46] to p rove  the inequalities 

( l + o ( 1 ) ) ( k - r +  1)In (kr) 

t(k, r) < as r -* oo, k >_ r + r / log 2 r, (21) (:) 
and 

t(k, r) <_ (c~ + o(1))r 2 as r ~ oo, k = (7 + o(1))r (22) 

with c~ = (7 - 1)[71n7 - (7 - 1)In(7 - 1) + o(1)], 7 > 1. I t  is interesting to com-  
pare (21)or  (22) with the lower b o u n d  (9). 

If  r = 2 (see Section 6), the equal i ty  in (18) is attained. The  conjectured values 
of the T u r i n  numbers  with r = 3 (see Section 7) also satisfy the equali ty in (18). 
T u r i n  [58] conjectured tha t  the equal i ty is a t ta ined whenever  k - 1 is a mult iple  
of r - 1. A counte rexample  k = 13, r = 4 was found in [41]. In  general, by  using 
(7) with l = 2s - 1, e l  = ea = ""e~ = 2s and  applying (12), we get the counter-  

k - 1  
example  k = 4s 2 - 2s + 1, r -- 2s, = 2s for any  s > 2. Inequal i ty  (22) shows 

r - 1  
k - 1  

tha t  the conjecture  fails for any  rat io  ~ when r is sufficiently large. 
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5. The Case o f  Small  
•n 

k - 1  

In the case qr < n, one may easily prove by induction that the system ofq disjoint 
r-element subsets is the optimal Turfin (n, n - q + 1, r)-system. Thus 

n r 
T(n, ct + 1, r) -- n - ct with 1 < - __ - -  (23) 

-o~ r - l "  

The next zone was found in [432 (the proof was also published in [45]): 

+1") = t 3. _13, _1=1 
L I t - 1  J 

r n 3r 
f i r  -= Omod 2, _< - _< -----~;  

r -  1 e 3 r -  

3r r n + 1 
if r - 1 rood 2, _< 

r - 1  e - 3 r - 3 "  

The right hand side of (24) gives a lower bound for any larger n. 

(24) 

6. The Case r = 2 

Mantel [-26] in 1907 determined T(n, 3,2), and Tur/m !56] in 1941 determined 
T(n, k, 2) for any k. We write the result of Tur~n in the following form: 

m(m + 1)~ n 
T(n,~ + 1,2) = m n  2 ifrn < - < m + 1. (25) 

0~ 

Tur~n also proved that the extremal system is unique. Namely, the n elements are 
divided into ~ = k - 1 nearly equal groups; a pair of elements {x, y} is a block of 
the system if x and y belong to the same group. 

7. The Case r = 3 

Two old conjectures of Turfin concern the numbers T(n,4, 3) and T(n, 5, 3). In 
order to get a Turfin (n, 4, 3)-system, we divide the n elements into 3 almost equal 
groups Ao, At, A2, and take all triples {x,y,z} with x, yeA~,  ze(AiUA~+l), 
i = 0., 1, 2, where A 3 = Ao. This gives 

~ m ( m - 1 ) ( 2 m - 1 )  i f n = 3 m ;  

T(n,4,3) < ~m2(2m - 1) i fn = 3m + 1; (26) 

L m 2 ( 2 m + l )  i f n = 3 m + l .  

One of the famous conjectures of Tur/m is 

Conjecture 2. The equality in (26) holds. 

Katona, Nemetz and Simonovits [19] established the equality for n < 9, 
Stanton and Bate 1-47] for n = 10, Radziszowski and Zou [371 for n = 11, 12, 13. 
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In contrast to the case r = 2, this construction, if optimal, is not unique. Other 
variants of (n, 4, 3)-systems with the same number of blocks were found by Brown 
[2]. Later Kostochka [21] found 2 r'-2 non-isomorphic constructions of Turhn 
(3m,4,3)-systems of size m ( m -  1)(2m-  1). A nice representation of those con- 
structions in terms of directed graphs was given by Fon-Der-Flaass [10]. The 
Kostochka's systems are indexed by ordered partitions m -- Ix + 12 + " "  + l, where 
l~ > 1 . . . .  , 1,_1 > 1, l, _> 2. There are 2 m-2 such partitions. Given a partition, 
we divide 3m dements into 3s subsets A o such that i~  Za, j e {1,2 . . . .  s}, and 
[A~jl = lj. Now we take triples T which satisfy 

s A 1. T ~ ~j=~ o with some i ~ Za, or 
2. T = {x ,y , z}  where x ~ A 0 and y, z ~ (Us+~-J A,+l,t)O(U~=s+2_jAi_Lt). 

They form a Turfin (3m, 4, 3)-system of the required size. 
For m < 4, all (3m,4, 3)-systems of size m(m - 1)(2m - 1) are Kostochka's sys- 

tems (it was shown in [44] for m = 3 and in fl37] for m = 4). 
We say that a subset of elements of a system is a clique if any r-tuple within 

this subset is a block of the system. In each of the Kostochka's systems, the ele- 
ments are divided into 3 cliques of size m. 

Conjecture 3. The elements of  any Turin (3m,4, 3)-system of  size m ( m -  1)(2m- 1) 
are divided into 3 cliques of size m. 

By dividing n dements into two almost equal groups and taking all triples 
within each group, we get a Tur/m (n, 5, 3)-system. Hence, 

Turhn conjectured (see, for instance, [58]) that this construction is the best possi- 
ble and the equality in (27) holds. However, it was disproved for all odd n > 9 by 
Sidorenko and Kostochka [44] (for n = 9 it was done earlier by Sur~myi 1-49]). 

Construction 5. We divide the n elements into 9 groups A~, A2, . . . ,  A9 which 
correspond to the points al ,  a2 . . . . .  a 9 of the finite affine plane of order 3. The 12 
lines of the plane are denoted as follows: 

L1 = (al ,a6,a8},  L g =  (a2,a , ,ag} ,  

L 2 =  (ax,az,a3},  L8 = {aT, as, ag}, 

L a =  {aa,a , ,as} ,  L7 = {az, a6,aT), 

L , =  {al,a4,aT}, L 6 = {a3,a6,ag}, 

M1 = M9 = {at ,as ,  ag}, 

M2 = Ms = {a2, as, as ), 

M a = M7 = {aa,as,aT}, 

M 4 = M 6 = {a, ,as ,  a6}. 

We note that ai ~ L~ and a~, a5 e Mifor  i ~ 5. Now we take triples x e Ai, 
z e As that satisfy 

1. i ~= j = k, or 
2. i, j, k are pairwise distinct, and a~, a~, as are collinear, or 
3. i = j ,  k ~ i and ak e L I U M  i. 

y ~ A j ,  
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If we also require lAst = 1, then the resulting triples form a Turhn (n, 5, 3)-system. 
Making the sizes of the remaining 8 groups nearly equal, 

Iaxl >--IAal >- Ia91 > [ATI > IZ21 >- tart >-IA81 >-1-441 >_ 1-411 - 1, 

we get 

where 

T(2m + 1, 5, 3) < 3 + - f (m)  

f (m)  = 

~m 
-~ if m = 0 rood 4; 

m - 1  
if m = 1 mod 4; 

4 

m - 4  
if m =- 2 mod 4; 

2 

m - 3  
ifm = 3rood4. 

(28) 

for m = 7, a better bound T(15, 5, 3) < 89 is known [44, 1]. 
The values T(n, 5, 3) and all the optimal systems for small values of n were 

determined in 149, 47, 1]: 

T(6, 5, 3) = 2, T(7, 5, 3) = 5, T(8, 5, 3) = 8, T(9, 5, 3) = 12, 

T(10,5,3) = 20, T(11,5,3) = 29, T(12,5,3) = 40, T(13,5,3) = 52, 

The unique (13, 5, 3)-system of size 52 is formed by the collinear triples of points 
of the projective plane of order 3. For even values of n, no counterexample is 
known to the Turfin's conjecture on the equality in (27). 

In contrast to (n,4, 3)-systems, one may find (n, 5, 3)-systems with 2 

blocks where the size of the largestclique is only x/~. 

Construction 6. Let p be a permutation of order m. We construct a system whose 
dements are divided into 2m groups A1, A2 . . . .  , Am, BI, B2 . . . .  , Bin. A triple 
{x, y, z} is a block of the system if 

1. x E A~, y ~ A s, z ~ Ak where i, j, k are distinct, or 
2. x e Bi, y e B i, z ~ B, where i, j, k are distinct, or 
3. x, y e Ai, z E Bj where j ¢ i, or 
4. x, y e Bj, z ~ Ai where i q: p(j) ,  or 
5. x, y, z ~ Ai, or 
6. x , y ,  z e B j .  

It is easy to check that any 5-element subset contains at least one block of the 
system. We denote ai = Ia,I, b, = In, I, n = al + a2 + "'" + am, and set the addi- 
tional condition: 
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7. ai = bt = %(o for i = 1, 2 . . . . .  m. 

N°w any element bel°ngs t°  exactly ( n-2 1) bl°cks" Theref°re' we have a Tur~in 

(2n, 5, 3)-system of size 2 ( ~ ) .  If indices il, i2, . . . ,  ik form a cycle C of the permu- 

tation p, all numbers a~l, a~2, . . . ,  %,  b~l, b~2 . . . . .  bik must be equal to the same 
value d -- d(C). We denote the cycles of the permutation by Cx, C2 . . . .  , Cr Let ct 
be the length of C~, and di = d(Ci). Then 

cl + c2 + " "  + ct = m, 
(29) 

C l ' d  I -1- c 2 " d  2 --}- . ' .  q- c t" d, = n. 

We call a set of parameters (c 1, c2 . . . . .  c,, dl,  d2 . . . . .  dr) that satisfies (29) a repre- 
/ \ 

Every representation produces a(2n,5,3)-system of size 2 ( ~ ) .  Sometimes, sentation. 
\ - - /  

different representations produce isomorphic systems. We name a representation 
(cl, c2 . . . . .  ct, dr, d2 . . . . .  d,) canonical if one satisfies the following conditions: 

(i) d t _> d 2 ~ " "  >_ dr; 
(ii) d i = di+ 1 implies c~ > ci+t;  
(iii) If t = 1 then dl > 1; 
(iv) If t > 1 then d,-t > 1; 
(v) I f t = 2 t h e n c l + c 2 > 2 ;  
(vi) If t = 2, ct = 1, d2 = I then dl # c2. 

Different canonical representations produce non-isomorphic Tur/m systems. 

Construction 7. Consider a pair of representations 
l ! t . ! I .  I ct " dl + c2 d2 + " "  + ct, dr, --- n', (30) 

t l  • t !  t t  • / t  I !  • I t  ~ n ¢ l .  ct dt + c2 d 2 + "'" -~ Ct,, de, (31) 
! ! f! t t  / /  n Let A't, A~ . . . . .  B1, B2, ... and A t, A 2 . . . . .  Bz, B2, ... denote the equivalence 

classes of elements in the  systms produced by these representations. Take all 
blocks of both systems and add blocks {x, y, z} which satisfy 

8. x , y ~ A ; , z e B j ' , o r  
9. x, y e A ~ ' , z e A j ,  or 

10. x, y e B [ , z e A j ' , o r  
11. x, y e B ~ ' , z ~ B j ,  or 
12. xeA' i ,  y e A j ,  i # j ,  z e A ~ , o r  
13. x e A [ , y e A j ' , i # j , z ~ B ~ , o r  
14. x e B ~ , y e B j ,  iv~j, zeB~ ' ,or  
15. x e B ~ ' , y E B j ' , i # j ,  zeA'~. 

It gives a Turhn (2(n' + n"),5, 3)-system of size 2 (  n' + n") ' 3 . We call it the sys- 
\ / 

tern produced by the pair of  representations (30), (31). Different pairs of canonical 
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representations with t' > 1 and t" > 1 produce non-isomorphic system, and these 
systems are distinct from the systems produced by single representatons. 

The systems in Constructions 6 and 7 do not have to contain large cliques. In 
particular, the representation 2k. k = 2k 2, as well as the pair of representations 

k . k = k  2, k . k = k  2, produces a Tur ,n  (4k2, 5, 3)-system with 2(2~ 2 ) ' ' "  blocks, where 

the size of the largest clique is 2k. 
The best known (n, k, 3)-systems with k > 6 can be constructed as unions of 

(n', 5, 3)-, (n", 4, 3)- and (n", 3, 3)-systems. In particular, using (7), (26) and (27), we 
get 

T(n, a + 1, 3) < ~ i=o 

or equivalently, 

T(n, ~ + 1, 3) < n - 3 a 
2n 

f o r m < - - < m +  1. 

2/'/. 
Applying (28), one may improve (32) for those values of n where - -  is not integral. 

2n.  
In the case when - -  is an  integer, we expect that the old conjecture of Turhn 158] 

is correct: 

Conjecture 4. 

T ,~ + 1,3 = 3 " 

Thus we believe that the asymptotic behavior of the numbers T(n, k, 3) is what 
Turfin and other researchers (e.g. see I-41) conjectured: 

Conjecture 5. 

(!) 
The best known lower bound for t(4, 3) was found by Giraud [17] (see for- 

mula (11) in Section 3): 

t(4, 3) _> - -  = 0.4029 . . . .  
6 

• n 

For small raUos - ,  the values T(n,~ + 1,3) were found in [43,44]: 
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T(n, at + 1, 3) = 

n 3 
if 1 <  ~ < 7; 

3 n 
3n - 4~ i f=  < - < 2; 

2 Ct 

n 9 
4n - 6ct if 2 < - _< -:, 

4 
4n - 9~ # - 1 ;  

4 n - 6 ~ + 2  i f 4 n - 9 ~ t = - l , l ,  2. 

We expect the next  zone to be as follows. 

(33) 

Conjecture 6. 

r(n, o~ + 1, 3) = 8n - 2 ~ if ~ _< ~ _< ~. 

• The corresponding upper  bound  follows from formulae (7), (28) and (32). 

8, The Case r = 4 

Formulae  (23) and (24) imply 

It was proven in [43] that  

4 
i f~ < n < : ~ ;  

3 

3~ i f ~  < n < ~ .  

(34) 

T(6s + 1, 4s + 1, 4) = 3s + 4, 

T(6s + 2, 4s + 2, 4) = 3s + 3. 

9 
Feng-Chu Lai and Gera rd  J. Chang E23] proved U(n, q, 4) + n > ~q,  and this can 

be casted as an upper bound  for Turhn  numbers  (see Section 1, formula (1)) with 
3 n>_~: 

7 9 
T(n,~ + 1,4) > ~n  - ~ .  

No te  that  Tur~tn numbers  with r = 2 form convex sequence: 

T(n, k, 2) - T(n - 1, k, 2) _ T(n + 1, k, 2) - T(n, k, 2). 

The same is true for all determined values of Turfin numbers  with r = 3. As (24) 
3 

and (34) show, there is no convexity starting r - 4. F o r  instance, if ~ ~ _< m _< ~ ~, 
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then 

T(2m, • + 1, 4) = 5m - 3~, 

T(2m + 2~ ~ + 1, 4) = 5m - 3ct + 5, 

T(2m + 1, ~ + 1, 4) = 5m - 3~ + 3, 
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T(2m + 1, ~ + 1, 4) - T(2m, ~ + I, 4) > T(2m + 2, • + 1, 4) - T(2m + 1, ~t + 1, 4). 

The only case with r > 3, when there exists a plausible conjecture on the 
asymptotic behavior of T u r i n  numbers, is k = 5, r = 4. In this case, a beautiful 
construction was found by Giraud 116] and then generalized by de Caen, Kreher 
and Wiseman [7]. We have already described it in Section 4 (see Construction 2). 
Let h(l, m) denote the minimal number of even (2 x 2)-submatrices in an (l x re)- 
matrix. We also set h(2l) h(l, l) and h(21 + 1) = h(l, l + 1). Construction 2 yields 
the upper bound  

T(n,5,4)<([n/42J)+(l(n41)/2J)+h(n ). (35) 

Minimization of the number of even (2 x 2)-submatrices is equivalent to the min- 
imization of the sum of square entries of AA* where A is an (l x m)-matrix with 
entries equal to 1 or - 1 .  Naturally, this problem is related to the existence of 
Hadamard matrices. We are going to show that 

h(n) = 

+ (,,. 

L. +([n/24J)+([(n22)/4j) if8k-5 

i f 8 k - 3 ~ n ~ 8 k + l ,  

(36) 

~ n ~ 8 k - ~  

provided that there exists an Hadamard~ matrix of order 4k. Indeed, the lower 
bound in (36) for 8k - 3 < n < 8k + 1 follows from the inequalities 

and 

h(l,m) > (~)h(2,m). 

In any (3 x ( 4 k -  2))-matrix, . there are two rows wtalch induce more than 
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In any (3 x ( 4 k -  2))-matrix, there are two rows which induce .more than 

2 ( 2 k ;  1) even (2 x 2)-submatrices. Thus 

h ( l , 4 k - 2 ) > ( ~ ) ' 2 ( 2 k 2 1 ) + T ( l , 3 , 2 )  

which is the lower bound in (36) for n = 8k - 4, 8k - 5. Now assume that there 
exists an Hadamard matrix of order 4k. We replace its negative entries with zeros. 

The resulting matrix and its submatrices of size ( [ 2 J  x l - -  j yield the up- 

per bound in (36) for 8 k -  5 <__ n < 8k. To get the upper bound for n = 8k + 1, we 
extend the matrix by an arbitrary column. 

The identity matrix of size 5 yields h(10) = 40. The case n = 8k + 2, k > 1 
remains unresolved. 

The exact values of T(n,5,4) were determined for n < 10 in [40] and [6]. In 
the former work, the uniqueness of the Tur~in (10, 5, 4)-system of size 50 was also 
proven. It is interesting that the equality in (35) is attained (and thus the de- 
scribed construction is optimal) for every n < 10. We expect that this construc- 
tion is asymptotically optimal. 

Conjecture 7. 

5 
t(5,4) = 1-6" 

For k = 6, 7, we describe the best asymptotical constructions that we know. 

Construction 8. We take two matrices with the same number of rows: an ( m x  m')- 
matrix M' and an (mx  m")-matrix M"; their elements are zeros and ones. The 
elements of the system are divided into 3 groups of sizes m, m' and m"; they corre- 
spond to the set of rows (which is common for both matrices), the set of columns 
of M', and the set of columns of M". We take all quadruples within each group as 
well as those quadruples which correspond to even (2 x 2)-submatrices in either 
matrix. We also take every quadruple which corresponds to a pair  of columns of 
M' and a pair of columns of M". It gives us a Tur~m (m + m' + m", 6, 4)-system. 
Therefore, 

(4) (4)(4) T(m + m' + m", 6, 4) < ÷ + 

+ h(m, m') + h(m, m") + \ 2 / \ 2 I" (37) 

If m' = m" = Inp.], m = n - m' - m", inequality (37) and the simple probabilistic 
1 l m . 

• (:) r(n,6,4) <_ (8p 4 + 6p2(1 -- 2p) 2 + (1 -- 2p) 4) + d)(n3). 
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The polynomial in the right hand side attains the minimum value 0.176614234... 
at p = 0.29419 . . . .  Thus we get t(6,4) < 0.17662. 

The exact values of T(n, 6, 4) were determined in [8] for n < 10. 

Construction 9. In order to construct a Tur in  (n, 7, 4)-system, we divide the n ele- 
ments into 8 groups Affk where i,j, k ~ {0, 1} and 

IAoool < Iaooll < IAoxol < IAo111 < [alool < IAloll 

< IAllol < Ialxxl < Iaooo[ + 1. 

The system includes quadruples Q which satisfy 

1. Q~Aijk, i ,j ,k~{O, 1},or 
2. IQNA~jkI= 3, IQNAl.x-i,k[ = 1, i,j,k, le{O,l} ,or  
3 .1QNA~kI=IQAA,~I=2,  i,j , l ,m~{O, 1}, (i,j)#(l,m),or 
4. iQNA~/kI=2, IQNao.,~.l_kl=lQNhl,m,x_kl= l, i,.hk, me{O, 1},or 
5. IQnaookl = I a n A o l k l  = I Q N A l o ~ I  = IQAA11~I  = 1, k ~  {0,1}. 

This construction yields the asymptotical upper bound t(7, 4) < ~2 and the best 
known bounds for small n: T(11,7,4) < 17, T(12,8,4) _< 26, T(13,7,4) < 40, 
T(14,7,4) < 58, T(15,7,4) < 81, T(16,7,4) < 108. The construction is optimal for 
n < 10: T(8,7,4) = 2, T(9,7,4) = 4, T(10,7,4) = 10. 

9. The ease of  Small n - k (Covering Numbers) 

While the behavior of the Tur in  numbers T(n, k, r) is studied with a fixed r (or 
fixed r and k), the covering numbers C(n, m, p)= T(n, n -  p, n -  m) are usually 
investigated with fixed m and p. The titles "Tur in  problem" and "covering prob- 
lem" represent two different viewpoints in the 3-dimensional parameter space: 
they state along which subspaces the problem will be primarily studied. A de- 
tailed survey of results on the covering numbers can be found in [34]. Tables of 
the best known upper bounds for C(n,m,p) with n < 32, m _< 16, p < 8 are pub- 
lished in [18]. 

Inequality (2) yields the SchSnheim bound: 

where 

C(n, m; p) >_ L(n, m, p), 

r_. r , - ,  r... [ , - , ,  + ,]... 
' 111. 

Rfdl  [38] proved that 

C(n, m, p) = (1 + o(1))L(n, m, p) (38) 

where m, p are fixed and n--, oo. Kuzyurin [22] showed that (38) can be extended 
n 

to the case when p is fixed and -- ~ m. 
m 
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The case m = 3, p = 2 was solved by Fort and Hedlund [11]: 

C(n, 3, 2) - L(n, 3, 2), 

and the case m = 4, p = 2 by Mills [27, 28]: 

~ L(n,4,2) + 2 i fn = 19; 

C(n,4,2) = ~L(n,4,2) + 1 ifn = 7, 9, 10; 
/ 

LL(n,4, 2) i fn # 7,9, 10, 19. 

The case m = 5, p = 2 was not resolved completely [14, 31, 24, 35, 36, 33, 48]. For 
instance, the subcases n - 0 rood 4 and n = 13 mod 20 are still open. 

For m = 4, p = 3, it was proven in [29, 32] that C(n, 4, 3) = L(n, 4, 3) for any n 
except a finite number of values n = 7rood 12 in the range n < 54211. 

If a system of m-element blocks covers all p-element subsets of an n-element 
set, one may  replace each element by I distinct elements and get a system of (lm)- 
element blocks covering all p-element subsets of an (/n)-element set. Thus 

C(ln, Im, p) < C(n, re, p). (39) 

Because of (39), one may hope to classify all values n, m such that C(n, m, p) = t 

(with fixed p, t) in terms of --.n In the cases p = 2 and p = 3 such a classification 
m 

was obtained for t < 13 [30, 53] and t < 8 [50, 54], respectively. 
Todorov [51] proved 

(,~o ,-1 ) p,+Z_ 1 C aip,-i, ~ _ J - l - i  u i p  , l = 
i=o p - -  1 

where p is a prime power and ao >-- al > "'" > a, > 0. The construction is based 
on finite projective geometries, and the lower bound follows from the Schrnheim 
bound. Some related results are given in [13, 25, 52, 55]. 

In most of the cited results, C(n, m, p) is equal or very close to L(n, m, p). On 
the other hand, formulae (23) and (24) imply 

(p + 1)m 
C(n, m, p) = p + 1 if n < - - ,  (40) 

P 

3 ( p + l ) -  ~ i f n - m ~ O m o d 2 ,  

(p + 1)m 3(p + 1)m 
- - _ < n <  

p 3 p -  I 
C(n, m, p) = 12(n-p-I) I 

3 ( p + l ) - L  n~Sm----J ' ]  i f n - m = l m o d 2 ,  

(P + 1 2  _< n < (p + 1)(3m - 1) 
p 3 p -  1 

(41) 
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The right hand side of (40) is equal to the Sch/Snheim bound, L(n, m, p), but the 
right hand side of (41) is far from L(n, m, p). 

Inequalities (4) and (8) sometimes are better than the Schfnheim bound. 
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