corresponding conformational state most probably would have a low population. Hence, in the favored cis arrangement, the iPr group is equatorial and the C_3 -OH axial. The relative orientation of C3-OH and C2-OH groups follows from the observed value of J_{23} . Vicinal diols are known to exhibit 5.6 and 2.3 Hz 3-bond ¹H-¹H couplings for rela-

tive orientations of the OH groups that correspond, respectively, to the trans diaxal and cis arrangement in a nondistorted cyclohexane skeleton 13. The measured value of 4.8 Hz therefore suggests that both C₃ -OH and C₂ -OH are axial. Further corroboration to this conclusion was provided by the magnitude of the 2 JHCOH couplings (3 and 4 Hz, respectively, for C₂ -H and C₃ -H). These couplings are known to depend on the preferred rotational orientation of the OH group which, in turn, reflects its steric interactions with neighbouring groups 14. In vicinally di- and tri-substituted 6-membered ring systems equatorial hydroxyl groups usually exhibit a higher (6-7 Hz) J_{HCOH} couplings, whereas axially oriented OH groups systematically show lower values (3-4 Hz) 15.

¹H-NMR furnished no direct information regarding the orientation of the substituents at C₁, although the linewidth of the 7-CH₃ protons (1.6 Hz) suggested the occurrence of a 4-bond W-coupling with one of the C6 methylene protons, typical of axially oriented methyl groups 16.

The stereochemistry at C₁ was conclusively demonstrated by converting the new product into its acetonide and subsequent acetylation of the latter. 1H-NMR showed the acylable OH to be at C₃, i.e. the acetonide formation occurred with the participation of C_1 -OH and C_2 -OH. Since the stereochemistry of this reaction requires that the 2 alcoholic functions be cis one to another, in the preferred conformation the OH group at C_1 must be equatorial and the C_1 -methyl axial.

The stereochemistry of the molecule is displayed by I. Synthesis of the racemic menthane triols is in progress and will be reported in a separate publication.

- J. A. Hirsh, in: Topics in Stereochemistry, vol. 1, p. 199. Ed. N. L. Allinger and E. I. Eliel. Wiley Interscience, New York 1967.
- R. J. Abraham and G. Gatti, J. chem. Soc. Ser. B 1969, 961.
 J. L. Pierre, M. Vincens and Vidal, Bull. Soc. chim. Fr. 1971, 13
- 14 1775.
- B. Casu, M. Reggiani, G. G. Gallo and A. Vigevani, Tetrahedron 22, 3061 (1966).
- See e. g. N. S. Bhacca and D. H. Williams, Applications of NMR Spectroscopy in Organic Chemistry. Holden-Day, San Fran-

A new furanoid fatty acid from the soft corals Sarcophyton glaucum and gemmatum

A. Groweiss and Y. Kashman

Department of Chemistry, Tel-Aviv University, Ramat-Aviv 61390 (Israel), 29 July 1977

Summary. The isolation and spectral data of a new furanoid fatty acid obtained from 2 Sarcophyton soft-corals is re-

Most recently, the isolation from fish lipids of a whole series of furane containing long-chain fatty acids, of the general structure 1, have been reported 1.

$$CH_3(CH_2)_m$$
 (CH_2) $_nCO_2H$
1 R_1 , $R_2 = H$, CH_3 $m = 2-5$ $n = 7-12$
1a R_1 , $R_2 = CH_3$ $m = 4$ $n = 2$
(Me-ester)

We wish to represent here the isolation for the 1st time of a new member of this series $\mathbf{1a}$ ($R_1 = R_2 = CH_3$, m = 4, and n = 2, as the Me-ester in about 0.04% dry weight) from a different marine organism namely, from a soft coral. Compound 1a could be revealed in the petrol-ether fraction of 2 species of Sarcophyton, S. glaucum and S. gemmatum, while in S. decaryi and 2 other Sarcophyton sp. it was absent. Compound 1a has been assigned the methyl 3,4-dimethyl-5-n-pentylfurylpropionate structure on the basis of the following evidence. IR(CCl₄): 1740, 1598w, 1365, 1220, 1168, 1122, 1035, 990, 710 cm⁻¹.UV (MeOH): λ_{max} 225 nm(ϵ 7,400), positive Ehrlich test for furane rings. NMR (CDCl₃, 270 MHz); δ 3,66s(OCH₃), 2.84t (J = 7.6 Hz, 2H) 2, 2.58t (J = 7.6 Hz, 2H) 2, 2.47t(\bar{J} = 7.6, 2H), 184s(3H), 1.82s(3H), 1.21–1.31m(4H) and 0.88t(J = 7.0)Hz, terminal methyl). ¹³C-NMR (CDCl₃, 22.63 MHz): 173,4s (CO₂Me), 149.2s, 145.9s, 115.5s and 114.7s (the 4 furane ring carbon atoms)3, 51.5q (OMe), 33.1t, 31.5t 28.4t, 26.1t, 22.5t, 21.8t, 14.0q (the terminal n-pentylMe) and 8.3q (the 2 vinylic Me groups). MS: m/e 252.1694 ($C_{15}H_{24}O_3$, M^+ , 40%), 195.0993 ($C_{11}H_{15}O_3$, [M-C₄H₉]⁺, 100%), 179.1426 ($C_{12}H_{19}O$, [M-CH₂CO₂Me], 88%) and 135.0797 ($C_9H_{11}O$, 95%). The above data are in good agreement with the suggested substituted furane system4; however, the substitution sequence, suggested mainly according to the 1H-NMR5 and a speculative biosynthesis, demanded further evidence. Warming up of a solution of **1a** with maleic anhydride in benzene for 12 h gave the expected 1:1 adduct. The 2 methyl groups signals observed in the ¹H-NMR spectrum (δ 1.67s and 1.68s) established unequivocally the 3,4position of the Me-groups in 1a. The isolation of compound 1a from a soft coral is interesting from the biosynthetic point of view. The suggested 1,4-oxidation of fatty acids, followed by methylation and consequence cyclization to a furane ring, does not seem to be unique for fish and may be a more general transformation which has to be further investigated.

- a) R. L. Glass, T. P. Krick and A. E. Eckhardt, Lipids 9, 1004 (1974). b) R. L. Glass, T. P. Krick, D. M. Sand, C. H. Rahn and H. Schlenk, Lipids 10, 695 (1975). c) F. D. Gunstone and R. C. Wijesudera, J. chem. Soc. Commun. 1976, 639.
- The δ 2.84 and 2.58 triplets have proved to be vicinal protons according to a double resonance experiment.
- A. Kiewiet, J. De-Wit, W. D. Weringa, Org. Mag. Res. 6, 461 (1974).
- An alternative 4,5-dihydro oxepine structure is excluded by the Ehrlich test, resistance to hydrogenation, UV and MS spectra.
- K. C. Rice, J. R. Dyer, J. Heterocycles 12, 1325 (1975).