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corresponding conformational state most probably would
have a low population. Hence, in the favored cis arrange-
ment, the iPr group is equatorial and the C, —-OH axial.
The relative orientation of C; —OH and C, -OH groups fol-
lows from the observed value of J,,. Vicinal diols are known
to exhibit 5.6 and 2.3 Hz 3-bond 'H-'H couplings for rela-

tive orientations of the OH groups that correspond, respec-
tively, to the trans diaxal and cis arrangement in a non-
distorted cyclohexane skeleton!®. The measured value of
4.8 Hz therefore suggests that both C; —-OH and C, -OH
are axial. Further corroboration to this conclusion was
provided by the magnitude of the 2 Jucom couplings (3
and 4 Hz, respectively, for C, -H and C, -H). These
couplings are known to depend on the preferred rotational
orientation of the OH group which, in turn, reflects its
steric interactions with neighbouring groups 4. In vicinally
di- and tri-substituted 6-membered ring systems equatorial
hydroxyl groups usually exhibit a higher (6-7 Hz) Jucon
couplings, whereas axially oriented OH groups system-
atically show lower values (3—4 Hz)15.
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TH-NMR furnished no direct information regarding the
orientation of the substituents at C,, although the line-
width of the 7-CH, protons (1.6 Hz) suggested the oc-
currence of a 4-bond W-coupling with one of the C;
methylene protons, typical of axially oriented methyl
groups 6.

The stereochemistry at C; was conclusively demonstrated
by converting the new product into its acetonide and sub-
sequent acetylation of the latter. TH-NMR showed the
acylable OH to be at C,, i.e. the acetonide formation
occurred with the participation of C; -OH and C, -OH.
Since the stereochemistry of this reaction requires that
the 2 alcoholic functions be cis one to another, in the
preferred conformation the OH group at C, must be
equatorial and the C;-methyl axial.

The stereochemistry of the molecule is displayed by I.
Synthesis of the racemic menthane triols is in progress
and will be reported in a separate publication.
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Summary. The isolation and spectral data of a new furanoid fatty acid obtained from 2 Sarcophyton soft-corals is re-

ported.

Most recently, the isolation from fish lipids of a whole
series of furane containing long-chain fatty acids, of the
general structure I, have been reported!®.
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We wish to represent here the isolation for the 1st time
of a new member of this series 1a (R, = R, = CHy, m = 4,
and n = 2, as the Me-ester in about 0.049%, dry weight)
from a different marine organism namely, from a soft
coral. Compound 1a could be revealed in the petrol-ether
fraction of 2 species of Sarcophyton, S. glaucum and S.
gemmatum, while in S. decaryi and 2 other Savcophyton sp.
it was absent. Compound 1a has been assigned the methyl
3,4-dimethyl-5-n-pentylfurylpropionate structure on the
basis of the following evidence. IR(CCl,): 1740, 1598w,
1365, 1220, 1168, 1122, 1035, 990, 710 cm~L.UV (MeOH):
Amax 2253 nm{e 7,400), positive Ehrlich test for furane
rings. NMR (CDCl,, 270 MHz); § 3,66s(OCH,), 2.84t (] =
7.6 Hz, 2H)?, 2.58t (] = 7.6 Hz, 2H)?, 2.47t(] = 7.6, 2H),
184s(3H), 1.82s(3H), 1.21-1.31m(4H) and 0.88t{] = 7.0
Hz, terminal methyl). 1¥C-NMR (CDCl,;, 22.63 MHz):
173,4s (CO,Me), 149.2s, 145.9s, 115.5s and 114.7s (the
4 furane ring carbon atoms)?, 51.5q (OMe), 33.1t, 31.5t
28.4t, 26.1t, 22.5t, 21.8t, 14.0q (the terminal n-pentyl-

Me) and 8.3q (the 2 vinylic Me groups). MS: m/e
252.1694 (C;H,,0,, M*, 40%), 1950993 (C,,H,,0,,
IM-C,Hg]+, 1009%), 179.1426 (C;,H,,0, [M-CH,CO,Me],
889} and 135.0797 (C,H O, 95%,). The above data
are in good agreement with the suggested substituted
furane system¢?; however, the substitution sequence,
suggested mainly according to the 'H-NMRS and a
speculative biosynthesis, demanded further evidence.
Warming up of a solution of 1a with maleic anhydride in
benzene for 12 h gave the expected 1:1 adduct. The 2
methyl groups signals observed in the 'H-NMR spectrum
(0 1.67s and 1.68s) established unequivocally the 3,4-
position of the Me-groups in 1a. The isolation of com-
pound 1a from a soft coral is interesting from the bio-
synthetic point of view. The suggested 1,4-oxidation of
fatty acids, followed by methylation and consequence
cyclization to a furane ring, does not seem to be unique
for {ish and may be a more general transformation which
has to be further investigated.
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