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Abstract. The process of programmed cell death, or apoptosis, has become one of the most intensively studied 
topics in biological sciences in the last two decades. Apoptosis as a common and universal mechanism of cell death, 
distinguishable from necrosis, is now a widely accepted concept after the landmark paper by Kerr, Wyllie and 
Currie in the early seventies [1]. Different components of the death machinery in eukaryotes are discussed in this 
issue. 
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Introduction 

Cell division, growth, differentiation and finally death 
are highly regulated events during the normal develop- 
ment of cells. Studies on dying cells reveal two distinct 
types of death, 'necrosis' and 'programmed cell death'. 
The two processes are fundamentally different in their 
nature and their biological significance. Necrosis, or 
'accidental' cell death, is the nonphysiological or passive 
type of cell death [2], and it is usually caused by extreme 
trauma or injury to the cell [1]. During necrosis chro- 
matin adapts a highly flocculated form, and the DNA 
from these cells is digested randomly to give a smear 
when analysed by agarose gel electrophoresis. The main 
feature of necrosis is an increase in cell volume. This 
occurs because of the loss of control of ion flux result- 
ing in changes in osmotic pressure as Na +, K +, Ca 2+ 
and Mg -'+ move down their respective concentration 
gradients. This in turn leads to uptake of water, giving 
rise to high amplitude swelling of the cell and its or- 
ganelles. Irreversibility of the changes that occur in the 
cell is usually heralded by disruption of the mitochon- 
drial structure. The rapid increase in cell volume results 
in membrane rupture and cell lysis [3]. Release of the 
dying cells' contents into the extracellutar space can 
cause further injury or even death of neighbouring cells, 
and may result in inflammation or infiltration, leading 
to further tissue damage [4]. 
The concept of a programmed physiological cell death, 
on the other hand, was suggested since the early days of 
developmental biology and embryology, and refers to 
the type of cell death that occurs at a specific time 
during the development of the organism. Glucksmann 
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clearly emphasized the existence of this phenomenon for 
the first time in 1951 [5]. In the 1960s the concept of 
programmed cell death was revived. So-called physio- 
logical cell death was reported by many groups to occur 
during development under a wide range of circum- 
stances and conditions [6 11]. Subsequently, hormones 
and/or growth factors were identified as the chemical 
signals required for this type of cell death without 
having a toxic effect on nonresponsive cells [12]. 
The first direct evidence for the existence of two distinct 
types of cell death came from histochemical studies of 
lysosomal changes in hepatic ischemia by Kerr and 
co-workers in the 1960s and 1970s [1, 13, 14]. Kerr 
observed development of rounded masses in dead hep- 
atic tissue and noted morphological differences between 
this form of cell death and necrosis. These differences 
initially caused some confusion, and the process was 
mistaken for a variation of necrosis and was called 
'shrinkage necrosis' [13]. The following year Kerr, Wyl- 
lie and Currie proposed the name 'apoptosis' [1]. 

lntracellular alterations during apoptosis 

Apoptosis is the most popular and fashionable death 
mechanism from the research point of view [for reviews, 
see refs 15-20]. It has been described as a form of 
cellular suicide, since death appears to result from in- 
duction of active processes within the target cells [21]. 
The term 'apoptosis' was derived from a Greek word 
that describes the process of leaves falling from a tree or 
petals from a flower [1]. The process of apoptosis 
is morphologically and biochemically distinct from ne- 
crosis. Classical apoptosis involves margination and 
condensation of nuclear chromatin at early stages (py- 
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Figure 1. Morphological features of HL-60 cells undergoing 
apoptosis. Cells were treated for 4 h with 5 gg/ml of camp- 
tothecin. N = normal cells, A = apoptotic. 

knosis), cytoplasmic shrinkage, membrane blebbing, 
nuclear fragmentation and finally formation of apop- 
totic bodies. Considerable biochemical changes occur 
within the apoptotic cell to facilitate neat packaging and 
removal of apoptotic bodies by the neighbouring cells 
(fig. 1). 
One of the cellular modifications occurring in apoptotic 
cells is in the cytoskeleton. The plasma membrane 
becomes untethered and undergoes rapid blebbing or 
zeiosis [22]. There is some evidence suggesting the in- 
volvement of microfilaments and microtubules, two 
components of the cytoskeleton, in the progression of 
apoptosis. Inhibition of protein kinase C (PKC), which 
is involved in the assemblage of microfilaments, by 
staurosporine and cytochalasin B prevents formation of 
apoptotic bodies [23]. Microfilaments are composed of 
actin filaments; in the absence of actin polymerization, 
cells undergoing apoptosis, lose cell volume but do not 
fragment into apoptotic bodies [23]. On the other hand, 
disruption of microtubules is also reported to induce 
apoptosis [24]. 
Tissue transglutaminase, Ca2+-dependent protein-glu- 
tamine 7-glutamyltransferase, has also been shown to 
be induced and activated in liver hyperplasia and gluco- 
corticoid-treated thymocytes [25]. This enzyme cross- 
links cytokeratin, a component of cytoskeleton, through 
e-(7-glutamyl)lysine bonds. During apoptosis there is a 
significant increase in transglutaminase mRNA, protein, 
enzyme activity and protein-bound (7-glutamyl) lysine 
[25]. It is thought that transglutaminase activity may 
stabilize apoptotic cells and inhibit membrane leakage 
by forming a shell around the cell. 
A critical part of apoptosis is the efficient recognition 
and removal of these cells by phagocytes [26-30]. This 
involves rearrangement and biochemical alteration of 
the plasma membrane in the dying cell. There are a 
number of different biochemical changes which occur in 
the membrane of apoptotic cells; one such change re- 
sults in alteration of carbohydrates on the plasma mem- 

brane, helping preferential binding of macrophages to 
apoptotic cells [26]. Recognition of apoptotic cells by 
macrophages can also be mediated via the vitronectin 
receptor (CD36) [30]. Another significant change in the 
membrane of apoptotic cells is the loss of membrane 
phospholipid asymmetry, detected by externalization of 
phosphatidylserine at the surface of cells that enables 
their recognition by macrophages [27]. Development of 
fluorescently labelled Annexin V, which binds specifi- 
cally to phosphatidylserine residues, enables detection 
of this externalization in cells undergoing apoptosis 
[31]. However, it should be noted that in in vitro culture 
conditions where phagocytic cells are absent, apoptotic 
cells and their fragments lyse in a process very similar to 
necrosis. This is termed secondary necrosis. 
Cell volume shrinkage during apoptosis is due to bud- 
ding of the endoplasmic reticulum. Vesicles thus gener- 
ated migrate and fuse to the plasma membrane and 
release their contents into the extracellular region. This 
process requires energy [adenosine triphosphate 
(ATP)], since water is moved against the osmotic gradi- 
ent and up to 30-50% of the cell volume is reduced 
[22]. Mitochondria, which remain structurally and func- 
tionally intact during this process, provide the necessary 
energy. 
Some of the active processes in the dying cell include 
specific patterns of DNA, rRNA and protein degrada- 
tion. Three patterns of DNA degradation are already 
recognized to occur during apoptosis. One or more of 
these may occur during the progression of apoptosis in 
a single cell. These are single strand nicks [32, 33], large 
DNA fragmentation of 50-200 kbp [34, 35] and finally 
nucleosome size fragments of 180-200 bp size [36-38]. 
Internucleosomal DNA fragmentation was first demon- 
strated in glucocorticoid-induced apoptosis in thymo- 
cytes [37]. It is now suggested that at early stages of 
apoptosis single strands of DNA are nicked; this is 
followed by fragmentation into 50-200 kbp (large frag- 
ments) and eventually into nucleosomal fragments (i.e. 
size of DNA wrapped around a histone octamer). The 
ladder pattern produced at the late stage during most 
apoptotic cell deaths is a result of cleavage of internu- 
cleosomal linker DNA, and is suggested as the bio- 
chemical hallmark of apoptosis [37]. One or more 
nuclear endonucleases are suggested to be responsible 
for this pattern of DNA fragmentation, since isolated 
nuclei can be induced to produce the same pattern 
[39-41]. A number of endonucleases have been iden- 
tified in different cell systems with different ion require- 
ments for activity. For example, in thymocytes the 
endonuclease is Ca 2 +/Mg 2+-dependent, whereas the en- 
donuclease in HL-60 cells appears to function indepen- 
dently of these ions [41]. Figure 2 demonstrates a 
typical internucleosomal DNA ladder on agarose gel. 
A selective and specific cleavage of 28S rRNA, with no 
effect on 18S rRNA, has been reported in a number of 
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1 2 is activated by DNA nicks and is recruited to sites of 
damage where it activates DNA repair enzymes [49]. 
PARP is cleaved rapidly during apoptosis induced by a 
variety of agents, suggesting that this may be an inte- 
gral event in the apoptosis process. Cleavage of PARP 
prevents its DNA binding ability and thus compro- 
mises the response to DNA damage [50, 51]. Further- 
more, PARP has a negative regulatory effect on the 
Ca 2 +/Mg 2 +-dependent endonuclease [ 52] which cleaves 
DNA during apoptosis. 

Figure 2. Photograph of a 1.5% agarose gel electrophoresis 
of DNA extracted from HL-60 cells. Lane 1, untreated; lane 2, 
cells treated with 5 ~tg/ml of camptothecin for 4 h. The ladder 
pattern is a result of ~200 bp internuclosomal DNA fragmenta- 
tion. 

cell systems [42, 43]. While working on gene expression 
during cAMP-induced apoptosis in IPC-81 cells, 
Houge and co-workers first observed this peculiar pat- 
tern of rRNA fragmentation [42]. This selective rRNA 
fragmentation has been shown to correlate positively 
to internucleosomal cleavage of DNA in a number of 
cell lines studied [42, 43]. 
A role for proteases in the apoptosis machinery has 
also been suggested [44]. The initial evidence for such 
involvement came from studies on apoptosis induced 
by cytotoxic Tlymphocytes (CTL) and natural killer 
(NK) cells. These cells induce apoptosis by attaching 
themselves to target cells and releasing the contents of 
their granules, which contain a number of serine 
proteases. One such enzyme, granzyme B/fragmentin-2, 
has been shown to cleave at Asp residues [45]. More 
recently, several mammalian proteases have been dis- 
covered that have homology to ced-3 [46], which is one 
of the death genes of the much investigated nematode 
Caenorhabditis elegans. These proteases include inter- 
leukin-lfl converting enzyme (ICE), CPP-32/apopain, 
ICH1/Nedd-2, TX/ICH-2, MCH-2, -3 and -4 and 
MIH-1, all of which induce apoptosis when transfected 
into cells. Some of the substrates of these proteases, 
which have been shown to be cleaved during apoptosis 
include poly-(ADP-ribose) polymerase (PARP), lama 
B1, c~-fodrin, topoisomerase 1 and the 70-kDa protein 
component of the small nuclear ribonucleoprotein U1 
[44, 47, 48]. Of these, PARP, which is a substrate of 
CPP-32, has received considerable attention in recent 
years. The PARP enzyme is involved in DNA repair; it 

Cellular signalling during apoptosis 

An elaborate network of signalling systems leads to the 
regulation of physiological processes such as cell-cell 
communication, proliferation and differentiation. Sig- 
nal transduction is also thought to play a key role in the 
onset of apoptosis, and this may be mediated by an 
increase in intracellular Ca 2+ levels, PKC or cAMP/ 
PKA. One example is that of activation-induced cell 
death (AICD) in T-cell lymphocytes. AICD is so called 
because many hematopoietic, or myeloid, cells can be 
induced to undergo apoptosis by cross-linking specific 
receptors or Ags with specific antibodies. AICD in 
many cell types is accompanied by the morphological 
features of apoptosis [53-56]. The response of T cells to 
CD3-1igand binding is proliferation in post-thymic cells, 
whereas in intrathymic cells the response is apoptosis 
[57, 58]. Early observations by Kaiser and Edelman in 
1977 showed that glucocorticoid-induced cell death in- 
volved Ca 2+ influx in lymphocytes [59]. Later they 
demonstrated that this type of cell death can be mim- 
icked using calcium ionophores [60]. Based on these 
observations, it appears that intracellular Ca 2+ levels 
may initiate the signal for cell death in this system. 
The role of protein kinases and phosphatases in apopto- 
sis is unclear. Protein kinases transfer the terminal 
phosphate group of ATP to serine/threonine or tyrosine 
residues in substrate proteins, while phosphatases re- 
move phosphate from these proteins. One of the classi- 
cal signalling pathways is that of PKC [61], a 
multifunctional serine/threonine, proteolytically acti- 
vated, phospholipid-dependent protein kinase that re- 
sponds to increased intracellular levels of Ca 2+ and 
utilizes diacylglycerol as second messenger [62]. 
Kizaki and colleagues reported that treatment of mouse 
thymocytes with phorbol esters, which activate PKC, 
induces apoptosis and that the PKC inhibitor H7 inhib- 
ited apoptosis induced by A23187 [63]. However, most 
of the evidence to date indicates that PKC activation 
inhibits apoptosis. An example of this is inhibition of 
thymocytes by PKC to undergo apoptosis induced by 
glucocorticoids, A23187 and anti-CD3 antibody [57, 
64]. On the other hand, Martin and Cotter reported that 
PKC may not be involved in apoptosis of certain cell 
lines like HL-60 [24]. 
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Similarly, the role of protein phosphatases (PPs) during 
apoptosis is not clear-cut. Boe and co-workers [651 
reported that a number of cell lines react to okadaic 
acid (OA) by undergoing morphological changes typical 
of apoptosis. These findings were in line with work 
carried out by Samali and Cotter on a number of 
leukemic cell lines (unpubl. observ.), while others [661 
reported that inhibition of PP activity blocks apoptosis 
in some other cell lines. 
These reports appear to suggest that the role of PKC 
and PPs in apoptosis is cell-type dependent and that 
protein activation/modification rather than de novo 
protein synthesis may play an important role in the 
mechanism of apoptosls. 
Apoptosis may also be induced by activation of Fas 
signal [56, 67, 68]. Apo-1/Fas (CD95) is a transmem- 
brane molecule belonging to tumour necrosis factor 
(TNF) and the nerve-growth-factor receptor family 
characterized by cysteine-rich extracellular domains 
[69]. Cross-linking of Fas molecule with anti-Fas anti- 
body or its natural ligand (Fas ligand) can result in a 
rapid and massive induction of apoptosis. Cross-linking 
of Fas is suggested to result in activation of specific 
signals which are thought to involve production of 
ceramides. Ceramides are the product of sphingomyelin 
hydrolysis in response to extracellular stimuli and are 
thought to be a possible mediator of cell death [70]. 

Oxygen radicals and antioxidants in apoptosis 

Oxygen is a necessary molecule for a number of 
metabolic processes, but its by-products are highly 
toxic. Reactive oxygen species (ROS), like peroxides, 
suPeroxide and hydroxyl radicals, are suggested as me- 
diators of apoptosis [71-73]. ROS are known to induce 
cell death under a variety of conditions [22]. Interest- 
ingly, many of the agents commonly used to induce 
apoptosis also induce oxidative stress in the cell, and a 
number of antioxidants, radical scavengers and metal- 
ion chelators have been shown to inhibit characteristic 
features of this type of cell death [74-76]. 

Genetic control of apoptosis 

Since the early years of the 'apoptotic age', the pro- 
grammed nature of apoptosis suggested the existence of 
one or more death genes. In the 1980s, work by Cohen 
and others [38, 39, 77] demonstrated that DNA frag- 
mentation associated with apoptosis could be inhibited 
by pretreating cells with inhibitors of macromolecular 
synthesis. This suggested a requirement for novel 
protein synthesis in apoptosis, at least in the immune 
system. Subsequent work by Martin and co-workers 
demonstrated that both actinomycin-D and cyclohex- 
imide by themselves could induce apoptosis in a number 
of cell lines [78]. Taken together, these observations 

suggested that apoptosis can occur via both macro- 
molecular-dependent and -independent pathways. 
Identification of deathless mutants of C. elegans ini- 
tiated the search for mammalian equivalents of a cell 
death gene (ced). Central to the process of programmed 
cell death in C. elegans are the ced-3 and ced-4 genes. 
The mutant deathless worms had abnormal ced-3 and 
ced-4 genes, suggesting that the product of normal 
genes must activate cell death (see ref. 79 for review). 
The ced-3 gene was found to show significant homology 
to human ICE. ectopic expression of which induced 
apoptosis in fibroblasts [80]. This suggests that ICE and 
ced-3 are both functionally and structurally related. 
In recent years enough evidence has been gathered to 
suggest a role for the protein products of a number of 
proto-oncogenes and tumour suppressor genes in the 
regulation of apoptosis. These can be grouped into 
genes whose products are positive or negative regulators 
of apoptosis. For example, wild-type p53 and c-myc are 
both inducers of apoptosis [81-84]. These two genes 
were originally identified because of their role in the 
regulation of cell proliferation. Although deregulated 
c-myc expression has a potent proliferating effect on the 
cell, it may also induce apoptosis. The decision to 
proliferate or die via apoptosis in c-myc overexpressing 
cells depends on the presence or absence of extracellular 
survival factors. 
Like c-myc, p53 has also been recognized as a key 
regulatory element in apoptosis, p53 "is a transcription 
factor which plays an important role in the mechanism 
of DNA repair in normal cells. When a cell encounters 
agents that cause DNA damage, p53 halts cell cycle 
progression in G0/G1 by transcribing mitotic inhibitors 
like p21/Wafl and Gadd45. During this time, the cell 
attempts to repair its damaged DNA. If  the damage to 
the DNA is irreparable, p53 triggers apoptosis. But 
if this regulatory function of p53 fails, cells with muta- 
tions in their DNA can progress through the 
cell cycle. In cancer cells with no functional p53, 
restoration of normal p53 function either induces spon- 
taneous apoptosis or renders the cells susceptible to 
apoptosis induced by DNA-damaging agents. Normal 
p53 also regulates the expression of a number of key 
regulatory proteins (e.g. bcl-2 and bax) involved in 
apoptosis [85, 86]. 
The bcl-2 gene was identified at the chromosonal break- 
point of t(14;18) bearing follicular B-cell lymphomas. 
bcl-2 is a unique oncogene in that it blocks apoptosis 
rather than promoting proliferation. Bcl-2 has been 
localized to mitochondria, endoplasmic reticulum and 
nuclear membrane. Bcl-2 appears to have antioxidant 
properties and is thought to inhibit apoptosis by pre- 
venting oxidative damage to cellular constituents [87]. 
Work by Korysmeyer's group revealed that bcl-2 het- 
erodimerizes with a homologous partner protein called 
bax (bcl-2-associated X protein) [88]. It is now sug- 
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gested that cell death or survival depends on the ratio 
of  bcl-2 to bax l i.e. overexpression of  either bcl-2 or 
bax induces homodimerization, thereby offsetting the 
balance between survival and death). Additional apop- 
tosis-regulating members of  this family are bcl-xL, 
which represses cell death, and bcl-xs which favours cell 
death. 
The oncogemc members of  the abl family of  tyrosine 
kinases are also implicated in the regulation of  apopto- 
sis [89-93]. Experimental observations by McGahon 
and co-workers, using antisene oligonucleotides to the 
bcr-abl fusion protein has clearly demonstrated that 
bcr-abl is a potent inhibitor of  apoptosis [90-92]. In 
another experiment they transfected HL-60 and AI.1 
cells with a temperature-sensitive v-abl mutant. The 
protein product of this gene at permissive temperature 
adopts the wild-type conformation and confers resis- 
tance to apoptosis. Furthermore, this resist.ance is 
shown to be independent of bcl-2 and bax levels [92]. 
The E1A and E1B oncogenes of  the D N A  tumour virus 
adenovirus encode proteins which are potent regulators 
of apoptosis. E1A initiates both cell proliferation and 
apoptosis. E1A also causes p53 accumulation, which 
results in the regulation of  bax and bcl-2 [94]. E1B, on 
the other hand, functions in a manner similar to bcl-2 to 
inhibit apoptosis [95]. 
Members of  the ras family of  proteins play essential 
roles in the control of normal cell growth and may 
induce transformation. Certain evidence has led a num- 
ber of  groups to advocate that, as well as inducing 
transformation, ras can also prevent cell death, like the 
bcl-2, bcl-xL and E1B oncogenes. Overexpression of  ras 
is also shown to inhibit apoptosis in a number of cases 
[96-98], giving us an alternative for how the ras gene 
ca n become oncogenic. 
The retinoblastoma gene product, Rb, was first iden- 
iified as, ~ suppressor of  tumour formation and has since 
been implicatecl as a regulator of  several key cellular 
processes, including cell cycle arrest, differentiation and 
apoptosis. The viral oncoprotein, E7, of  papilloma virus 
inactivates Rb function, and when E7 was expressed in 
the retinas of  transgenic mice, rather than developing 
retinoblastomas, the retina cells underwent apoptosis at 
a time when they normally would be undergoing termi- 
nal differentiation [99, 100]. 

Adaptive response to apoptosis 

In in vitro conditions cell survival or death, via apopto- 
sis or necrosis, appears to be dependent on the type and 
intensity of the death stimulus (fig. 3). At low levels of  
stress, cells are capable of  protecting themselves by 
altering their biochemistry. However, as the intensity of  
the stress increases, cells activate the machinery for their 
own demise. As the stress level is further increased, the 
cell is no longer capable of  regulating its own death, 
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Figure 3. Schematic representation of dose-dependent induction 
of cell death. Type and severity of stress determine the cell's 
response, that is, cell survival or death. In general at low levels of 
stress molecular and biochemical changes occur within the cell 
allowing cell survival. However, these changes fail to protect the 
cell as levels of stress increase, and a programmed cell death is the 
result. Under extreme conditions the cell is unable to regulate its 
own demise and necrosis is the predominant type of cell death. 

and unc0ntroilable necrosis takes over. The work car- 
ried out in our  own laboratory has shown that apopto- 
sl s m a y  be induced by low concentrations or levels of  
almost all those stimuli that cause necrosis [10l]. 
The ability of  cells to develop resistance to changes in 
the normal growth environment is well documented. A 
number of  different phenomena enable cells to resist the 
harsh effects of  a single toxic agent or exposure to 
cytotoxic levels of  many lethal agents. Most of  the toxic 
agents that cells may encounter are capable' of  inducing 
apoptosis. Therefore, this resistance to cytotoxic agents 
can be viewed as an adaptive response to apoptosis. A 
good knowledge of  the adaptive response to cell death is 
of  great importance in management of  human malig- 
nancies, and several groups have reported such a re- 
sponSe [102-104]. This adaptive response appears to be 
under genetic control and demonstrates similarity to the 
mechanism of  drug resistance and/or thermotolerance. 
A number of  different genes and their protein products 
appear to be involved in this response, depending on the 
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type of stressor involved. These include heat shock/ 
stress proteins (hsp) [105], whose main function in time 
of stress is to afford protection to cells. There is strong 
evidence suggesting that induction of hsps coincides 
with acquisition of tolerance to higher doses of the 
stress which otherwise may be lethal to the cell, a 
phenomenon known as thermotolerance [105]. Heat- 
shocked or thermotolerant cells show a greater degree 
of resistance to oxidative stress [106, 107] and to apop- 
tosis induced by hyperthermia [103], growth factor 
withdrawal [102] or cytotoxic drugs [104], suggesting a 
possible role for heat shock-induced proteins in the 
resistance mechanism. 
Another group of proteins that play an important role 
in cells' resistance to metal toxicity [108] and to oxygen 
radicals [109] is the metallothioneins (MT). These 
proteins belong to a family of genes that encode low 
molecular weight cystine-rich metal-binding proteins. 
These proteins can also be induced in some mammalian 
cells by glucocorticoids, interferons and stress condi- 
tions. 
An increase in the glutathione (GSH)-metabolizing sys- 
tem provides the cell with another potential mechanism 
for resistance to cytotoxic drugs. GSH is the prominent 
thiol present in many cells. It appears to be involved in 
resistance to cellular oxidation, since depletion of GSH 
has been shown to increase the sensitivity of cells to 
oxidative stress. GSH also appears to be the substrate 
for many phase II-detoxifying enzymes. These include 
glutathione S-transferase, glutathione reductase and 
glutathione peroxidase. GSH concentration could also 
be modulated by heat shock, and its intracellular levels 
can modify hyperthermic toxicity [ 110, 111]. -, 

Many cells that express multidrug resistance (MDR) 
also overexpress the m d r  gene, which encodes P-glyco- 
protein (P-gp). P-gp is a membrane-associated glyco- 
protein of approximately 170 kDa that actively pumps 
drugs out of cells [ 112, 113], enabling cells to withstand 
lethal concentrations of drugs. 
In a cell population the development of resistance to cell 
death is a result of increased expression or activity of 
one or more of these proteins [114, 115]. Some of these 
proteins have very specific functions, whereas others 
may have more general 'housekeeping' functions. Taken 
together it becomes obvious that the adaptive response 
to apoptosis is a result of a complex interaction between 
newly synthesized or activated proteins. 

Apoptosis in disease 

Several diseases are associated with deregulated apopto- 
sis, resulting in either inappropriate induction or sup- 
pression of cell death. An increase in apoptosis is seen 
in neurodegenerative diseases such as Parkinson's dis- 
ease, Alzheimer's disease, Huntington's disease and 
amyotrophic lateral sclerosis [116]. In acquired immune 

deficiency syndrome (AIDS) apoptosis is responsible 
for the depletion of T cells [ 117-120]. 
Suppression of apoptosis can also lead to disease situa- 
tions. In many cancers, altered gene expression results in 
increased longevity of cells. In follicular lymphoma, for 
example, constitutive expression of bcl-2 inhibits apopto- 
sis [121]. Similarly, an activated form of c-abl ,  namely 
ber -ab l ,  renders myeloid cells resistant to apoptosis in 
chronic myeloid leukemia [89, 90]. Many human cancers 
are associated with mutations in the p53 gene [ 122], which 
can lead to failure of such cells to undergo apoptosis. 
Autoimmune diseases may result from inhibition of apop- 
tosis, allowing the persistence of self-reactive B and T 
cells. A role for dysfunction of apoptosis via the Fas path- 
way has been suggested for systemic lupus erythematosus 
(SLE). These patients have a mutated form of Fas which 
is no longer anchored in the plasma membrane [123]. 
Therefore, there is an elevation in the levels of soluble Fas 
in the serum which can block the Fas apoptosis pathway 
in these individuals. It has been postulated that in SLE 
dysfunction ofapoptosis could result in the inappropriate 
longevity of autoreactive B cells. 
Therefore, control of cell death, either its induction or 
inhibition, serves as a potential strategy for therapeutic 
intervention [104, 116-118, 120, 124]. 

Conclusion and outlook 

After two decades of research and development in cell 
death areas, it is now universally accepted that pro- 
grammed cell death is an essential strategy for maintain- 
ing the dynamic balance and equilibrium of living 
systems and is observed to occur as a normal mecha- 
nism in development and homeostasis. Classification of 
cell death is now based on morphological and biochem- 
ical criteria or their circumstantial occurrence, or a 
combination of both. Although morphological charac- 
terization of apoptosis and its features distinguishable 
from necrosis have been well documented, our progress 
in understanding the mechanisms underlying the pro- 
cess has been quite slow. 
The significance of apoptosis is based on the fact that 
apoptotic cells tend to be 'environmentally friendly' and 
package their contents into membrane-bound vesicles, 
ready for ingestion by phagocytic cells, without releas- 
ing their contents into the intracellular matrix, and 
hence there is no inflammatory response. Apoptosis is 
also an altruistic cell death, in that damaged or injured 
cells commit suicide to allow the neighbouring cells to 
continue to proliferate without being affected by the 
death of the neighbour. In addition, sacrifice of individ- 
ual abnormal cells benefits the whole organism. 
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