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Summary: In this paper, a dual problem to linear fractional functionals programming i. e.

Maximise Z = _c_/_;_vc.
d'x
subject to Ax=b
x>0

is formulated. Certain duality theorems regarding the relationship between primal and dual
problems are established.

Zusammenfassung: Es wird zu dem Programm mit gebrochen-linearer Zielfunktion:

Ax=1058, x>0
Z==~€,~J—‘-=:>Max!
d x

ein duales Programm aufgestellt. Gewisse Dualititssitze iiber den Zusammenhang zwischen dem
Primal- und Dualproblem werden aufgestellt.

Introduction

Linear fractional functionals programming is concerned with maximising (or
minimising) a linear fractional functional of n variables subject to linear con-
straints on the variables. The constraints may be in the form of either equations or
inequalities or both. Such mathematical problems arise in a variety of contexts.
Under some assumptions linear fractional programming problems, though the
objective function is neither convex nor concave, have well been attacked for their
solution with the help of simplex method {9, 10, 11]. Conditions of optimality have
been derived for a basic feasible solution. However, not much has been carried out
in the direction of duality. This paper is a step in this direction.

In duality for any program, we are concerned with two problems called primal
problem and dual problem. The duality relationship has both theoretical and com-
putational significance. Duality concepts and relations are well known, now, for
convex {concave) programming problems [4, 6, 15].
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In what follows, this concept of duality will be extended further to include opti-
misation of linear fractional functionals programming. The development, to some
extent, parallels to that given in linear programming. Matrix notation will be used
throughout the paper. Prime denotes transpose. A vector inequality will apply to
each component of the vector i.e. x > 0 implies that each component of x is non-
negative.

A Class of Fractional Programs and their Duals
Consider the following problems:

’

Maximise Z= g—% ®

Primal Problem
(P—P) subject to Ax=>b 2
x=0 (3)

where
(i) A is m - n matrix.
(ii) x, c,dare n-1 vectors, b is m- 1 vector,

(iii) d'x > O over a convex polyhedron “S” of feasible solutions (regular set).

In terms of cartesian notation:

lineE

C;X;

Maximise Z=* nl il
_Z dx;
(P—P) ie. =t
subject to i ax;=b; (i=1,...,m)
x;20 (j=1,...,n).
Minimise W= 5'% 4
Dual Problem subject to bv(Ad'u—c)—bu(d'v—d)=0 5)
(D—P) b'v=0 (6)
u, v are unrestricted in sign )

and b'u and b'v are not simultaneously zero.  (7a)
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Theorem 1:

If x is any feasible solution to (P P) and u, v any feasible solution to (D—P),
then

x_bu
d'x"b'v’
Proof:
From Ax = b, we find
x'A'u=b'u (8)
x'd'v=>b"v. ()]
Using (5) and (3), we have
bv(x'Au—c'x)—b'u(x’A'v—d'x)=0. (10)

With (8) and (9), (10) reduces to

bv(b'u—c'x)—bu(b'v—d'x)=0

or
—b'vrc'x+b'u-d'x>0. (1
Case (i): Ifb'v > 0, then
c'x _b'u
d—,;Sg—,;- (12)

Case (ii): If 5'v = 0, then b'u =+ 0.

From (11) follows 5'u - d’x > 0, which implies »'u > 0, as ' x > 0 for all feasible
x. Thus at this feasible solution #, v to (D—P), we have

b'u g s

7 +infinity.
Hence

c’x bu

d—,;s%. 13
Theorem 2:

If £ is a feasible solution to (P—P) and 4, D a feasible solution to (D—P) such
that

2 b'a

FEN (1)

then % is optimal to (P—P) and 4, 9 optimal to (D—P).
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Proof:

By assumption there is

R (15)

and therefore £ is optimal to (P—P).

Similarly for any feasible u, v to (D—P), we have

B> a5 b5 (18)

and thus 4, # provides an optimal solution to (D—P).

Theorem 3:

If the primal problem has an optimum then the dual is feasible and has an
optimum and the two optima are equal.

Proof:

Let xp = B~'b be an optimal basic feasible solution to the primal problem with
optimal basis B. If cp, dp are the vectors containing the prices associated with the
basic variables in numerator and denominator of (1) [15].

Put

Now as xg is optimal to (P—P), we have [9, 10]

2PV —c) -z (P ~d)=0 forall j an
where

2B =dpxp, 2V =chxy

2P =dpB 'a;, z{V=cpB 'a; (a,;is a column of 4).

ie. dpxg(cpB™'a;—c;))—cpxp(dpB~'a;~d)=0 forall j(j=1,2,...,n).
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Therefore
dgxg(cpB 1A —c")—cypxz(dzB™4~d)>0 (18)
or
dyB~'b(cyB rA~c)—cyB 'b(dzB ' A—d")>0. 19)
chB '=u' 20y
Consider {
dgB ™ t=0". @1

Using (20) and (21) in (19), we get

vb(WA—-c)—u'b(A-d)=0

or
b'v(A'u—c)—bu(d'v—d)=0. 22)

Also
dyBb>0 (23)
ie. v'b>0, or bv>0. (24)

(23) also implies dy B-! + 0. Hence u, v given by (20) and (21) represent a feasible
solution to (D—P).

Next we show that
u'=cpB™?, v'=dB™!

is an optimal solution to (D—P). Now

W=—=——— = =ZMax - (25)
X

Thus from theorem 2, we conclude that w, v represent an optimal solution to
(D—P).
Numerical Example

2x1+3x2
X1

Maximise Z=

subject to
(P—-P) Xi+X,+x3=1

4% +xy—X4=2

X1s %25 X35 X420
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u+2u,

v +20,

subject to (v +2v,)(u; +4uy, —2)—(uy+2u,) (v, +4v,—1)>0
(01 4+20,)(uy+u,—3)—(u+2uy) (v, +v,)=0

,
Minimise W=

(D-P) 3 (v, +20))u; —(uy+2u,) v, >0
(v +20)uy + (U +2u,) 0,20
and (v +2v,)=>0
Uy +2u;, 0,420,

are not zero simultaneously.

The optimal solution to the primal problem [9] is

1 2
x1=—3—, x2=T, x3=0, x,=0
with
11 2 1
5=(31) @=(3) o=(3)
thus

ie u —9 u —_i
e 1—" 3 > — 3 .
11
3 3 1 1
(v1,v2)=(1,0) i __l =<"'3~, —3—>,
3 3
. 1 1
1.C. Ul=—"3— Uz='3—.

Also Zy, =8 = Wy,

111
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Remark:

If there is an optimal solution to (P— P), we can construct the optimal solution
to (D—P).

Conclusion:

Here, it has not been possible to provide a converse of the duality theorem.
However, some work, in this direction has already been done by the author in the
paper “Some Aspects of Duality in Fractional Functionals Programming” [13].
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