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Abstract: The paper introduces the finite class of set strategies for stochastic scheduling problems. 
It is shown that the known stable classes of strategies such as ES and MES strategies are of this 
type, as are list-scheduling strategies such as LEPT and SEPT and other, more complicated priority- 
type strategies. Roughly speaking, set strategies are characterized by the fact that the decision as 
to which jobs should be started at time t depends only on the knowledge of the two sets of jobs 
finished up to time t and being processed at time t. Contrary to list scheduling strategies, set 
strategies may involve deliberate idleness of machines, i.e. may not be greedy and can therefore 
not generally be induced by priority rules. It is demonstrated that set strategies have useful proper- 
ties. They are e.g. hn-almost everywhere continuous and therefore show satisfactory stability 
behaviour w.r.t, weak convergence of the joint distribution of job durations. Furthermore, the 
optimum w.r.t, all strategies is already attained on this class if job durations are independent and 
exponentially distributed and the performance measure fulfills a certain shift condition. This 
shift property is a quite natural concept and generalizes aspects of the notion of additivity in semi- 
Markov decision theory and stochastic dynamic optimization. Its complete analytical characteri- 
zation is a major object of this paper. Typical additive cost criteria such as makespan and flowtime 
are of course covered, which yields simultaneously a first step towards generalization of optimality 
of LEPT and SEPT rules, as known for special cases. In fact, in view of the obtained optimality 
result, the question of when deliberate idleness of machines can be avoided, gains considerable 
interest, as it characterizes stochastic environments in which priority strategies are optimal. This 
provides a major link with current research on the analysis of networks of queues in the context 
of computer systems. 
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1. Introduction 

In the first paper of this series we have discussed quite general stochastic Schedu- 
ling problems, allowing for arbitrary joint distributions of activity durations, arbitrary 
regular measures of performance and arbitrary precedence and resource constraints. 
The major topics covered were properties of general strategies and certain subclasses 
thereof, an exploitable monotonicity behaviour, and criteria for the existence of 
optimal strategies. Less attractive findings have been the possible non-existence of 
optimal strategies and a rather nasty instability behaviour that is hardly acceptable for 
real-life applications. This instability is not only true for the set of all strategies, but 
also for interesting subclasses such as the elementary or the continuous strategies. 
Apart from computational aspects and problems with practical execution, these 
findings form a strong motivation for restricting oneself to certain well-behaved classes 
of strategies. One approach has been reported in the first paper of this series. Starting 
from a quite rigid notion of stability, finite classes of continuous strategies turned 
out to be of interest. Two combinatorially defined classes of this nature, viz. ES and 
MES strategies seem for many reasons to be particularly appealing, above all due to 
their practical applicability. Here, ES strategies are the earliest start scheduling strate- 
gies of feasible partial orders, while MES strategies are defined as the minimum of cer- 
tain sets of ES strategies. As was reported in the previous paper, it is possible to obtain 
quite involved equivalent characterizations of these classes by means of analytical 
properties, such as being convex or uniformly continuous, leading to surprising inter- 
faces between discrete and continuous aspects in this field. The key to such results is 
the notion of preselectivity, leading to an uncountable class of strategies which contains 
Radermacher [1984] all (sub-)linear, convex, sub-additive, (super-)additive, concave, 
uniformly continuous, continuous-elementary and monotonically increasing strategies 
and which can still essentially (i.e. in the sense of dominance) be identified with the 
finite class of MES strategies. In fact, in view of the insights available, MES strategies 
form (in a precise sense) the greatest "reasonable" class of strategies fulfilling the 
mentioned rigid standard of stability. 

In the literature, another special class of strategies is also discussed, viz. strategies 
induced by (possibly dynamic) priority rules, including list-scheduling strategies. Such 
strategies, which can to some extent be identified with the notion of greediness, are 
not in general stable but are easily implemented. We discuss them in Section 2.2 in 
the more general framework of priority approaches known for deterministic scheduling 
problems [cf. e.g. Elmaghraby; Gewald/Kaspar/Schelle], and give some hints on their 
analytical behaviour, including some additional insights into the so-called Graham 
anomalies [Graham]. The main interest in the class of priority-type strategies is prob- 
ably due to the overall optimality of two list-scheduling strategies, viz. LEPT and 
SEPT, for several different, though quite special, stochastic scheduling problems. 
Such results are one of the main topics of the introductory volume [Dempster/Lenstra/ 
Rinnooy Kan], where surveys on the subject [e.g. Dempster; l~eiss] can be found, and 
will also be the issue of the third paper in this series. Some further remarks on this topic 
are also included in Section 2.3 of this paper, together with hints (Section 2.1) on 
additional assumptions as to the duration distributions and cost functions needed to 
obtain such results. 
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Given this background, and the fact that LEPT and SEPT rules - if optimal-lead to 
MES strategies [M6hring/Radermacher/Weiss On preparation); Radermacher, 1984], 
the challenge is to find an integration of both approaches into a greater but still finite 
class of strategies, which should inherit some of the nice features of MES strategies and 
list-scheduling strategies. The introduction of set strategies in Section 3 may be viewed 
as such an integration. The idea behind the notion of a set strategy is to allow actions 
taken at any decision point t, to depend only on sets~viz, the set of activities finished 
at time t, and the set of activities still being performed (i.e. started before time t and 
not completed) at time t. In view of e.g. Section 4.3 of the first paper.of this series, 
this means that though we are more general than in the case of MES or list-scheduling 
strategies, we still give away important pieces of available information, such as the 
actual starting or completion times of certain jobs, their (current) duration and t itself. 

For set strategies, we will see in Section 3.2 that they indeed inherit some of the 
nice features of ES and MES strategies, insofar as they are e.g. xn-almost everywhere 
(uniformly) continuous and quasi-stable (i.e. stable in the case of joint distributions of 
activity durations having a Lebesgue density). Similarly, some of the nice properties 
that LEPT and SEPT rules have shown in special cases, are also carried over. In fact, 
in Section 4.2 we constructively obtain that the overall optimal value is attained on 
this class, regardless of the precedence and resource constraints, provided that the 
activity durations are independent, exponentially distributed and the cost function has 
a certain shift property. This covers the case of additive cost criteria (such as makespan 
and flowtime), for which the obtained result is a special version of a well-known 
theoremin semi-Markov decision theory and stochastic dynamic optimization [Bertsekas/ 
Shreve], guaranteeing (under the assumptions made) the existence of an optimal 
strategy that ist stationary and Markov (which is in this case equivalent to being a set 
strategy). The shift property is, however, more general then being additive, cf. Section 
4.1; it is, in fact, in a certain sense the most general condition under which a result of 
the given type may be expected. Consequently, characterizing analytically all cost func- 
tions with this property, also became a major aim of this paper (cf. Theorem 4.1.3). 

Altogether, set strategies turn out to be a reasonable "intermediary" concept 
between the extremes of general strategies and MES strategies. They are particularly 
well-suited for a less rigid notion of stability,~ in which emphasis is placed on distribu- 
tions with Lebesgue densities rather than on arbitrary duration distributions. 

2. Background and Results Used 

2.1 Hints on the model 

As described in the first paper of this series, we deal with a class of on-line non- 
preemptive stochastic scheduling problems allowing arbitrary,precedence relations 
Oo and forbidden sets N (resource constraints) on the set A of activities (jobs). The 
optimization aim is the minimization of  the expected project cost w.r.t, all (or maybe 
special classes of) strategies, arbitrary joint distributions P of activitiy durations and 
arbitrary regular cost functions K (i.e. arbitrary regular measures of performance). 



68 R. H. Mdhring, F. J. Radermacher, and G. Weiss 

In this paper we will remain essentially within this framework, except for some 
hints on certain preemptive strategies in Remark 4.2.2, which will be of interest in the 
third paper of this series. However, we will often restrict ourselves to more special 
distributions P and cost functions n. For instance, we will frequently require, that P 

n has a Lebesgue density f ,  i.e. that there exists some measurable function f :  R> -* R~, 
such that P (B) = f f d X  n for all B E B~. In particular, we will sometimes assume job 

durations to be independent and exponentially distributed with parameters X s > 0, 

a E A , i . e . f t o  be of the form f =  1I f~ withfa (x) = X e "xa'x forx  > 0 .  The ex- 
t rA  a 

pectation o f X  a is then 1/X. Interest in the exponential distribution is due to the 

property that characterizes it, viz. that it is memory-less [Ross], i,e. fulfills 
1 which makes it impossible to P ( { X >  s+ t I X >  t } ) = P ( { X >  s}) for aU s, t E R ~ ,  

gain any additional information on the lifetime of a job (with this distribution) before 
its completion. 

Concerning cost functions, we will often restrict ourselves to functions that are 
additive, [cf. Weiss/Pinedo]. This means that there is a set function g from the power set 
P (A) of A into R> with g (0) = 0 such that, given ordered job completion times til <<. ti2 

<-. �9 .<~tin,fOrjobs a i l , a i 2 , . . .  , s ink  canbewri t tenas~ ( t l , . . .  , t n )= t i l  " g(A)  

+ (ti2 -- til ) " g (All) + . . .  + (tin -- tin.1 ) �9 g (Ain_l), where Ai0 =A  and A/] =Ai].l \ 

(ail},] = 1 , . . . ,  n. All such additive cost functions are positively homogeneous and 
d 

uniformly continuous. Moreover, K is a regular cost function (i.e. is monotonically 

increasing w.r.t, the componentwise ordering on R n) iff g is monotonically increasing 
on P (A). The main feature of additive cost criteria is that, given any time t E R~, the 

history up to t enters into the project cost only through an additive term. This property 
is a special case of the shift property introduced in Section 4.1. 

Note that all the special cost criteria mentioned in [Mdhring/Radermacher/tCeiss, 
1984] that are not of the tardiness type are additive. This covers makespan (project 
duration), (weighted)flowtime, first idleness and the sum o f  k latest lobs (e.g. take 
g (B) = 1 ifB r r for the makespan and g (B) = [ B I for the flowtime), but also some 
further, interesting performance measures, [lCeiss/Pinedo]. 

2.2 Strategies Induced by Priority Rules 

There are many concepts of priority rules for the treatment of deterministic 
scheduling problems, [cf. Elmaghraby; Gewald/Kaspar/Sehelle]. These involve dis- 
tinctions between series and parallel, or static and dynamic rules. Much attention has 
been given to list schedules (constant priority rules), for which (good) performance 
bounds have in some cases been obtained; [cf. Fisher; Graham]. 

For the general case, we mention the unifying result that any priority rule can be 
transformed into an equivalent (maybe complicated) static and series rule, [cf. Kaerkes 
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et al. ]. In this interpretation, the parallel rules are seen to form a proper subclass of 
the series rules. W.r.t. the generalization to the stochastic case, the situation is different. 
In fact, it turns out that, due to t~eir very conceptual structure, series priority rules are 
unsuited for the on-line scheduling-of stochastic problems (and are therefore hardly 
ever referred to in this context), as they usually necessitate future (i.e. a posteriori) 
knowledge of random data such as activity durations. In contrast, certain parallel 
rules are applicable to the stochastic case. In a typical situation such a priority rule will, 
at any decision time t, give a linear ordering L (t) (the priority ordering) on the set of 
jobs not yet started. I fL (t) i is compatible with L (0) for all decision times, the rule is 
said to be static, i fL (t) may vary with t, it is said to be dynamic. In a strategy induced 
by a (parallel) priority rule, actions are only taken at time 0 or at times twhen a job 
is completed, and consist in starting (from the set of jobs available at t) in order of de- 
creasing priority as many jobs as possible in terms of precedence and reources con- 
straints. So, at each decision time t, a maximal set of jobs is started that is lexicogra- 
phically smallest w.r.t, the priority orderingL (t) (greedyness!). Of course, for dynamic 
rules, the priority orderings L (t) may only vary in a way compatible with the informa- 
tion about x available at time t in order to induce a strategy. Thus, for instance, priority 
rules based on floats are generally excluded. In fact, among the dynamic rules usually 
considered [Gewald/Kaspar/Schelle], only special ones such as "current earliest start" 
or "current height" fulfill this property. For these two cases, the induced strategies 
will in fact even turn out to be set strategies, cf. Example 3.1.3. 

It follows directly that strategies induced by priority rules are elementary and ~<: 
minimal [c.f. M6hring/Radermacher/Weiss, 1984 for these notions ]~ in fact, they are 
even pointwise ,,<-minimal for any xE R~. The latter observation reflects the greedi- 
ness of such strategies, i.e. the inherent tendency to minimize idleness of a resource 
(in accordance with the priority ordering). 

The fact, that priority-induced strategies are elementary and <-minimal implies, 
because of the results mentioned in Section 3.2 in M6hring/Radermacher/Weiss [1984], 
that such strategies can only have strong analytical properties if they coincide with ES 
strategies or MES strategies [cf. Radermacher, 1984]. To be more precise, being sub- 
linear or convex or subadditive is equivalent to being an ES strategy, while being 
(uniformly) continuous, or monotonically increasing or preselective is equivalent to 
being an MES strategy. Due to the greediness of priority rules, such a coincidence will 
be a rare occurrence. In particular, there are problems [A, Oo, N] such that coincidence 
of priority-induced strategies with (M)ES strategies is in principle impossible, [cf. 
Radermacher, 1984]. Consequently, any priority-induced strategy in such a case is 
neither continuous nor monotonically increasing nor convex, and so forth. Such nasty 
behaviour of priority rules has previously been studied in the deterministic case where 
it is known as Graham anomalies [Graham]. Note that in view of Theorem 3.1.2 in 
M6hring/Radermacher/Weiss [ 1984], this will above all also imply unstable behaviour 
for priority induced strategies in general. 

The question remains, what degree of bad analytical behaviour and instability is to 
be expected. We will see in this paper that for most interesting cases; viz~ as long as the 
induced strategies are set strategies, we can establish e.g. "piecewise continuity'" and 
quasi-stability (i.e. stability w.r.t, distributions P having a Lebesgue density), cf. Cor. 
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3.2.3 and Theorem 3.2.4. Even stronger results can be obtained if LEPT and SEPT 
are optimal (cf. Section 2.3). Apart from some additional insights, this behaviour is 
due to an observation already known for elementary strategies in general (thus in 
particular for all priority-induced strategies), which states that all these strategies are 
piecewise composed orES strategies; cf. Section 2.4 and the proof of Theorem 3.2.1. 
Consequently, the areas of transition from one ES strategy to another are precisely the 
points where Graham anomalies may occur. Deeper insights into these transitions will 
be obtained in Section 3.2 of this paper. 

2.3 Remarks on the Optimality of  LEPT and SEPT Rules 

The sometimes poor analytical behaviour and relative instability of priority-induced 
strategies is partly compensated for by their easy implementability. Also, though only 
for quite special problem classes, even an overall optimal strategy will be of this type. 
Subsequently, we give some hints on such cases. Note that the conditions required of P 
and x will be compatible with those employed in section 4.2 to show overall op- 
timality of set strategies in a rather general setting. This fact then serves as a first step 
towards more general results on tractable stochastic scheduling problems, as given in 
the third paper of this series. Note also that the optimal strategies subsequently dis- 
cussed are incidentially also MES strategies [lgelmund/Radermacher, 1982], i.e. have 
strong analytical properties as well as a completely satisfactory stability behaviour. 

The basic type of scheduling problems for which overall optimality of certain list- 
scheduling strategies has been obtained and which, in fact, motivated the introduction 
of set strategies, are m-machine problems. Such problems do not involve precedence 
relations, i.e. (a,/3) ~ Oo for all a 4=/3, and are restricted to special systems N of the 
type N = {B _C A I I B I = m + 1 ). These assumptions imply that jobs cannot be 
distinguished w.r.t, precedence and resource constraints. Furthermore, activity durations 
are assumed to be stochastically independent and exponentially distributed and project 
costs are assumed to be additive. Combination of both assumptions yields - for the pre- 
emptive case - (cf.Section2.1) that the states of the optimization problem are essen- 
tially the set of still uncompleted]obs. This quite simple state space is the basis for the 
embedding and comparatively easy handling such problems in the framework of semi- 
Markov decision processes. 

Typical results obtained in this field show, under the given assumptions, the optima- 
lity of LEPT (longest expected processing time first) for the expected makespan, the 
expected first idleness and related objectives, and the optimality of SEPT (shortest ex- 
pected processing time first) for the expected flow time, the expected weighted flow 
time (in the case of agreeable weights) and related objectives [Weiss/Pinedo]. These 
results are in a certain sense the hard core of tractable stochastic scheduling problems 
and allow generalization in various directions, see e.g. the hints in the surveys [Demp- 
ster/Weiss ]. In particular, they yield the interesting observation, discussed in more 
detail in Pinedo, that special stochastic scheduling proble_ms may allow treatment 
in polynomial, even linear time, though the corresponding deterministic counterpart 
is NP-complete. Some caution should however be applied with the notion of solvabil- 
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ity, [cf. Dempster]. It is the optimal strategy and the associated schedule for any 
fixed duration vector x E R> than can efficiently be computed and implemented, not 

(in general) the associated optimal cost value. Note that even the iterative analytical 
description of the optimal value in Weiss/Pinedo will not help in this respect. 

2.4 Schedule4nduced Partial Orders 

A partial order 69 = (A, 0) is called an interval order [cf. Golumbic] if a time in- 
terval [ t ,  t ' ]  C R 1 can be associated with each activity a ~A such that (a,/3) E 0 

for a ~/3 iff t '  ~< tt3. Interval orders can equivalently be characterized by the fact 

that they do not contain a subposet isomorphic to (A', O') with A' = (1,2, 3, 4} 
and O' \ ffa, a) I a EA ') = ((1, 3), (2, 4)}. A third characterization is the existence 
of a numbering a 1 . . . . .  a n such that i < ] implies that either N O (al) C N O (ai) or 

N O (~/) = N O (~/) and V o % )  _C V o (~/), where N O (a) and V o (a) denote the sets 
of successors and predecessors of a w.r.t. O, respectively. The described linear order 
on the sets of successors (predecessors) is an important feature of interval orders. It 
allows for a consecutive arrangement U1 . . . .  , U r of all maximal independent subsets 

[the so-called layers in Golumbic ] in such a way that activities a EA occur consecu- 
tively, i.e. a ~ U i n U/with i < ]  implies that a E U l for all l with i ~< l ~<]. This so-called 

consecutive-ones property is in fact a fourth equivalence to O being in interval order 
[ Golumbic]. 

The importance of interval orders for scheduling theory becomes apparent as soon 
as partial orders induced by schedules are studied. To illustrate this, associate with 
any schedule T =  (T (al) . . . .  , T (an)) for (A, O, x) a partial order 0 (T, x) = (A, OT) 
defined by (a, 13) E 0 T for a 4:/3 iff T (a) + x (a) ~< T (/3). Partial orders which can be 

obtained in this way are called schedule-induced [Radermacher, 1982] and obviously 
coincide with interval orders. The poset O (T, x) contains O = (A, O) as a subposet 
and Tis also a schedule for (A, 0 T, x). Furthermore, feasibility of T for [A, O0, N, x] 

implies feasibility of O T (in the sense of Section 3.2 in M6hring/Radermaeher/Weiss 

[1984] ) and the inequality ESo(T,x) (a) ~< T (a) for each a EA. This observation has 
the interesting consequence that ES strategies induced by feasible interval orders already 
determine the overall optimum value in the case of singular distributions P, [cf. Kaerkes 
et. al;Radermacher, 1978], which yields a useful instrument for dealing with deter- 
ministic scheduling problems. Furthermore, one obtains a representation of any ele- 
mentary strategy II as a piecewise composition of ES strategies. To see this, let 
Z (O) := (x E R~ l O (II [x], x) = O) for each feasible (interval) order O. Then [cf. 

Kaerkes et al.; Radermacher, 1984]: 

n and (2) II [x] = ES o [x] for all x E Z (O). (1) U Z (O) = R> 
| feasible 

This implies that any elementary strategy is composed of a finite number of (well- 
behaved) ES strategies. This does not, however, imply piecewise nice analytic proper- 
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ties, as the sets Z (O) may be very nasty. However, for the set strategies introduced in 
Section 3, these sets Z (O) exhibit better behaviour (Theorem 3.2.1), which, in fact, 
leads to a basic aim of this paper, viz. the intended result on quasi-stability (Theorem 
3.2.4) for this particular class. 

3. Set Strategies 

3.1 Introduction and Elementary Properties of Set Strategies 

Definition: Let [A, O0, N, P, K] be given. 

(1) A strategy II for this problem is called a set strategy if 11 is elementary (i.e. jobs 
start either at time zero or else at the completion times of other jobs) and if the 

1 depends only on the sets B* and action B (t) taken at any decision point t ~ R~ 

B \ B* of jobs already finished or being performed. 

(2) The optimum value pSET (~ ;p) is defined as pSET (K ;P) := min (Ep [~ (II , .)]  I 
II is a set strategy), and a set strategy II is called optimal if Eao [~ (II, �9 )] = 
= pSET (~;p). 

Though set strategies will turn out to be more general than both MES strategies and 
list-scheduling strategies, they are apparently still rather special, even within the class 
of all elementary strategies. For if ct is a job already finished before t (i.e. a E B*), 
it is not permitted to distinguish actions taken at time t according to the observed 
duration x (a) or the completion time t which might be very reasonable in the case of 

stochastic dependences or special cost functions. Similarly, neither the value t nor the 
starting times of activities/~ being presently performed (i.e. ~ EB \ B*) have any in- 
fluence on the action taken, though this type of information will, due to the respec- 
tive conditional duration distributions, often be of a high value, also in the case of 
stochastically independent activity durations. To put it short, essential pieces of infor- 
mation that proved to be of crucial importance [cf. Section 4.3 in M6hring/Rader- 
reacher~Weiss (1984)], are given away, in order to obtain better behaviour 
than that encountered for general (or continuous or elementary) strategies. 

Intuitively speaking," the information that set strategies are permitted to exploit, 
iteratively consists merely in the sets B*' and B \ B*. The possible actions are then all 
sets B (t) _C A whose predecessors are contained in B, i.e. V o (et) _C B for all a E B (t), 

and which fulfil the resource constraints, i.e. N ~ (B \ B*) U B (t) for all N E N. This 
clearly implies that there are only j~nitely many such strategies (which in fact all turn 
out to be Borel-measurable) and that an optimal set strategy always exists, regardless 
of the given system [A, Oo, N, P, K }. 

Lemma 3.1.1: Each MES strategy for [A, Oo, I~1] is a set strategy for [A, Oo, l'~]. 

Proof: Let II = min (ES o I O E O). Let t > 0 be any decision time, i.e. the mo~hent 

of completion of a job. Let B* and B \ B* be as defined above. According to the de- 
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finition of II, the set B (t) of activities started at time t consists of all a E A \ (B \ B*) 
which are minimalin at least one subposet 0 ] (A \B*), 0 E O. Therefore, the set 
B (t) depends only on B* and B \B*;making II a set strategy. �9 

Lemma 3.1.1 shows that the class of all Set strategies is at least large enough to 
cover all ES and MES strategies, thus equivalently all convex (sublinear) and all contin- 
uous, elementary strategies [cf. Section 3 in M6hring/Radermacher/Weiss, 1984]. 
Furthermore this also shows that the optimal value #SET (K;P) is as least as good as 
the objective value associated with any (sub-)linear, convex, subadditive, (super-)addi- 
rive, concave, uniformly continuous, monotonically increasing or preselective strategy. 
Finally, Lemma 3.1.1 also straightforwardly implies that t9 (K; P) ~< 19SET (t~; P) ~< 
pMES (t~;P) ~< 19E S (K ;P), where all inequalities may be strict. Certainly this adds to 

the importance of 19SET (K ;P), e.g.w.r.t, possible use as a lower bound. 

Call a priority rule set-type if, given a decision time t, the priority ordering on the 
set A \ B of jobs available at time t depends only on the sets B* and B \ B*. Since 
these (possibly dynamic) priority rules use exactly the same information at time t as 
set strategies, the following lemma is rather obvious. 

l.emma 3.1.2: Let II be a strategy for [A, Oo, N] which is induced by a (dynamic) 
set-type priority rule. Then II is a set strategy for [A, O0, N]. In particular, all list- 
scheduling strategies are set strategies. 

Proof: Due to the definition of strategies induced by priority rules (cf. Section 2.2), 
B (t) is uniquely determined as the lexicographically smallest maximal set of activities 
(w.r.t. the priority ordering) that forms a feasible choice. Since the rule is set-type, H 
is a set strategy. The case of list-scheduling strategies is then trivial, as constant priority 
rules are set-type. �9 

There are certainly interesting strategies induced by dynamic priority rules that are 
not set strategies. However, many of the important ones w.r.t, applications [Gewald/ 
Kaspar/Schelle] belong to this class. In the following, wedlscuss two typical examples 
of this type. Though the rules are quite different at first Sight, it turns out - perhaps 
surprisingly - that the induced strategies coincide. In fact, they are in both cases 
essentially determined by the constant priority rule given by the numbering of the jobs, 
which is used (as an additional criterion) to settle ties for the original priority rules. 

Example 3.1.3: Let [A, 0o, N] be given and letA = {~1' �9 " " ' an) be numbered agree- 

ably w.r.t. 0, i.e. (a i, a]) E O0 for i ~:] implies i <] .  Then: 

(1) The dynamic priority rule "current earliest start" (CES) is set-type. 

Given a duration vector x E R~ and a decision time t with corresponding set A \ B of 
still unscheduled jobs, the CES priority ordering on A \.B is determined by the earliest 
start w.r.t, the subposet O ] (A \B). This means that given ~i' t~] EA \B  with t~ i ~: tz], 

tx i has a higher priority than ~ ,  if ES| IA \B [x] (t~i) <-ES| 1.4 \B [x] (~.), where ties 
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are settled by the numbering of jobs, i.e. in the case of equal earliest starts, a i is 

preferred to a) if i < j .  Obviously the set B (t) is then a uniquely determined subset of 

the minimal activities in 19 1A \ B and thus depends only on B* and B \ B*, making 
this rule set-type. 

(2) The dynamic priority rule "current height" (CH) is set-type. 

By definition, the main criterion for CH is the largest number of elements in a chain of 
predecessors of ~i E A \ B (the so-called height of a i in 19 I (A \ B)), where smaller 

heights yield higher priorities and ties are again settled by the job numbering. This 
rule is obviously also set-type. In fact, the induced strategy is the same as that induced 
by the job numbering being taken as a (constant) priority rule. This is similarly true in 
case (1), and yields that numbering, CES, and CH all induce the same strategy. 

Example 3.1.5 below will employ strategies induced by set-type priority rules which 
are not constant. The following remark characterizes all strategies thus induced within 
the class of all set strategies. 

Remark 3.1.4: A set strategy is induced by a dynamic (set-type) priority rule iff it 
is greedy, i.e. iff it avoids idle resources as long as possible w.r.t, the given priorities. 

Proof: The proof of Lemma 3.1.2 already showed that (set-type) priority rules lead 
to greedy set strat/egies. Now let II be a greedy set strategy and B* and B \ B *  be the 
sets of jobs finished and being performed at a decision time t. Then, either the set 
B (t) of activities started at t is empty, meaning (because of the greediness) that it 
is not possible to schedule a new job in addition to B \ B*, or B (t) 4= 4~. In the latter 
case, again due to the greediness, no set B' D B (t) can be started at t. This behaviour 
can obviously be simulated by a (set-type) dynamic priority rule which, at any deci- 
sion time t, assigns the highest priorities to the jobs ofB (t). 

The following example shows that neither MES strategies, nor (set-type) priority- 
induced strategies will, in general, yield the optimal value pSET(K ;P), not even in the 
case of independent and exponentially distributed job durations and additive (convex) 
cost functions. In fact, this is even true for the m-machine case (at least if the additive 
cost function is non-convex), of. Example 4.2:5. This is different from what might 
have been expected by the behaviour encountered in cases where LEPT or SEPT are 
optimal, and demonstrates some of the difficulties in more general models, particularly 
if non-preemptiveness is required; (compare Remark 4.2.2 for the different behaviour 
in the preemptive case). 

Example 3.1.5: Let [A, O0, N, P, n) be defined byA = { 1 , 2 , . . . ,  10), Oo as given by 
an arrow diagram in Figure 2, N be induced by 2 identical machines (i.e. N = 

10 
{B C { 1 , . . . ,  5) [ I B  I = 3} LJ ((7, 8, 10}) P = | P. where P] is an exponential dis- 

_ , 1=1 1 

tribution with parameter ?tl = 1/100, ;~2 = 1/20,X3 = X4 = )'s = X6 = ~'7 = ~,8 = 1, 
X9 = 1/20 and ?tl0 = 5 and K be the additi,r cost function K (tl ,  �9 �9 �9 tlo) := 100 �9 
tl + 100 �9 t2 + 100 �9 max {t2, t3, t4} + 20 �9 max {h, ts} + max (tl . . . . .  tlo). 
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Fig. 2 

10  

Theorem 4.2.6 (1) or (3) in M6hnig/Radermacher/Weiss [1984] yield existence 
of an optimal strategy for this problem. In fact, due to Theorem 4.2.1 below, there 
even be an overall optimal set strategy for this case, We will now indicate how such 
an optimal set strategy has to behave. 

First of all note that one can split up the problem into two parts. The first will 
consist in optimizing the subproblem belonging to (1 . . . .  ,5).  The optimal solution 
is accidentially compatible with LEPT and therefore also minimizes the expected 
makespan for the subproblem. This ecpected makespan enters as an additive term 
into the second part, which consists in minimizing the expectation of max (tl . . . .  , tl0 ). 
Because of the special structure of 00, this reduces then to minimizing the expected 
makespan of the subproblem associated with jobs (6 . . . . .  10). 

Starting with the second subproblem, the comparatively long expected duration of 
job 9 necessitates a procedure that guarantees the earliest possible start of this job, even 
at the price of postponing the start of job 10 to the completion of either one of jobs 7 
or 8. That meanspreselec~'vity [cf.M6hring/Radermacher/Weiss, 1984] with selection 10 
on the forbidden set (7, 8, 10) and leads to an optimal MES strategy for this subproblem. 
Note however that no priority-induced strategy will ever behave that way. Due to its 
greediness, it will always start activities 6 and 10 after completion of jobs ( 1 , . . . ,  5) 
instead of leaving one machine idle, temporarily. 

With regard to the subproblem induced by jobs 1 . . . . .  5, the expected duration 
and influence on the project cost of jobs 1 and 2 are comparatively so great that these 
jobs must be started at time 0. Next important are jobs 3, 4, 5 in this order (due to 
their respective impact on project cost and their identical behaviour otherwise). Job 5 
has almost no influence on the cost function, except for the extremly rare case that 
job 1 ends before job 2. In that rare case, however, job 5 should be started as soon as 
possible. Altogether this means that the optimal strategy for the first subproblem is 
induced by the following set-type priority rule: 

(i) 1 < 2 < 3 < 4 < 5 if x2 < x~ (most probable case) 

(ii) 1 < 2 < 5 < 3 < 4  i fx l  ~<x: 

Note that the induced strategy is not an MES strategy, as it is not preselective on the 
forbidden set (3, 4, 5). In fact, in case (i) only activity 5 acts as a waiting job, while it 
is activity 4 otherwise. 

Altogether then, neither MES nor priority-induced strategies lead to optimality here; 
instead, a combination of the given set-type priority rule on jobs ~1 . . . .  ,5)  and the 
given MES strategy on jobs ( 6 , . . . ,  10) will suffice. 
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3.2 Analytical Properties and Quasi-StabiUty of Set Strategies 

Example 3.1.5 demonstrated that MES strategies do not in general determine the 
optimal value within the class of set strategies. In view of the fact that all strategies in 
this class are elementary and of the representation theorems reported in Section 3 in 
Mthring/Radermacher/Weiss [1984], it becomes clear that optimal set strategies will, 
in general, be neither continuous nor monotonically increasing. This behaviour some- 
how reflects the Graham anomalies for list schedules in the deterministic case [Graham] 
as described in Section 2.2, and has some undesirable side effects. In particular, it 
means that set strategies do not show the rigid stability behaviour discussed in Section 3 
of Mdhring/Radermacher/Neiss [1984]. However, as was mentioned there already, 
the unavoidable instabilities will be closely related with discrete duration distributions. 
Certainly, instability w.r.t, a discrete data type is much more easily acceptable for real- 
life applications than instability w.r.t. "continuous" data such as distributions having a 
Lebesgue density. This point of view motivates the notion of quasi2stability, meaning 
that the original, rigid standard of stability is only required for the smaller class of 
"test" distributions P that have a Lebesgue density, [cf. Mdhring/Radermacher/lfeiss, 
1984]. We will subsequently show that all set strategies have this property. This will be 
a consequence of another observation, viz. that set strategies are continuous on the 
complement of a finite number of hyperplanes, i.e. on the complement of a set of 
Lebesgue measure zero. 

Theorem 3.2.1: Let II be a set strategy for [A, Oo, N]. Then there exists a partition 
of R> into finitely many non-empty sets Z1 . . . . .  Z m such that 

(i) each Z i is a (not necessarily closed) convex polyhedron (even a cone) 

(ii) for each Z i there exists a (unique, feasible) interval order | = (A, Oi) such that 

II [x] = ES| [x] for allx ~Zi ,  i=  1 . . . . .  m. 

Proof: As was described in Section 2.2 in Mdhring/Radermacher/ICeiss [ 1984], II 
induces for each x E R> a sequence S of states (B~, B 0 \ B0*), (B ~, B 1 \ BI*) . . . . .  

(B~, B k \ B~), where B ;  and B] \ B ;  denote the jobs finished and being performed at 

decision point t i, ] E (0 . . . . .  k}, respectively. Except for the initial state (4, 4) and 

the final state (A, q~), states depend on x, as does k, where of course k < n + 1, due to 
n Ix induces the the elementarity of II. For any such sequence S, let Z = Z S := {x E R> 

sequence S w.r.t. II}. As there can only be finitely many such sequences, it is suffi- 
cient to show that Z fulfills conditions (i) and (ii). This is done below. 

(i): The result is shown by induction on n = I A I. For n = 1, the assertion is trivial. 
In the inductive step, let S be the sequence of states as given above,A = {al . . . . .  

* = {al, �9 �9 , t~ r} with r i> 1 the set of completed jobs at the second decision a n }, B 1 
point t 1 and B 1 \ B~ = (ar+ 1 . . . . .  ~ts} the set of jobs still being performed (where 

B 1 \ B~ = ~b is possible). Let B ( t l )  denote the action taken by II for x at t l ,  i.e. the 

set of activities started at t 1 , where B (t l )  = r is possible ifB 1 \ B~ :~ 4~. Note, that 
since II is a set strategy, B( t l )  is the same for all X that lead to the sequence S. 
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Consider, on Z, the restriction II' of 11 to the subproblem induced by A \B~. 

Note that in this subproblem, (remaining) activity durations on B 1 \ B 1 will be 

x (a) - x (~1) > 0, where of course x (a 1) = . . .  = X (ar), due to the correspondence 
of Z to the sequence S with start set B1 and first " completed jobs B 1 . Obviously, 
17' will first start activities B (1) U (B 1 \ B1) and will induce for each x E Z the 

unique sequence (~b, ~), (B2 \ B ~ , B  2 \B~) ,  ( B ~ \ B ~ ,  \ * . . . .  B k Bk).  By the inductive 

hypothesis, applied to the subproblem, one obtains that Z' := ((Yr+l . . . . .  Ys' 
n - r  Ys+l '"  " " 'Yn)  E R> "r [ (Yr+l . . . .  , yn )  induces S) is a convex cone in R> . Thus 

there exists a f inite homogeneous system L' of (possibly strict and non-strict) linear 
inequalities in the variables Yr+l '  " " " ' Yn'  whose feasibility domain is Z'. Now observe 

that, by construction, the following representation of Z is possible: 

Z =  ~(xl . . . .  , X n ) E R  ~ l x l = x l ; J  = 1 . . . . .  r ; x i = y j  + x l , J = r +  1 . . . . .  s; 

x = yj, j = s + 1 . . . .  , n for some (Yr+l . . . . .  Yn) E Z'} .  

Thus one obtains a description L of Z by a f inite system L of linear inequalities 
(which is again homogeneous) by replacing all variables yj ,  j = r +  1 . . . . .  s (in the 

case ofB 1 \ B~ :~ ~) by y j  + x 1 , and by adding the linear constraints 

x2 = x 1 . . . .  , x r = x 1 �9 This shows that Z is a convex polyhedron (even a cone). 

(ii): As was already mentioned in Sec. 2.4, any elementary strategy has a re- 
presentation II [x] = ES| [x], x E Z  (| O E O, where 0 is a suitable set of fea- 

sible interval orders, and where x E Z ((9) iff O n[x I = O. Here, Ori [x I denotes the 
unique interval order induced by the feasible schedule II [x] in the sense of Section 
3.2 in M6hring/Radermacher/Weiss [! 984], where the feasibility of O immediately 
follows from the feasibility of II [x]. As was also mentioned, the inequality 
ES o [x] ~< II [x] generally holds. Now for elementary strategies, equality is obtained 

as follows by induction on O. 
Assume that ES o [x] (a) < n Ix] (a) for some a ~A,  while equality holds for all 

predecessors of a w.r.t.O. Note that (fl, a) E 0 (for/~ v~ ~) iff H [x] (~) + x (~) ~< 
II [x] (a). As 11 is elementary, H [x] (o0 = II [x] (fl0) + x (fl0) for some/~0 EA. 

Obviously,/3 0 E V| (a), and by the inductive hypothesis, ES| [x] (a) ~ ES| [x] ~0) + 

x (/~0) = H [x] (/~0) + x ~0) = H [x] (a) > ES| [x] (a), a contradiction. Consequently, 
17 has a representation as described. 

Altogether, it therefore suffices to show that all elements x E Z in (i) lead to the 
same interval order O n Ix 1" To this end, note that the given sequence S provides the 
complete information about which maximal sets of activities are Processed simul- 
taneously at some time, these sets constituting antichains in an interval representation 
of O n[x 1" In chronological order, these special antichains occur as the sets B (0), 

�9 �9 �9 , \ al~ B ( 1 )  U ( B I  \ B I * ) , B ( 2 ) U ( B 2 \ B 2 * ) ,  B ( k ~ - l )  U(Bk .  1 Bk.1). As is well- 
known, this sequence uniquely defines Onix] [cf. Golumbic], concluding the 
proof, m 
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Remark 3.2.2: Note that the maximal antichains (layers) in the above sequence 
obviously have the consecutive ones property mentioned in Sec. 2.4, which gives 
another proof of | being an interval order. Note also that if all sets in the above 
sequence are layers, 11 is greedy on Z, i.e. 11 is (set-type) priority-induced on Z. The 
converse of this is not in general true (i.e. even if 11 is priority-induced, not all sets 
of the sequence need be layers), 

It should, however, be mentioned that for suitably chosen x and for priority- 
induced II, a complete correspondance between induced sequences and feasible interval 
orders can be obtained. To this end, let the layers of a feasible interval order be given 

. . ,~ 

consecutively as U 1 . . . . .  U k. Putting B 0 = B 0 = r B (0) := U 1 , and 

B ;  := B}*.I u(U].  l \ U ] ) ' B ] \ B * ' = U ] O U j ' I ' B ( t ] ) = U ' \ 5 - 1 1  for]  = 2 , . . .  , n - l ,  
then gives a sequence S of states and actions consisting of the layers of 69, and 11 will 
generate this sequence for x defined b y x  (a) = I ~] E {1 . . . .  , k) [ a E U ] )  1, (and 

consequently then also for any other x E ZS). 

Theorem 3.2.1 means that every set strategy behaves as an ES strategy on each of 
finitely many convex cones forming a partition of R>. Consequently, bad behaviour 
such as discontinuity or non-monotonicity can only occur on the boundaries of these 
polyhedra, i.e. obviously only on a finite number of hyperplanes. Note that this yields 
considerable insight into the possible occurrence of Graham anomalies [Graham] for 
set-type priority rules, which here turn out to be restricted to these boundaries. Now, 
taking the union H of all these finitely many hyperplanes obviously yields a closed set 
o f  Lebesgue measure zero. Altogether, this leads to the following corollary. 

Corollary 3.2.3: Let 11 be a set strategy for [A, O 0, N], Z 1 . . . . .  Z k the associated 

convex cones and H the associated union of boundaries of Lebesgue measure zero. 
Then: 

(1) II is piecewise well-behaved, i.e. 11 is convex (thus subadditive), monotonically 
increasing, and positively homogeneous on each (open) set Z i \ H, i = 1 . . . .  , k. 

(2) II is uniformly continuous on the open set R~ \ H, i.e. in particular, 11 is 
n In-almost everywhere continuous on R>. 

Corollary 3.2.3 is essential for obtaining the intended result on quasi-stability of set 
strategies. Note that in view of the stability conjecture in Mdhring/Radermacher/Weiss 
[1984], quasi-stability should be expected for the optimal value (and for e-optimality) 
i fP  has a )t n-almost everywhere continuous density. The particular feature of set 
strategies is therefore that each individual set strategy is quasi-stable. The proof shows 
how X n-almost-everywhere continuity yields quasi-stability. Note in particular that we 
allow here arbitrary regular performance measures ~ (without measurability condition). 

Theorem 3.2.4: The class of set strategies is quasi-stable, i.e., given [A, Oo, N, P, K ], 
where P has a Lebesgue-density, the following properties hold for each weakly conver- 
gent sequence (P])]~N ~ P of joint distributions for which E (x 1 . . . . .  I n )  := 

x 1 + . . .  + x n is uniformly integrable, and for each uniformly convergent sequence 
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(Kj)]EN -> g of cost functions: 

1. For any set strategy II: 
(i) (P])K](rt,.) converges weakly to P (rI,.)" 

(ii) lim E~ [[r ( I I , . ) ]  = E/, [K ( I I , . ) ] .  ]__,.. r] 

2. W.r.t. optimality: 
(i) !im pSET(K], P]) = pSET (r, P). 

.]---~ r 

(ii) Let II] denote, for any e > 0 and any ] E N, a set strategy that is e-optimal in 
this class w.r.t. (K], P]). Then there isJ0 E N  such that for all] ~>]0 l-I] is e- 
optimal in this class w.r.t. (g. P). 

(iii) If  II is an optimal set strategy w.r.t, infinitely many (K i, P])]eN' then II is 
\, 

also optimal w.r.t. (g, P). Furthermore, there is an optimal set strategy for 
(r, P) having this property. 

Proof: l(i): The result uses Lemmas 4.2.4 and 4.2.5 in M6hring/Radermacher/Weiss 
[1984] and is a consequence of a quite general theorem on weak convergence, [cf. 
Theorem 5.5 in Billingsley]. Due to this criterion, it is sufficient to show that there is 

n for which a measurable set N with P (N) = 0 which contains the set E of those x E R> 

K/(II, xj) ~ ~ (II, x) fails to hold for some sequence (xj)]~ N approaching x. 

To apply this criterion, let N 1 denote the (measurable, [cf. p. 225f in Billingsley] 
set of discontinuities of II, N~ the (measurable) set of discontinuities of K and 

N 2 := (II + id) -1 (N~), where id denotes the identity on R~,  i.e. id (x) = x. Then 

~n (N1) = ~n (N~) --" 0 because of Corollary 3.2.3 and Lemma 4.2.5 in M6hring/Rader- 
macher/Weiss [ 1984], respectively. Taking into account Lemma 4.2.4 in M6hring/ 
Radermacher/Weiss [1984] also yields X n (N2) = 0 for any strategy II, because other- 

wise P(n+id) could not have a Lebesgue density, regardless of P. Altogether, 

put t ingN : = N  1 tAN 2, we obtain X n (iV) = 0 as well asP(N) = 0, due to the fact 

that P has a Lebesgue density. It therefore suffices to show that E _C N in order to 
obtain 1 (i). 

Let x ~N.  Then x is a continuity point of II and II [x] + x is a continuity point of 
K. Therefore, if (x])]~ N is any sequence approaching x and i fyj  := 11 [x]] + x], then 

y] approaches y := II [x] + x and K (y]) approaches K 0')- This yields 

K (y) = lim K i (y) (*_-3 lim K i 0,i), 

where (*) is a direct consequence of uniform convergence (of sequences of functions)) 
as formulated e.g. in Theorem 7.11 in Rudin, concluding this part of the proof. 
1 (ii): Note first that the uniform convergence K] ~ K yields, for any e > 0, the exis- 

n and all tence o f  some ] (e) E N such that I Kj (z) -- K (z) [ ~< e for all z E R> 
] .-->] (e), implying [ Eq [K I ( I I , . ) ]  -- EQ [g ( I I , . ) ]  I ~< e for any such] f>] (e) and 
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any probability distribution Q on (R~,, S~). We can therefore straightforwardly re- 

strict ourselves to the special case ri = K for all ] E N. 

Because of the quite general Theorem 5.4 in Billingsley and 1 (i), it is then suffi- 
cient to show the uniform integrability of K (II, �9 ) w.r.t. (P/)]eN" To see this, note 

that the assumed uniform integrability of Z w.r.t. (P])]eN' i.e. the validity of 

r~**lim ]~su (~: f r}  I Z I alP/= 0, implies uniform integrability for each function 

f :  R~ ~ R~, fulfilling f~< no �9 Z + bo; n 0, b 0 EN arbitrary but fixed. Since ~ is 

linearly bounded in our model, i.e. K (x) ~< m 0- ~ (x) + c o for some m 0, c o E N, 
and since II Ix] (a) + x(a)<,x 1 + . . .  + x n = ~ (x) for all x E R~ and all a EA because 

of (Sto 4), we obtain that K (II, x) ~< K (E (x) . . . .  , ~ (x)) ~< m 0 �9 n �9 ~ (x) + c 0, i.e. 
uniform integrability of K ( I I , . )  w.r.t. (P)j~ N for arbitrary ~ and II, concluding 
this part. 

2 (i): This is an immediate consequence of 1 (ii) and the fact that there exists only 
a finite number of set strategies, reducing the proof to the possible interchange of the 
operations "limit" and "minimum". 

2 (ii): If the statement were not correct, there would be an infinite subsequence 
(l-[])j~_ I , I C N such that E/,/[~j (II/, �9 )] ~< pSET (Kj, P/) + e but Ep [K (II/, �9 )] > 

pSET (K, P) + e for all such] El .  Due to the fact that the number of set strategies 
is finite, we can w.l.o.g, assume that all (II/')j~_/equal one particular II. This implies: 

pSET (K, P) + e < E/, [K ( I I , . ) ] 1 (~  J~-/lim Ep [/~j Off , '  )] ~< /-***lim pSET (K/, P/) + e 

J = pSET (t~, P) + et a contradiction. 

2 (iii): This statement follows immediately from 1 (ii). In particular, since the class 
of set strategies is finite, there is some set strategy which is optimal for infinitely 
many (K/., P)/~N and consequently also for (K, P), concluding the proof. 

Note that Theorem 3.2.4"shows quasi stability for a large class of discontinuous 
strategies for stochastic scheduling problems, considerably relaxing the requirements 
formulated in Theorem 3.1.2 in M6hring/Radermacher/Weiss [ 1984]. Of particular 
practical importance is again part 2 (ii), which tells us that "almost" optimal scheduling 
w.r.t, a "good" approximation (K], Pj)]aN of the "unknown" data (K, P) already yields 
"almost" optimal scheduling, also w.r.t, the correct data (K, P). 

With a view to the applicability of Theorem 3.2.4, it should again be noted that the 
required uniform integrability of ~ is not very restrictive. It holds, for example, i fP 
has a bounded support, or if the approximating (PI)]~N are all members of one of the 
usually encountered classes of distributions with Lebesgue-densities such as uniform, 
triangle, Beta, truncated normal or Erlang distributions. Particularly, the cases dealt 
with in Sec. 4 and in Dempster/Lenstra/Rinnooy Kan, i.e. those falling nicely into the 
Markov-decision framwork, are of this type, since e.g. all additive cost functions are 
continuous and products of exponential distributions have a Lebesgue-density. This 
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last observation is all the more interesting because in this case there is even an overall 
optimal set strategy (Theorem 4.2.1), i,e. in this case we obtain in addition to Theorem 
3.1.1 in M6hring/Radermacher/Weiss [ 1984], a stronger version of quasi-stability for 
the overall optimum value, too. 

4. Overall Optimality of Set Strategies and the Shift Property 

In the following we demonstrate that there is an overall optimal set strategy for an 
interesting class of stochastic scheduling problems. This overall optimality of one out 
of a finite number of rather simple strategies is related to the optimality of priority- 
induced strategies such as LEPT and SEPT in special problem classes, [cf. Dempster; 
Weiss/Pinedo]. In fact, the intention to fully exploit the nice features of priority- 
induced strategies in special cases was one of our aims, and led to the introduction of 
set strategies. In a feedback, this result on the optimality of set strategies initiated more 
general results on the optimality of e.g. LEPT and SEPT rules as will be given in the 
third paper of this series. 

If we ask for appropriate conditions for optimality of set strategies, we will have to 
make sure that the sets of completed jobs and of the jobs currently being performed 
"essentially" describe the state of the problem at some time t. Set strategies will then 
just be the stationary Markov strategies and optimality will follow from standard 
results in stochastic dynamic optimization and semi-Markov decision theory [Bertsekas/ 
Shreve; Hinderer, 1970; Strauch ]. 

In view of Section 4.3 in M6hring/Radermacher/Weiss [ 1984], such a restriction 
means that at any decision time t, the optimal decision does not depend on usually 
important information such as the duration of completed jobs, the current duration 
of jobs being performed, the already known completion times and the present time t. 

The first two types of information are inessential if we restrict the joint duration 
distributions to products of exponential distributions (for job durations restricted to 
N, geometric distributions would do as well). In order to render the last two types of 
information inessential, one needs cost functions for which different future develop- 
ments from time t onwards (induced by different strategies) depend on the history up 
to t only in such a way that the ordering among the different strategies w.r.t, expected 
future costs remains the same for all possible histories and futures (strategy-equi- 
valent cost functions). 

One well-known class of such cost functions are the additive cost functions, for 
which the history enters into the total cost only as an additive term b = b ( t i l , . . . ,  tik, t) 

depending on the completion times til ~<.. .  ~< tik ~< t and t. Preservation of the 

ordering w.r.t, expected cost follows for additive cost functions from the fact that, 
with TOO = f +  b, b E R  1, 

f f dP<, f  g dP iff f T(f)dP<~ f T(g)dP 

for all probability measures P on (R>, R>) and all measurable functions f, g: R> ~ R~. 
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Now the most general transformations T with this property are exactly the affine 
transformations T (f) = a f  + b (a, b E R 1, a > 0), cf. Theorem 8.2 in Fishburn. So 
the most general cost functions, for which a general optimality result for set strategies 
can be expected, gte cost functions for which the t-history enters the future cost 
development only via a (positive-) affine transformation (so-called shift property). 
We indeed obtain such an optimality result, which is related to the existence of  optimal 
stationary strategies for stochastic dynamic optimization problems with additive cost 
criterion [Bertsekas/Shreve; Hinderer, 1970] (which is a much more general notion of  
additivity than the one used in this paper). 

Before proving this theorem, we first give, - as a central aim of  this paper - ,  the 
complete and quite involved characterization of the class of  cost functions with the 
shift property and discuss their relationship with the additive cost functions. 

4.1 The Shift Property 

n . ,  R 1 be a regular cost function. K is said to have the shift Definition: Let g : R~ i> 

property if for every vector (t  I . . . . .  tn) E R~ of completion times, for every set 

B C { 1 , . . . ,  n}, and t E R~ fulfilling max { t / l / E  B} <<. t <~ rain { t / t / ~  B)  
where max := 0) 

q~ 

g (t I . . . . .  tn) = a" ~ ((t ! --  t) + . . . .  , (t n -- t) +) + b, 

where ( t / -  t) + = t / -  t if  t />i  t and 0 otherwise, and a, b E R 1>I depend only on the 

history up to t, i.e. a = a B ( t, t/I / E B) and b = b B ( t, t/I / E B). 
Note that B may be viewed as the set of  jobs already completed by time max 

{t i I] E B}, with no further completion occurring in the time up to t. The shift pro- 

perty then states that the future problem, starting at the present time t, can w.r.t. 
cost aspects essentially - i.e. up to an affine transformation - be handled as if  t = 0 
and as if  all jobs a / , / E B  were eliminated. Elimination here means taking t = 0. To 

obtain this representation is also the reason why in this context g must be defined on 

R~ and not,  as above, on R> only. 

The following lemma gives an initial insight into which cost functions have the 
shift property.  Note that again costs involving tardiness will generally not have this 
property. 

Lemma 4.1.1 �9 

(1) Let g have the shift property and e ~ R~ be any constant. Then g + e also has 

the shift property.  In particular, any cost function g'  with the shift property is of  the 
type K + c, where K (0 . . . . .  0) = 0 and e E R~.  Note that g is uniquely determined 

by g'  and that the respective multiplicative terms in the shift representation are the 
same. 
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n (2) L e t K : R ~ - ~ R ~  have thesh i f tproper ty ,  a n d l e t $ C D C A  : = { 1 , . . . , n } .  

Then the projection K D of  K onto the components of  D, i.e. the function 

KD: R IDII> -+ R~ with K o (Xa) = K (x D, 0 A \19)' has the shift property,  and 

g: R~I ~ R~I with g (t) := K (t , .  . . ,  t) has the shift property. 

(3) L e t  K: R n/> -> R~ be a regular cost function with the shift property and let 

K (0 . . . .  , 0 )  = 0. I f  K (x) = K 0 ' )  for x, y E R~ with x i < Y r  i = 1 . . . .  , n, then 

n [Note, however, that in this case the projections K D Of K may is constant on R>.  

have different values or may even be strictly monotonically increasing]. 

(4) Each additive regular cost function K fulfils K ( 0 , . . . ,  0) = 0 and has the shift 
property with a B (t, tj I/" E B )  = 1 for all B and t],/" EB.  

(5) Let K be any additive cost function with K(0 . . . . .  0 ) = 0 a n d K ' ( t  1 . . . . .  t n ) :="  
K(t I . . . . .  t n) 

e -- 1, then K' ( 0 , . . . ,  0) = 0, K' is regular and ~'  is not additive but has the 
shift property.  

1 for all ~b ~ B C A and put (6) L e t c  B ~ R ~  
h.max t 

K( t  I . . . .  , t n ) : =  2~ C B , ( e  ~ 8  a _ l ) , 3 ` > O ,  
(p@BC_A 

then g (0 . . . . .  0) = 0, K is regular and K has the shift property (but is not additive). 

�9 (7) Le tA = (1, 2} and put 

a (e xt l  - 1) + ht l  (e x l ( t2"t l )  
e a 1 - 1) t 1 ~< t 2 

I~ ( t l ,  t2):= 
xt2 (eX2( t l t2 )  - 1) t 1 , a (e xt2 - 1) + e a 2 >f t2 

1 with 3  ̀t> 3.1, 3`2 and a 1, a 2 > u .  Then g ( 0 , . . .  0) = 0, where 3`, 3`1' 3`2' a, a 1, a 2 E R~ 
K is regular and K has the shift property (but is not additive). 

(8) Let g, f :  P (A) -~ R 1 with g (r = f (~) = 0 be set functions and define, given 

ordered completion times til <~ ~2 <~ " " " <~ tin' for jobs a l l ,  ai:  ....... , Otin, 

J ( A  )til f(A i l)(t i2-ti l)  
K ( t l , . . . , t n ) = g ( A ) ' ( / ( A ) t i l - - 1 ) +  g ( A i l ) ~ e  - - 1 )  

f(A )til +f(A il ) (~2"tz i )+" " .+f(A in.1 )(tin.1 "tin ) 
+ . . . + e  

f(A ~ )( t .  -t. ) 
�9 g(Ain.1 ) �9 ( e  'n-1 tn tn-1 -- 1), 

where A = {il . . . . .  /n ) and Aik  = A \ { i l , .  . . , ik}, k = 1 . . . .  , n -- 1. 

Then tr (0 . . . . .  0) = 0, and K has the shift property (but is not additive). Moreover, 
K is regular i f f f  and g are monotonically increasing. 

Proof: (We only give hints on the non-trivial parts) 

(1): It is sufficient to show the following: I lK '  has the shift property, then 
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K (t 1 . . . . .  tn) := K' (t 1 . . . . .  tn) -- ~' (0 . . . . .  0) fulfills K ~ 0, ~ (0 . . . . .  0) - 0, 

is regular and x has the shift property. In fact, ~ fulfills the shift property with the 
same a B as K' and a modified b B. 

(2) is obvious, since the functions a~B and b~ of  n O are just the D-projections of  the 

functions a a and b a for g. For g, we obtain a (t) = ae (t . . . . .  t) and b-(t) = b e 

(t . . . . .  0 .  

(3): We first show the assertion for n = 1. Assume first that ~ (x) = 0 for some 
x > 0 .  Le tx  0 :=sup  (x>~0 IK ( x ) = O } . I f x o < ~ , l e t O < t < x  0 andx  > x  0 such 

that 0 < x -- t < x 0. Then the shift property yields 

0 < K (x) = a e (t) r (x -- t) + b e (t) = b e (t) and 

0 = ~ (t) = a e (t) ~ (0) + b e (t) = b e (t), 

a contradiction. Hence K = O. 

Assume now that ~ (x) > 0 and that there are x 1 r x 2 with K (Xl) = K (x2) = c > 0. 

Then K', defined by K' (x) := ~ (x 1 + x ) - c  is again a regular function with the shift 

property and ~' (0) = 0. Since r '  (x 2 - X l )  = 0, we obtain by the first part of  the 

proof that K' = 0. Hence g (x) = c for allx ~>x 1. 

* 0. Note first that Now let x~ = inf {x >t 0 [ ~ (x) = c}. We must show that x 1 = 

b e (t) = K (t) for all t >i 0, since K (t) = a e ( t )"  K (0) + b e (t) and K (0) = 0. I f x  1 > x~, 

we obtain for all t ~> 0 that c = n (x 1 + t) = a (t) K (Xl) + ~ (t) = c "  a (t) + ~ (t), 

i.e. a (t) = (c -- ~ (t))/c. Choose x < x~' with 2x > x~. Then c = K (2x) = 

a (x) ~ (x) + K (x) = c - K (x) K (x) + K (x) yields the quadratic equation ~ (x) 2 - 
c 

2cn (x) + c 2 = 0 which has the unique solution ~ (x) = c. Since x < x ~ ,  we obtain 
that x~ = 0. 

In the n-dimensional case, assume that ~ (x ~ = K (yO) for x ~ yO E R~ with 

x o < yO, i = 1 , . . . ,  n. If  the interval [x ~ yO ] C_ R n>~ has a non-trivial intersection I 

(i.e. I I I > 1) with the diagonal D := {x E R~ [ x 1 = . . .  = x n }, one obtains that g 

is constant on (t E R 1 [ (t . . . . .  t) E I } .  Hence g is constant on R>,  implying that 

K is constant on R>.  If  I I  i ~  1, consider ~* defined by ~* (x) := K (x + x  ~ - -n  (x0). 

K* has again the shift-property and K* (0) = K* (yO _ xO). The above arguments then 
yield g* = 0. Hence K* = 0 on Rn 

Then one obtains K 0 '*)  = r*  (y* - - x  ~ = ~* (0) = ~ (x ~ for eachy*  ~>x ~ 
Choosingy* large enough yields I [x ~ y*]  N D  I > 1, and the above argument can be 
applied to ~. Hence r - c on R> forsome constant c. 
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However, the projections K D of  K may be different from c. (As an example, define 
K: R 2 ~ R 1 by 

1> 

(4): 

K (Xl, X2):= X 1 /> 0, X 2 = . 

1 X 1 = 0 ,  x 2 > 0 J  

As described in Section 2.1, additive cost functions are, given ordered comple- 

tion times til <~ ti2 < . . . . < - t i n , f o r j o b s a i l , ~ i 2 , . . . ,  ~ln., defined by 

K (t 1 . . . . .  tn) = til �9 g (A) + (ti2 - til ) �9 g (Ail)  4- . . .  4- (tin -- tin.1 ) �9 g (Ain.1), 

1 where Air := A \ {i 1, i 2, . . . ,  i r} for r --- 1 , . . . ,  n - 1, and g: P (A) ~ R~ is monoto- 

nically increasing in order to guarantee regularity. 
Now let [ B [ = r < n, where we can restrict ourselves w.l.o.g, to the case B r r 

Obviously then B = (i I . . . . .  it), i.e. B consists of  the r jobs completed first. We 

consequently have tit <~ t <~ t/r+1 and the cost occurring in the time intervals 

[tit, t] and [t, tit+l] are obviously (t - tir) " g (Air) and (tir+l - t) " g (Air), re- 

spectively. Therefore we obtain 

K (t I . . . . .  tn) = til �9 g (A) + . . .  4- (tir - tir.1 ) �9 g (Air.1) 4- (t -- tir ) �9 g (Air) 

+ (tir+l - t)" g (Air) 4 - . . .  4- (tin - - t in . l )"  g (Ain.1) 

= [til �9 (g(A) - g ( A i l ) )  + . . .  4- ~r" (g(Air-1) -g (A i r ) )  4- t"  g(Air)] 

+ [(tir+l - t )  " g(Air) + . . . + (tin -t.tn.1) " g(Ain-X )]" 

Obv/ously, the expression in the first (square) brackets is an additive term b depending 
only on t and the values t], ] EB.  Also, the expression in the second brackets is easily 

I identified as K (t I . . . . .  t'n). Thus choosing a = 1 yields the intended representation. 

(5): By (3), a = 1 for additive cost functions. This implies the shift property for K', as 
! ! D t t 

the functions a B for K can be chosen as e B, while the functions b B for r are of  the 

form (e bB - 1), b B denoting the respective additive terms for K. 

(6): Let r q= B' C A be arbitrary and max {Q I ] E B'} ~< t ~< min (tj [ ] @ B') .  Then 

hmax t hmax t 
�9 . "(e a~B a _ l )  K( t  1, . , t n ) =  ~ c e ' ( e  ~ B  a 1 ) +  G c B 

ckC=BCA OcBC_B' 
BCs' 

hm ax (ta-t) + 
= e x t . (  Z c B ' ( e  a~B --1) 

r 
B~B' 
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Xmax ta 
+ [  F, c B " (e x t - 1 )  + Ig c B " (e ~ B  - -1)1  

~ B C _ A  ~ B C _ B '  

Obviously, this is the representation required. 

(7): Put a = a e (t) = e x t  and b = b e (t)  = a (e xt - 1) as well as a = a(i I ) ( t i l ,  t) " 

h ' t i l  h i "(t-t i ) k t i l  k i (t-t i ) h t i l  
e " e  1 1 andb=b(il)(t:l,t)=al'e_, " e  1 1 _ a l ,  e + 

k t i l  
a (e - 1) where t i l  <<, t <<, ti2 and i I ~ (1,2) ,  respectively. 

(8) generalizes (7) by induction. �9 

Remark 4.1.2: Lemma 4.1.1 exhibits a variety of cost functions having the shift 
property. By part (1) the study of such functions may essentially be restricted to the 
case that K (0 . . . . .  0) = 0. Part (2) shows that projections and g again have the shift 
property. This fact will be used in the inductive proof of Theorem 4.1.3. Part (3) 
shows that regular cost functions with the shift property are usually strictly mono-  
tonically increasing as long as all activities are still being processed. After a comple- 
tion, however, the corresponding subfunction may be constant, cf. the characterization 
in Theorem 4.1.3. The only exceptions to this behaviour (within the class of monoto- 
nically increasing functions) are functions that are constant on R>. In that case, the 

projections may be chosen arbitrarily as long as the shift property and the regularity 
are preserved. This also shows that (regular) functions with the shift property may still 
be discontinuous,  necessitating the more involved argumentation occuring in the-p~oof 
of the complete characterization in Theorem 4.1.3. Note that the mentioned cases ~vill 
in fact turn out to be the only discontinuous (regular) functions occuring. Thus, in 
particular, all functions having the shift property are continuous on R~, i.e. the rare 
occurance of discontinuities is restricted to cases that involve certain job durations to 
be zero. Part (4) shows that the additive cost functions are a subclass fulfilling a B = 1. 

We will see below that this property characterizes the additive case (as do uniform 
continuity in the unbounded case and positive homogeneity). 

Part (5) shows that the shift property also holds for all discounted  variants of the 
additive case, while (6) and also (7) show that these do still not give all functions with 
the shift property. Note that here a multiplicative constant depending on the set B 
but not  on the order in which the activities of B are completed) is involved. 

Part (7) then shows that the multiplicative term a B in general depends on the order 

of completions in B. Finally, note that (8) includes all cases (4) - (7). In fact, it will 
turn out below that (8) gives all functions having the shift property with a B :~ 1 for 

all projections of ~. 

Using ideas from the theory of functional equations [cf. Acz$l] ,  we next give a 
characterization of all cost functions having the shift property. This characterization 
is a basic aim of this paper and needs a quite sophisticated argumentation. Note that 
a major problems arises from the fact that we do not know that K is continuous, let 
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alone differentiable. To overcome this difficulty, we will essentially rely on regularity, 
in particular on known properties o f  monotonic functions f :  R 1 -* R 1 , [cf. e.g. Royden; 
Rudin]. 

Theorem 4.1.3: Let g be any regular cost function with the shift property such that 
g (0 . . . . .  0) = 0 and g is not constant on R~.  Then: 

(1) K is continuous and has the representation 

K (t 1 . . . . .  t n) = [g(A) til +h (A)(exp[f(A) tq] - 1)] 

+ exp [ f (A)  til ] [g(Ail ) (ti2 -- t/1 ) + h (Ail)(exp[f(Ail)  

(ti2 -- t / l)]  -- 1 )] 

+ . . .  + exp I f (A)  t/1 + . . .  +f(A!k.1) (tik --tik.1)] 

�9 [g (Aik) (tik+X -- tik ) + h (Aik)(exp[f(Aik) (tik+l -- tik)] -- 1 )] 

+ . . .  + exp I f (A)  til + . . .  +f(Ain.2 ) (tin.1 --  t/n.2)] 

�9 [g  (Ain.1) (tin -- tin.1 ) + h (Ain.1)(expLf(Ain_l) (tin -- tin.l)] 

-1)] 

where til <. ti2 <~... ~ tin are the ordered completion times, Ain := A \ 

(i I . . . .  , ik), f, g, h: P (A) ~ R 1 are set functions which fulfil the orthogonality 

condition g (B) �9 f (B)  = 0, B E P (A), and exp x = e x. 

(2) The following statements are equivalent: 

(i) g is additive, 
(ii) a B - 1 in the shift equation for all r C B C A,  

(iii) K is unbounded and uniformly continuous. 
(iv) g is positively homogeneous (i.e. g (•x) = X" r (x) for all x E R~ and 

all X 1> 0). 

Proof: Let K be any cost function as considered. Then Lemma 4.1.1 implies that g and 
thus also g (with g defined as in Lemma 4.1.1) are strictly monotonically increasing on 
R>n and R>,I respectively. Hence g is X 1 -almost .everywhere differentiable, [cf. Royden]. 

Applying the shift property for t 1 = t 2 = . . .  = t yields b e (t) = g (t), i.e. for 

t ~< m i n t  , K (t 1 . . . .  , tn) = a ( t ) .  K ((t 1 -- t) . . . .  , (t n -- t)) + g (t). This has two 
cr c~ 

immediate consequences: 
First, a := a s is a measurable function o f  t. To see this, let T > 0. Then g (T) > 0 and 
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the shift property yields a (t) = 1 
1 Since g (T + t) and g (T) [g (T + t) -- g (t)], t E R~.  

(t) are monotone functions of  t, a (t) is measurable [cf. Royden].  
Second, we obtain the functional equation a (s + t) = a (s) �9 a (t)  for all s, t E R~,  

which together with the shown measurability o f a  (t) implies a (t) = e xt ,  [of. Ross]. To 
see this, let s + t ~< min t . Then 

g (x + s  + t) = a (s) �9 g (x + t ) + g  (s) 

= a (s)" a ( t )"  g (x)  + a (s)" ~ (t) + g (s) 

= a (s )"  a ( t )"  Z (x)  + ~  (s + t) 

g (x + s + t) = a (s + t) . g (x)  + g (s + t), 

as well as 

where x is chosen such that g (x) > 0. Altogether, we therefore obtain for t ~< 
rain t : 

a~,z  1 er 

K (t 1 . . . .  , tn) = e ht (~ (t 1 -- t . . . . .  t n -- t)) + g (t). 

Case 1: Assume ~ = 0. We then have the functional equation g (s + t) = g (s) + g (t), 
implying g = c �9 t with c E R~ [of. Ross] (and the fact that g (0) = 0). It  is straight- 
forwardly obtained by induction that assuming X = 0 also for all projections o f g  
(cf. Lemma 4.1 ~1) yields all additive cost functions. Obviously, these have all the 
properties stated in (2). 

Case 2: Assume X ~ 0. We first consider the one-dimensional case, i.e. the be- 
haviour of  g. 

We first show that g is differentiable. To this end, let t 1 be an (existing) point, 

where the derivative of  g exists. Then, by the shift property,  

g (tx + t ) - - g  ( tx)  ( ~ t ~ )  
g'  ( t l )  + = lira -- lim �9 g ( t l )  + 

t~O t ~t~O 

z (t)  - ~  (o)  
lira 
t~O t ' 

implying that the right derivative of  g for t = 0 exists. This yields the existence of  the 
right derivative for each t 2 E R~,  since 

g '  ( t 2 )  § = lim 
t~t 2 

g (t 2 + t ) - - g  (t 2) 
= ~ .  z (t 2) + z '  (0).  

We therefore only need to show the same behaviour for left derivatives. To this end, 
assume first that g is continuous from the left. Then 
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g ( t 2 ) - - g ( t 2 - - t )  ( t t_--e x 1 ) 
g' (t2)_ = lim - l i m  g (t2 -- t) + r '  (O ) 

t~O t t~O 

= x .  z (t 2) + z' (o), 

i.e. we obtain the stated behaviour. To see that g is continuous from the left just 
note that a discontinuity from the left at a particular point t o r 0 would yield that 

g is nowhere continuous from the left because of  the shift property. This 
contradicts g being monotonical. 

Thus, altogether, g '  exists everywhere on R~.  This then implies that g has to fulfil 

the differential equation g '  (t) - X �9 g (t) = g '  (0), for which all solutions are given 

by g (x) = c �9 (e xx - 1), x ~> 0, c E R 1 . The cases c > 0, X > 0 and c < 0, ;t < 0 then 

yield all strictly monotonically increasing one-dimensional cost functions with the shift 
property for this case. 

In the n-dimensional case, we obtain first that all functions with the representation 
given in (1) have the shift property.  In fact, given t <~ til <~. . .  <~ tin (i.e. B = r 

or t/1 <~" " " <~ t/k <~t<<, t/k+l ~ . . .< , t .~n  (i .e.B = (il . . . .  ' i k  )) '  it f~176 that 

a~ (t) = exp I f ( A )  t], 

br (t) = exp I f ( A )  t] [g (.4) t + h (,4) (exp I f ( A )  t] -- 1)1, 

. .  t) = exp [ f (A)  t. + a(il . . . . .  ik} ( t i l '  "' t/k' '1 "'" + f (A ik -1 )  (t/k t/k-1 ) 

+ f ( A  i ) (t -- t/k)], and 
k 

. . . .  t) - 1) b{il . . . . .  ik ) (t/l '  ' '  t/k' t) = h (A ik) (a(i 1 . . . . .  ik) (t/l '  "' t/k' 

+ [g (A) t/1 + h (A) (exp [ f (A)  t/X] -- 1)] + . . .  

+ + .  -- tik.2)] exp If(A) til "" +f(A%2) (t/k-1 

�9 [g (Aik.1) (tik -- t/k_l) + h (A) exp [ f (Aik .1)  (t/k -- t/k-1 )] -- 1 ] 

+ . . .  ) -- t/k.1)] + exp [ f (A)  til + f ( A i k . 1  (tik 

�9 [g (Aik) (t -- t/k ) + h (A) (exp [ f (A ik  ) (t -- t/k)] -- 1)]. 

We now show by induction that each K has a representation in the sense of (1). Recall 

that K (t 1 . . . . .  tn) = e xt �9 K (t 1 -- t . . . . .  t n -- t) + g (t) for all t, t 1 . . . . .  t n with 

t ~< min (t 1 . . . . .  t n }. From the above characterization of  g, we obtain that 

g (t) = gl  t + h 1 [exp (fl  t) --  1 ] for suitable constants g l '  h l '  f l  with gl  " f l  = 0. 
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Putting t 1 . . . . .  = t n = 2 t then gives 

K (2 0 = e x t .  ~ (t) + K (t), 

i .e.  

2g 1 t + h 1 [exp (2]'1 t) - 1] = e x t .  [gl t + h I [exp ( f l  t) - 111 + 

[ g l t + h l  [exp ( f l  O -  1]]. 

The case f l  = 0 yields 2g 1 t = (e xt + 1)g  1 t, i.e. • = f l  = O. 
I f f l  4= 0, then gl  = 0 and we obtain 

h 1 [exp (2f l  t) -- 1] = (e kt q- 1) .  h 1 [exp ( f l  t) - 1], 

where w.l.o.g, h 1 4 = 0. Choosing t = 1 / I l l  I then yields again that k = f l "  So we have 
the recursive representation 

K (t 1 . . . . .  t n ) = e x p ( f l t  ) �9 K (t I - t  . . . . .  t n - t ) + [ g l t + h  1 [exp (fl  t ) -  1]] 

o f~  for all t, t 1 . . . . .  t n with t~<min {t 1 . . . . .  tn). 

Now let t/1 <~ ti2 <~ " " <~ tin and t = ti l .  Then ~ (t 1 -- t . . . . .  t n - t) is the projec- 

tion ~Ail  ( t / - -  t i] E A i l )  oft~ and thus fulfils the shift property (cf. l_emma 4.1.1). 

By the inductive hypothesis, this projection has the representation 

(t 1 - t . . . . .  t n - t) = [gil (Ail)  (t/2 - t/1 ) + hi1 (Ail)  (exp [fil  (Ail)  (t/2 - t/l)] 

- 1 ) ]  

+. . .  + exp (ail) + ' " + 6 1  (ain-2) (t/n-1 - t/n-z )] 

�9 [gil (Ain. 1) (ti n -- t/n.1 ) 

+ hil  (Ain . l )  (exp ~'1 (Ain-1) (tin - tin-l)] -- 1)] 

where gil,  hi l  , f/1 are set functions on P (Ail) (which may depend on i 1 , i.e. on which 

activity ends first) with f/1 (B) �9 gil (B) = 0 for all B C A l l .  Consideration of  all other 

first completions k 1 4= i 1 on the set X k l i l  = {(t 1 . . . . .  tn) E R ~  I t -'- tk l  = til, 

t] = 2 t for all ] :/: k 1, i 1 } yields that gil, hil and f/1 are compatible with gk 1' hk 1 

and f k  1 in the sense that g{1 (hil) = gik (Ait), hi l (all) : hik (hit) and 

f i l  (All) = f ik  (All) for all 1 ~> 2. Therefore g (.4) := gl '  g (A i l) = gi 1 (A il)' l >i 1 
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(and similarly for h and f)  defines set functions f, g, h on P (A) that lead to the stated 
representation of K. Obviously, all functions thus obtained are continuous, concluding 
the proof of (1). 

Part (2) is an immediate consequence of (1), if one notes that uniform continuity 
yields f (Aik ) <~ 0 and unboundedness yields f (Aik ) >10. �9 

An equivalent (not too difficult to obtain) and sometimes more convenient re- 
presentation of cost functions with the shift property is as follows: 

Let U (t) denote the set of unfinished jobs at time t E R~, and let f f  and g* be set 
functions on P (A). Then 

t 

** f f*(U(r))dr 

(tl . . . .  ' tn) = fO0 eO g* (U (t)) dt 

In this "continuous" representation, g* (U (t)) may be interpreted as the cost rate 
t 

at time t, while O f f*(U(r))dr is a distortion factor depending on the history up to 
e 

time t. 

The connection with the "discrete" representation in the previous theorem is then 
given by the equations 

f 

i f (B)  = f ( B )  and g* (B) = ~ h 
(B) ~ f ~B~ if f (B) =~ 0 

(B) if f (B) = 0 

for allB CA. 

Both representations show that all (cost) functions with the shift property are 
obtained additively (in the usual sense in stochastic dynamic programming) over the 
decision periods, where e.g. the cost incurred in the current period to t ~< t. ti k Zk+ 1 

is given by [g (Aik) (t -- tie ) + h (Aik) (exp f (Aik) (t -- ~k ) -- 1)] distorted by the 

history up to tik by the factor exp [f(A) til + . . .  +f(Aik.1 ) (tik -- tik.1)]. Due to 

the orthogonality o fg  and f, this distortion factor is only caused by those periods 
[tit, til+l ] in which the period costs are non-additive, i.e. f(Ail  ) -~ O. In this context, 

of course, the additive cost functions behave particularly nicely by never causing a 
distortion. 

Since the proof of Theorem 4.1.3 uses only the monotonicity of g, we have in fact 
obtained a characterization of all functions •: R n i> ~ R~, with the shift property that 

can be iteratively constructed from the characterized 1-dimensional functions. Of 
course, the regular cost functions form a proper subclass of these, where the monoto- 
nicity condition imposes further conditions on the set functions g, h, f o r  g*, f t .  
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Expressed in terms of g* and f*, K is monotonically increasing iff the same is true for 
g* and f* and, in addition, g* >i 0, i.e. iff 

g* >i 0 and (B C_ C ~ g* (B) <~ g* (C) and f* (B) ~<ff' (C)). 

In particular, the condition on r means that exponentially unbounded periods (i.e. 
f (Ail) > 0) must precede additive periods (i.e. f (All) = 0), and these in turn must 

precede exponentially bounded periods (i.e. f (All) < 0). Thus f determines how many 

(if any) of these different periods will occur for a fixed order of completion times. 
�9 Also other properties of ~ such as convexity or concavity - which might be of great 

importance in the context of the non idleness problem discussed in connection with 
Example 4.2.5 - can be stated equivalently in terms of g, h, f o r  g*, f*. In these 
characterizations, the notions of submodularity and supermodularity of set functions 
play a key role. 

A set function f i s  called submodular i f f ( B  U C) + f (B N C) <<.f(B) + f(C) for 
all B, C _C A, or, equivalently, if all "marginal surplus functions" f :  P (A \ {a)) --> R 1 
with f~ (B) := f (B U {t~}) --f(B) are non-increasing. It is called supermodular, if 

- f i s  submodular. An overview on submodular functions and the relationship of this 
notion with convexity can be found in Lovasz. 

One of these relationships can immediately be interpreted in terms of additive 
cost functions and yields the desired characterization of convex and concave addi- 
tive (cost)functions: An additive (cost)function g is convex [concave] if the asso- 
ciated set function g is submodular [supermodular]. 

For arbitrary - i.e. non-additive - (cost)functions with the shift property, the 
characterization of convexity [concavity] is much more tedious and leads to more 
complicated conditions, which can best be represented by using both the "discrete" 
representation by h, g, f and the "continuous" representation by g* and f*. The 
result then is as follows: 

A function with the shift property is convex [concave] iff the following three 
conditions hold: 

(i) g* is non-negative and submodular [supermodular] 
(ii) f = f* is non-decreasing [non-increasing] and submodular [supermodular] 
(iii) h is non-negative [non-positive] and non-decreasing [non-increasing]. 

Certainly the shift property is a much more rigid requirement then the additivity notion 
in stochastic dynamic optimization, as it implies a certain internal homogenity between 
the additive terms caused by transition into different states. Therefore, it allows stronger 
results, i.e.w.r.t, optimization, not just a restriction to stationary Markov strategies 
but in certain cases to a fihite subclass thereof, viz. the set strategies. A result of this 
type now follows. 
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4.2 Overall Optimality of Set Strategies 

We derive here the intended result on the overall optimality of set strategies for 
stochastic scheduling problems for which job durations are realized according to a 
product of exponential distributions and for which the cost function has the shift 
property introduced in Section 4.1. [Note that these cost functions will in general 
not be linearly bounded as required in the general model assumptions. However, 
the model can be extend straightforwardly to this case by suitable assumptions 
onP, e.g. if Ep [exp (?~" ~x;)] < oo for some appropriate ?~ > 0.] 

Note that the cases covered are still quite special. This meant not so much w,r.t 
g (cf. the comments in Section 2.1. and the characterization obtained in Theorem 

4.1.3),but rather w.r.t. P, as the occurrence of exponential distributions in practical 
applications of scheduling theory is quite limited. Interest in this class is thus parti- 
cularly motivated by its weU-behavedness, a familiar phenomenon with many other 
stochastic models. Still, we cover a variety of problems discussed in literature, in fact 
the hard core of models previously discussed, [cf. e.g. Dempster/Lenstra/Rinnooy Kan]. 
Moreover, these cases give additional insight into the principal behaviour of stochastic 
scheduling problems and also provide bounds for more complicated models, of. the dis- 
cussion of the monotonicity behaviour in Section 5 in M6hring/Radermacher/ICeiss 
[1984]. (Note that the optimality result is the very basis for these bounds, since in 
general, pSET has no nice monotonicity properties; cf. Example 5.1.7 in M6hring/ 
Radermacher/lCeiss [1984]). Altogether, these are good reasons for working with 
the special cases, also from an application point of view. 

Since our assumptions imply that P has a Lebesgue~density and that K is contin- 
uous on R~ (cf. Theorem 4.1.3), the existence of optimal strategies - though not 

necessarily set-type - is clear, cf. Theorem 4.2.6 (3) or (1) in M6hring/Radermacher/ 
Weiss [1984]. We give two proofs of the intended result. The first is based on standard 
optimality results in stochastic dynamic optimization and semi-Markov decision theory 
[Bertsekas/Shreve]. It exploits the fact that the shift property can be seen as a special 
case of additivity in stochastic dynamic optimization (which is much more general 
than the additivity of the cost functions discussed in this paper). The second proof is 
a typical approach within stochastic scheduling. It has the advantage that it is direct 
and constructive in the sense that it shows how to replace any strategy by a set strategy 
that is at least as good. As the complete proof is quite lengthy (due to technical 
necessities), we restrict ourselves to an outline of the main ideas. 

Theorem 4.2.1: Let [A, O 0, N, P, ~ ] be such that P is a product of exponential dis- 

tributions and K has the shift property. Then there is an overall optimal set strategy, 
i.e.# (n,P)=pSET (K, P). 

Proof 1: Recall the stochastic dynamic optimization type description of stochastic 
scheduling problems given in Section 2.2 in M6hring/Radermacher/Weiss [1984]. If 
we specialize this approach to the assumptions of the theorem, it follows that we can 
describe the states by the sets B* and B \ B* of completed and currently being per- 
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formed jobs, the observed (ordered) completion times t o, ~ E B*, and the current 

time t. Once these data are fixed, the influence of the completion times t~ and of t 

on the future evolution is reduced to a multiplicative term because of the required 
shift property of K. [Moreover, in the case of additive cost functions, we can even re- 
strict the state space to the sets B% B \ B ~' only.] This multiplicative term is, given 
B ~ and B \ B ~, either zero for all possible t ,  ~ E B* and t, or different from zero 

for all ta ~ 0, a EB and t v ~ 0, cf. Theorem 4.1.3. Furthermore, the cost functions 

considered are all additive in the broader sense of stochastic dynamic optimization, 
i.e. they can be interpreted as a sum of cost terms associated with the different de- 
cision periods, where each term depends on the respective history, decision and 
transition into the next state, [cf. e.g. Bertsekas/Shreve; Hinderer, 1970]. In view of 
the standard assumptions on ~ and P in our model, general results [Bertsekas/Shreve; 
Hinderer, 1970] guarantee the existence of a non-randomized, stationary (even Markov) 
optimal strategy I1 for this problem. In the additive case, in which the states are 
essentially given by the sets B ~ and B \ B*', II is already a set strategy. 

In general, however, II may not be a set strategy, as it may, given sets B*, B \ B*, 
choose different actions according to the values of ta, ~ EB ~' and t, which enter into 

the state via a distortion factor. If we could exclude this dependence, we would have 
achieved our aim. For then the states would essentially be given by the sets of comple- 
ted or currently being performed jobs, and the stationary strategies would then just 
be the set strategies. 

It is not difficult to obtain this additional property by an inductive argument, 
using the iterative decomposition of strategies described in Section 2.3 in Mdhring/ 
Radermacher/Weiss [ 1984], together with the fact that if a particular substrategy is 
optimal for any sequence t,~, a EB* and t, then it is pptimal for every such sequence. 

The desired set strategy is then composed of such optimal sub-(set-)strategies, where 
only (universal) measurability has to be guaranteed. We omit these steps here, as they 
will occur analogously in the second proof that is given next. �9 

Proof 2: We give a stronger version of Theorem 4.2.1 by considering strategies (general 
and set strategies) that contain certain prescribed jobs in their starting set. The proof 
is as follows: 

Assume K and P to be given and let n be any (general) strategy for this problem. 
Let B 0 be the set of jobs started by H at time zero and assume the prescribed starting 
jobs to belong to B 0. We will show constructively how to replace H by a set strategy 
II*, such that the prescribed starting jobs (in fact all jobs from B 0) are started at time 
zero also by II*, and such that Ep [~ (II*, �9 )] ~< Ep [K ( f i , ' ) ] .  Obviously, this will 

prove the theorem. 
The construction of II* is inductive and consists basically of three steps: 

(1) The standard decomposition of H yields strategies n ~ ~1 . . . .  , ~l. From these 
we choose one with the least expected project cost; let this be ~r. 

(2) We modify ~r in a way that does not increase the objective, and that leads to 

a strategy I1 r for which the first decision is of the type (B~, ~) with B 0 _C B~. 
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(3) We apply the inductive hypothesis to (P-almost) all subproblems occurring in 
the sense of  Section 2.3 inM6hring/Radermacher/Weiss [1984], and use special set 
strategies for these subproblems to modify II r into a set strategy II* such that the 
objective value associated with II* is at least as good as that associated with II r. 

Step 1: We decompose n in the sense of  Section 2.3 in M6hring/Radermacher/Weiss 
[1984]. Let (B 0, t l )  . . . . .  B l, t /+l )  with 0 < t 1 < t 2 < . . .  < t l < tl+ 1 = oo be the 

sequence of  decision times associated with n. W.l.o.g. we can assume t 1 < oo (other- 

wise put II r := H). Remember that the measurable set Z r := (x E R~ [ t r < t l + x (a) 

for all a E Bi, / = 0 , . . . ,  r -- 1 and t / +  x (a) ~< tr+ 1 for some ~ E B/, some 

/ = 0 . . . .  , r)  gives all duration vectors for which the first job completion occurs in 
]t r, tr+ 1 ], r = 1 . . . . .  l. Analogously to Section 2.3 in M6hring/Radermacher/Weiss 

[1984], we can define strategies n I , H ~ . . . .  , n l which reflect the behaviour of  

H := H~ on the sets A 1 .-'- R>n \Zo ,  A~ :=R>n \ (Z 0  U Z 1 ) , . . . , A  l:= 

R~ \ (Z 1 LI Z 2 tA...  tJZl.1) by putting 

H" [x] / H Ix r] - ( t  r - 9 )   EBi,/= 0 . . . . .  r 

( II [x r] (a) - t r otherwise 

where 

( 
x r (~  := ~ x ( a ) + ( t r - - t / )  if a E B / ,  / = 0 , 1  . . . .  , r - - 1  

L x (a) otherwise 

We chose from n ~ H 1 . . . . .  ~l a strategy with the least objective value; let this 
be H r . 

Step 2: Consider the standard decomposition and the induced sequence of  strategies 
associated with H r in the sense of  Step 1. Obviously, this decomposition is given by 

(/~0' t r+l) '  (Br+l'  tr+2) . . . . .  (BI, tl+l),  where B~):=B 0 tAB 1 L I . . .  tOBr, i.e. in 
particular B 0 _C B~). Of course, the behaviour of  H r on the sets A r+l . . . . .  A l is 

analogously given by the strategies H r+ 1 . . . .  , ~t already introduced. By construction, 

Ep [K (Hr, �9 )] ~< Ep [K (Hr+l, �9 )]. Thus if we replace H r+l onA r+l by H r, i.e. 

"restart" H r if there is no completion before time tr+ 1 , this will not increase the ob- 

jective value, because of  the shift property whose use is crucial at this point. If we 
repeat this argument at times 2 �9 tr+ 1 , 3 �9 tr+ 1 . . . . .  we obtain a sequence of  

strategies which converges pointwise. The limit IIr of  this sequence is then again a 
strategy, cf. Section 2.2 in Mdhring/Radermacher/Weiss [ 1984]. In fact, IIr is the 
strategy claimed in Step 2. First of  all, each strategy of  the above sequence has an 
objective value at least as good as H r. Since the sequences n r [x] become stationary 
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for all x by construction, we have Ep [fir ( ~ , . ) ]  ~< t=e [n r (K,")]. (Another argu- 

ment for this inequality is here given by the continuity of ~ on R~ (cf. Theorem 
4.1.3) and I_emma 4.2.1 in M6hring/Radermacher/Weiss [ 1984]). Furthermore, the 
standard decomposition for fir is (B~), '~) by construction, yielding all desired proper- 

ties since B 0 _C B~. 

Step 3: We use an inductive argument. Note that the inductive base is trivial and that 
the assumptions concerning K and P carry over to the subproblems induced by a job 
completion in the sense of Section 2.3 in M6hring/Radermacher/Weiss [1984]. We can 
therefore assume the stronger version of Theorem 4.2.1 (i.e. with prescribed starting 
jobs) to hold for these subproblems. Since P has a Lebesgue.density, no two jobs 
from/~0 will P-almost sure end at the same time. We can therefore restrict ourselves 

to (notationaUy simpler) subproblems of the form [A, O 0, N, P, n ] I x (a), meaning 

that the first job completion occurred at time x (o~), a EBb,  with all other completions 
occurring later. By the inductive assumption, there exists for each of these subprob- 
lems a set strategy fl' which has the jobs from B~) \ (o~) in the starting set (thus x(~) 
later yielding non-preemptiveness) and is optimal among all strategies with this property 
for the subproblem. As the history at the completion of a (i.e. at the transition into the 
associated subproblem) is given by (~), B~) \ (o~), t = t o = x (a), the shift property tells 
us that each particular II' is optimal for all subproblems induced by the completion x(~) 
of or (i.e. regardless o fx  (o0). Choose a fixed such II' a for each a ~B~), and use them to 

compose a strategy II* with standard decomposition (B~), ~)  and respective sub- 

strategies 11'a, ot E B~) arbitrary. (If several jobs end at the same time, we can proceed 

analogously,) 
In view of the remarks in Section 2.3 in M6hring/Radermacher/Weiss [1984], l-l* is 

a (non-preemptive) strategy provided that l-I* is (universally) measurable. This is ob- 
vious here, as r *  is obtained by composing afinite number of measurable strategies 
defined on Borel sets. Moreover, "being a set strategy" fulfils a (restricted) conserva- 
tion property in the sense that if the sub set-strategy is the same for each B~)kB*, then 
the composed strategy (here fl*) is again a set strategy, provided that it is elementary 
on B D. So it only remains to be shown that I:p [~ (II*, .)] ~< I:p[K (fir,.)]. According 
to the comments in Section 2.3 inM6hring/Radermaeher/Weiss[ 1984]it suffices to show 
that Ep(. iZ0,a)[K (II*, �9 )] <~ Ep(. IZ0,a) [~ ( f i r , . ) ]  where Z0, a := {x E R~ Ix (a) < 

x (/3) for all/3 @ B~) \ (a)), a E B~) arbitrary and P (" I Z 0,a) denotes the conditional 
distribution w.r.t, the set Z 0 , .  This inequality is proved by conditioning on the value 
x (a). By construction, the sub-strategy associated with 11 is optimal for every value 
x (a), i.e. the associated conditional expected value is, as a function ofx  (~), every- 
where less than or equal to the conditional expected value associated with fir. As is 
well-known Bauer; Hinderer [ 1972], this implies the intended inequality, concluding 
the proof. �9 
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Remark 4.2.2: With a view to the third paper in this series, we include a few remarks 
on a different type of scheduling problem, in which preemptions are allowed at times 
when a job ends. This means that, at a job completion, a complete rescheduling of all 
unfinished jobs is possible. This is a special version of more general preemptive models 
(where jobs may be rescheduled any time [Dempster/Lenstra/Rinnooy Kan; Weiss]). The 
present case is particularly nice to handle. Deliberate idleness can now only pay off 
for non-elementary strategies. Hence elementary strategies are greedy, i.e. induced 
by (dynamic) priority rules. The optimal value will be at least as good as in the non- 
preemptive case, but may of course be better (e.g. in Example 3.1.5). 

The analogoues to set strategies for this preemptive model are elementary strategies 
for which decisions only depend on the set B* of completed jobs, i.e. strategies whibh 
are induced by dynamic priority rules that only depend on B*. We will indicate below 
to what extent the results on set strategies have preemptive analogues. Such preemptive 
results can be useful for the non-preemptive case, too, as an optimal preemptive strategy 
(which can often be obtained more easily) may incidentially turn out to be non-pre- 
emptive, i.e. may make no use of the possibility of rescheduling. In fact that is what 
happens in many of the tractable cases in which the rules LEPT and SEPT are optimal, 
[cf. Weiss; Weiss/Pinedo ]. 

In fact, the results on analytic behaviour (Theorem 3.2.1 and Corollary 3.2.3), on 
quasi-stability (Theorem 3.2.4) and, in particular, on overall optimality (Theorem 
4.2.1) all straightforwardly carry over to the preemptive case. There is only one prob- 
lem, which consists in an appropriate adaptation of the notion of continuity of pre- 
emptive strategies. Here it means continuity for the starting times, preemption times 
(if preemption occurs) and completion times of all activities, whereas for non-pre- 
emptive strategies II, it (only) means continuity for the starting times II[x](a) 
(which already implies continuity for the completion times II [x](ot) +x(o0). With 
this definition, Theorem 3.2.1 yields continuity of preemptive set strategies piece- 
wise on finitely many convex polyhedra. 

We finally discuss, with a view to Section 4.3 in M6hring/Radermacher/Weiss 
[1984], how essential the shift property is for obtaining the nice behaviour formulated 
in Theorem 4.2.1. Note that since P is a product of exponential distributions, the part 
of the t-history that may be employed for decision-making is restricted to the sets of 
completed or currently being performed jobs together with the observed completion 
times and the present time t. This fact was used in the first proof of Theorem 4.2.1. 
The shift property is designed specially to make the last two types of information 
superfluous. Without such an assumption on K, a characterization of a nice class of 
special strategies that determine the optimum is still missing and may be hard to 
obtain. For instance, assuming only products of exponential distributions will not 
yield a restriction to elementary strategies. 

This and other aspects are demonstrated by the following two examples, which 
use cost functions involving tardiness costs. Note that since P has a Lebesgue density, 
there is an optimal strategy because Theorem 4.2.6 (3) in M6hring/Radermacher/Weiss 
[ 1984]. Furthermore, any ~n-almost everywhere continuous strategy will have the 
stability behaviour formulated in Theorem 3.2.4 (1). We present optimal strategies 
with this property, making the use of simulation in dealing with these examples ac- 
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ceptable. Note that in the first example, each optimal strategy must employ deliberate 
idleness of machines and a first decision of the type (B,t) , t< oo, while in the second 
example, the optimal strategy is elementary but bases the decision of which job to start 
next on wether some jobs end before a certain time t. So in the first example, the ac- 
tions still are based on the sets of completed and presently being performed jobs, i.e., 
compared with set strategies only the elementarity is lost, whereas in the second ex- 
ample it is just the other way round. In both eases the given numbers are only an 
approximation of the real t, based on 3000 simulation runs. 

Example 4.2.3: Let [A, O 0, N, P, K] be given byA = {1, 2, 3, 4), O 0 by its arrow dia- 

gram in Figure 3, N = {B _CA I IB I = 3) (i.e. all jobs compete for two identical 
4 

machines), P = | P~ where each P/is an exponential distribution with (identical) 
j--1 

parameter ~ = 1/2, and K is a weighted unit penalty cost function with (identical) 

due dates dj = 3 for j  = 1,2, 3, 4 and w 1 = 0, w 2 = 2, w 3 = 10 and w 4 = 10. This 

means that the project cost is the sum of individual cost terms for each job, which 
are zero if the job ends before its due date d / =  3, and wj otherwise. 

oo 

4 

Fig. 3 

Certainly, job 1 should be started at time zero to allow job 3 and 4, which may 
cause the largest penalties wj, to start early. For the same reason, one should not start 
job 2 immediately, but walt until a certain time t and put jobs 3 and 4 on the two 
machines if job 1 is completed before t. If, however,job 1 is not completed by time t, 
then for t succifiently close to 3, it will become reasonable to start job 2, because 
then there is little hope for completing jobs 3 and 4 before their due date. 

Altogether, one must consider a family of strategies II t, t E [0, 3], with associated 
first decision ({1), t) which acts as described above. Each such strategy is ~n-almost 
everywhere continuous. Moreover, the associated objective value Ep [~ (I/t, �9 )] is a 

�9 . t "  - , , 

continuous function of t, as tj ~ t lmphes II J ~ I1 (pointwise for x 1 ~ t), and this m 

tj -~ Ep [~ (II t, �9 )], analogously to the proof of Theorem turn implies Ep [K (I/ , �9 )] 

4.2.6 (3) in M6hring/Radermacher/Weiss [ 1984]. 

The values Ep [K (II t, �9 )] were (simultaneously) determined for t = 0.0, 0.1, 

0.2 . . . . .  2.8, 2.9 and 3.0 by simulation as well as by numerical evaluation. The re- 
sulting function of t is given in Figure 4. The (approximate) optimal value 12.522 
was attained for t = 2.216, i.e. ({1), 2.216) should be taken as the first decision. 
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1 2 . 5 9  

12 .52  

~[<(nt,.)] 

1 2 d-~3 

12.60 

Fig. 4: Expected project cost Ep [K (II  t, �9 )] as function of t ~ [0, 3] 

Example 4.2.4: Let [A, O 0, N, P, ~] denote a 2-machine problem with four indepen- 

dent, exponentially distributed jobs 1 . . . .  ,4  with parameters ~1 = ~k2 = 1/12 

~3 = 1/6 and ~4 = 1/2. As in Example 4.2.3, K is a weighted unit penalty cost 

function with due dates d 1 = d 2 = 12 ,d  3 = 10 ,d  4 = 12 and weights w 1 = w 2 = 20, 
w 3 = 3 a n d w  4 = 1. 

Certainly, jobs 1 and 2 should be started at time zero because of  their large weight. 
I f  the first of  them ends "early", i.e. before a certain time t (which still gives job 3 a 
good chance to end before its due date), job 3 is started. Otherwise, i.e. if  the first of  
jobs 1 and 2 ends after t, then job 4 is started. 

This procedure defines a family of  strategies l-I t, tE  [0, 12] for the given problem. 

The associated values E/, [K (II t, �9 )], which are again a continuous function of  t, 

were determined by simulation (which may here be applied for the same reasons as in 
Example 4.2.3). The (approximate) optimal value was attained for t o = 8.6. Altogether,  
this means that the optimal strategy is elementary, but not a set strategy. 

% [ < ( n t , .  ) ] 
t 

16 .41  I 

16 .29  16 .32  

! , | I �9 

4 8 d=12 
b t  

Fig. 5: Expected project  cost Ep [~ (1] t, �9 )] as funct ion of  t 
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It should be noted that by modifying the values d S and wy accordingly, a large 

variety of quite different functions was observed in both examples. Altogether, these 
results show that the natural and the most general stochastic environment to study 
and to hope for possible optimality of simple-structured strategies such as LEPT or 
SEPT is given by independent, exponentially distributed job durations and cost func- 
tions with the shift property, thus leading to the investigation of set strategies. Now a 
very decisive but yet open step in this direction would be to obtain additional 
conditions which guarantee the optimality of a priority-type set strategy (thus a 
greedy set strategy), i.e. exclude deliberate idleness of resources. In this respect, the 
following example is crucial,as it demonstrates that deliberate idleness may even occur 
in a very ~estrictive model, viz. for m-machine problems with additive cost functions. 
It thus demonstrates the full extent of the limitations under which optimality of 
priority rules can be expected. 

Example 4.2.5: Let [A, O 0, N, P, K] denote a 3-maschine problem with six indepen- 
dent, exponentially distributed jobs 1 , . . . ,  6 with parameters h 1 = )`2 = )` and 

)`3 = )`4 = )'5 = ;k6 = 1. The additive cost function ~ is given by its associated set 

function g, where 

a > > l  

1 

1 

0 

if 1 E B and 2 E B 

if 1 ~ B  and {2, 5) C_B or (2, 6~ CB 

i f2  ~ B  and (1, 3) _CB or {1,4} CB 

otherwise 

Due to symmetry reasons and the fact that a > >  1, only the following three strategies 
need to be considered: 

II1: Start 1, 2 at time t = 0 and leave the third machine idle. If 1 ends first, proceed 
with 2, 5, 6 according to priorities 5 < 6 < 3 < 4. If 2 ends first, proceed with 
1,3, 4 according to priorities 3 < 4 < 5 < 6. 

II2: Start 1, 2, 3 at time t = 0. Proceed according to priorities 

5 < 6 < 4 if 1 ends first 
4 < 5 < 6 if 2 ends first 
4 < 5 < 6 if 3 ends first 

I13: Start 1,2, 3, at time t = 0. Proceed according to priorities 

5 < 6 < 4  if 1 ends first 
4 < 5 < 6 if 2 ends first 
5 < 4 < 6 if 3 ends first 
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The associated expected costs then are as follows: 

a 1 1 
E [~ (II1, �9 )1 = ~ -  + X--+-T ~ (X + 2) (X + 1) 

2 [2 3 E [ K (II2, " )] = 2-~- + ~--4-~- + (X + 2) (X + 1) 

_~ 1 § 1 + 
(2X+ 1) (X+ 1) (27, + 1) (X + 2) 

1 2 
~- 4- 

(X + 2) 2 (X + 2) 2 (?t + 1) 

1 
(2 ?, + 1) (X + 2)2 

(2 X + 1) (X + 2) 2 (X + 1) 

1 1 -t -t 
(2x + 1) (x + 2) (x + 1) (2x + 1) 2 (x + 2) 

1 + 1 ] .  

(2X + 1) a (X + 1) (2X + 1) 2 (X + 2) (X + 1) 

Hence E [g (II2, �9 )1 - -E  [g (II1, �9 )] = 
2X 4 -- 8X 3 -- 23 X 2 -- 19X -- 6 

(x + 1) (x + 2) 2 (2x + 1) 4 

> 0 r  X > 6.1385 

Similarly, E [K (II3, �9 )] - -E  [K (II2, �9 )] = 
2X 3 +3X 2 + 3 X +  1 

(x + 1) (x + 2) 2 (2x + 1) 4 

> 0 for all X > 0 .  

Thus 131 is optimal for all X > 6.14. Since II 1 leaves a machine idleuntil the first job 

completion, 131 is not priority-induced. 

Thi~ example shows that optimality of priority-induced set strategies such as 
LEPT or SEPT can, even in exponential m-machine models, only be expected under 
additional assumptions on the (additive!) cost function. It seems that convexity or 
concavity (or, equivalently, submodularity or supermodularity of  the associated set 
function; cf. Section 4) might be conditions that permit greediness, i.e. that will 
never necessitate deliberate idleness. In this respect, the weighted flowtime 
K ( t l , . . . ,  tn) = Z w  i ti, which is both convex and concave, may play a key role in 
establishing such an optimality result. In any case, gaining more insight into this 
Non-Idleness-Problem'seems to be a very involved task and certainly constitutes at 
present one of  the most important and most challenging open problems in stochastic 
scheduling. 



102 R. H. Mdhring, F. J. Radermacher, and G. Weiss 

5. Concluding Remarks 

This paper deals with an intermediary concept between general strategies and known 
special classes of strategies. The requirements for such an intermediary class are for- 
mulated at the end of the first paper in this series, and the set strategies introduced here 
fulfill these requirements. 

The notion of a set strategy arises in a rather natural way. In fact one only has to 
note what ES and MES strategies and list-scheduling strategies such as LEPT and 
SEPT (or certain more involved strategies induced by certain dynamic priority rules) 
have in common. The main common feature is that these strategies depend on the 
observed past only via the sets of completed or currently being performed jobs. This 
property then leads to a finite class of elementary strategies which are all X n-almost 
everywhere continuous, thus implying quasi-stability of this class. This is a variant of 
the original rigid notion of stability that places emphasis on distributions with Lebes- 
gue densities rather than general duration distributions. 

The restricted use of the observed history made by set strategies makes them parti- 
cularly suited for a restricted class of stochastic scheduling problems, the hard core of 
which is given by duration distributions that are products of exponential distributions 
and cost functions having the shift property. The first assumption makes the obser- 
vance of the duration of completed jobs and of the current duration of jobs being 
performed superfluous, while the second one, which is a stronger version of the notion 
of additivity in stochastic dynamic optimization, ensures that the observed job com- 
pletion times and the present time t enter into the total cost only via an affine trans- 
formation. This essentially means that though the past influences the objective value, 
it does not influence the future ranking of the objectives of different strategies (strat- 
egy equivalence). Given this particular influence of the past on the future, it is not 
surprising that set strategies lead to overall optimality in these cases. 

It remains to be seen to what extent this observation can be of use for the treat- 
ment of stochastic scheduling problems with more complicated job duration distri- 
bution, e.g. in delivering bounds, though such possibilities are certainly restricted. An 
immediate use, which is in the direction of further specialisation, however, will become 
apparent in the third paper of this series. The main emphasis there is on tractable cases, 
the hard core of which presently deals with the optimality of LEPT and SEPT rules and 
thus necessarily belongs in the framework in which set strategies are overall optimal. 
Presently available results of that type do usually not allow any distinction, however 
marginal, of jobs w.r.t, precedence and resource constraints, thereby considerably 
reducing the range of possible practical applications. In the third paper of this series, 
we will discuss to what extent this restriction may be lifted. It will eventually transpire 
that optimality of LEPT can, under certain agreeability conditions, be obtained if 
the precedence constraints are given by a (strict) interval order. Analogous results 
yield the optimality of LEPT or SEPT rules under certain regularity conditions con- 
cerning the forbidden sets, i.e. the resource constraints. 

The cases covered are still quite special, but it is a nice feature that they naturally 
occur in the course of an iterative treatment of set strategies by means of bra.nch- and 
bound-methods based on simulation. This is a straightforward way to cope with such 
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computationally difficult stochastic versions of optimization problems, whose deter- 
ministic counterparts are all NP-complete. The approach falls into the framework of 
implicit enumeration and follows the lines previously employed for dealing with ES 
and MES strategies [Igelmund/Radermacher; Kaerkes et al.; l~'nedo]. In this context, 
optimality results as intended allow certain subtrees to be handled fast and may 
considerably improve algorithmic treatment. Work on the implementation of such 
algorithmic methods is presently being performed at the Universities of Aachen, Hil- 
desheim and Passau, also with a view to better treatment of the MES case. There is 
some hope of also employing these tools for delivering bounds for certain general 
stochastic scheduling problems. 

Finally, in view of Remark 3.1.4 and Theorem 4.2.1, the next and challenging step 
towards optimality results for priority-induced set strategies is to find conditions 
under which deliberate idleness of machines does not pay off. Example 4.2.5 gives 
some indication what type of condition may be needed, e.g. additivity in combination 
with convexity or concavity for the cost function K (or, equivalently, submodularity 
or supermodularity of the associated set function). Much work is presently going into 
the establishment of such results and we would like to see them included in the third 
paper of this series. We are certain that such results will also give some additional justi- 
fication for the regular use of priority rules in stochastic scheduling problems and 
queuing theory, particularly with respect to applications in computer systems, what 
makes their establishment even more urgent. 
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Adjustment to the paper: 
"Stochastic Scheduling Problems I" by R. H. M6hring, F. J. Radermacher, and G. Weiss, 
published in ZOR 28 (7), 1984, 193-260. 
1. page numbers 207 and 208 have to be interchanged. 
2. page numbers 211 and 212 have to be interchanged. 

1 .57 /2 .  3. page 222, first line: the correct term is 1/2 �9 57 instead of ~- 
4. the following acknowledgement is missing on the first page: "The work of the first two authors 

was supported by the Minister ftir Wissenschaft und Forschung des Landes Nordrhein-Westfalen, 
while the work of the last author was supported by the DAAD." 


