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SUBGROUPS OF SEMIFREE GROUPS

By
A. BAUDISCH (Berlin)

1. Introduction

We call a group semifree iff it has a presentation with defining relations [q, b]=1
between the defining generators only. In [1] it is proved:

THEOREM 1.1. Every‘Abelian subgroup of a semifree group is free-Abelian.
Our main result in this paper is

THEOREM 1.2. Let u and v be elements of a semifree group. Then [u, v]# 1 implies
that {u, v} is a basis of a free group.

To prove Theorem 1.2 cancellation arguments as firstly developed by Nielsen
are used. ‘

COROLLARY 1.3. Ewvery subgroup of a semifree group generated by two elements is
semifree.

Furthermore, it will be shown that Corollary 1.3 is not true for subgroups gene-
rated by three elements. The counterexample group that is a subgroup of a semifree
group has the property that every Abelian subgroup is free-Abelian.

We are greatly indebted to H. G. Bothe for his interest and helpful suggestions.

2. Basic facts on semifree groups

The results stated in this section are proved in [1].

Let A be a set. A word over A is a finite sequence af*al...a%, where g;€ 4 and
;0 are integers. Let e be the empty word. aft.. a5 is reduced iff a;5 a; 4.

If R is a set of words, we use (4, R) to denote the group F/N, where Fis the free
group with basis 4 and N is the normal closure of R in F. Then a group is semifree
iff it has a presentation (4, R) where RC {[a, b]:a, bc A}.

We use elements of 4 (letters) and words over 4 to denote elements of (4, R).
‘Obviously, for every u¢(4, R) there is some reduced word af*...a% in the coset of w.
Two words u and » represent the same element of the semifree group (4, R) iff we
can carry # into » applying a finite number of the following transformations:

ot % % @, 2. o an—1 g% o,
(R1) Replace af...afi a%int...apx by af...afiaa™" afisa...ap for some ac 4.
(R2) If gj=a=a;,,, replace aBafi+1 in afi...a% by a%*%.1 and delete it if o;+
+ai+1=0'

(R3) Replace ap...akafin.. . a by ag...afn ai...at if [a;, a;14]€R.
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20 A. BAUDISCH

u=a...a% is a minimal form for u iff n is minimal. We call n the length A (u) of u.
Minimal forms are reduced.

LemMa 2.1, If u=a%...a% and u=>bfr...b¥m is a minimal form of u, then m=n
and it is possible to get b51...bEm from a®...a% applying (R2) and (R3) only.

Lemma 2.1 immediately implies

LemMMA 2.2. Let a%...a% and b%+...bEm be minimal forms of u. Then

(1) n=m and it is possible to transform one minimal form into the other using
(R3) only.

(i) {ac4: a=aq; for some i}={ac A: a=b; for some i}.

By Lemma 2.2 (ii) it is possible to speak about zhe letters of u. Let af*...a™ be a
minimal form of # and a be a letter of u. By Lemma 2.2 (i) the following definitions
are correct:

The a-sequence of u is the sequence a™1...a% where a™i=af}is is the j-th a-power
inaft...a%.

It [a bl#1, we can similarly define the {a b}-sequence clt...chm of u where ¢l
is the j-th occurrence of a power of ¢ or b in a?...a%.

Furthermore, if [a, b]#1 and [b, ¢]=1 and uhas aminimal form ...a* ...b*% ...c? ...,
it is possible to say “bP lies between a* and ¢*””, “b? is on the right of a“”, and so on,
since by Lemma 2.2 (i) this is true in every mmlmal form of u.

We make the following convention: u=w, w,...w, is a minimal form means that
the w;’s are minimal forms and the concatenation of the w,’s is a minimal form of u.
We suppose that w; e if there is no other assumption.

a is a first (last) letter of power o of u iff  has a minimal form a*u’ (resp. v’ a%).

u is cyclic reduced iff  has no minimal form a*u’a? with a<0<pf or f<0<a.

We are now interested in the cancellation of some letter a in products uw.

LeMMA 2.3. (i) Semifree groups are torsion free.” .

(ii) Let a be a first (last) letter of power o of u, and let ¢ be any natural =>0.
If there is some b with [a, b]£1 in u, then a is a first (last) letter of power o of ut.
Otherwise a is a first (last) letter of power o - & of ut. u and u® contain the same leiters.

If a»...a% is the a-sequence of u, af1...aP= is the a-sequence of », and g*..
..a*nahr...aPm OT a%...a%ha.. .gPm is the a-sequence of uv, then we say that there is
no full cancellation of an a-power between u and v.

LemMMA 2.4, If a%...a% is the a-sequence of u and aPr...aPw is the a-sequence of v
and o, B, 20, then there is no full cancellation of an a-power between u and v.

If B is any sutset of a group G, then Gp (B) is used to denote the subgroup of G
generated by B. The following lemma is easliy proved.

LeMMA 2.5. If (4, R) is semifree and BS A, then Gp (B)=(B, Ry), where Ry=
=RMN{{a, b]: a, bc B}.

Let W be any subset of a semifree group (4, R) and C be the set of letters that
occur in some element of W. W is called to be connected iff for every a, b¢ C there are
C15 -5 C,€C such that [a, ¢]5#1, [¢;, ¢; (1] 1 for 1=i<n, and [c,, b]#£1. Then W is
ccnnected iff the graph (C, ) is connected where ¢(a, b) iff [a, b]:=1 for a, b€ C.
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SUBGROUPS OF SEMIFREE GROUPS 21

W is strongly connected iff wWw~11s connected for every w that contains letters of
C only.

LemMA 2.6. If (4, R) is semifree and A= |) A; with [a;, aj]=1 for a;cA4,,
1=sisk
a;€A4;, i#j, then(4, )= @ . Gp (4).

=i=

3. Nielsen transformations
Let G be any group. An elementary Nielsen transformation works on vectors
(41, Uy, ...) where u;€ G. It is one of the following transformations:

(T1) Replace some u; by u; %
(T2) Replace some u; by u;u; where j>=1i.
(T3) Delete some u; where u;=1.

A finite product of such transformations is a Nielsen transformation, it is regular
if there is no factor of type (T3), and singular otherwise. (The definitions above are
taken from [3].)

LemMA 3.1. Fvery regular Nielsen transformation has an inverse.

Lemma 3.2. If (wy, ..., u,) is carried in (vy, ..., v,) by a Nielsen transformation,
then u,, ..., 4, and vy, ..., v,, generate the same subgroup.

LemMA 3.3. If (uy, ..., u,) is a basis of a free subgroup F of G and it is carried in
(@, ..., ) by a regular Nielsen transformation, then n=m and (vy, ..., v,) is a basis
of F.

LEMMA 3.4. u and v generate a cyclic subgroup of G iff it is possible to apply a sin-
gular Nielsen transformation on (u, v).

To check freeness we use the following well-known

LEMMA 3.5. Let uy, ..., u, be elements of G. Then (uy, ..., u,) is a basis for a free
subgroup of G iff w(uy, ..., u,)# 1 for every reduced work w(xy, ..., x,).

4. The main proof

THEOREM 4.1. Let u and v be elements of a semifree group G=(4, R) such that
{u, v} is strongly connected. If u and v do not generate a cyclic subgroup, then (u, v) is
a basis of a free subgroup.

By Lemma 2.5 we can assume
(1) The letters occurring in u or » are axactly the elements of 4.

By a transformation on (u, v) a finite product of elementary Nielsen transfor-
mations and inner automorphisms is meant. Such a transformation is regular iff there
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22 AP BAUDISCH

is no factor of type (T3), and singular otherwise. Since # and-».do not generate a
cyclic subgroup of G, Lemma 3.4 implies

(2) All possible transformations of (, v) are regular:

If o is a regular transformation on (u, v), then Gp (u, v) is free with basis (u, v)
iff Gp (6 (1), o (v)) is free with basis (o (1), 0 (v)).

This follows from Lemmas 3.1 and 3.3. Usmg Lemma 3.5 for a suitable trans-
formation ¢ it will be shown that Gp (o(«), ¢(v)) is free with basis (o (u), o(v)). By
(2) o is regular and, therefore, as stated above, Gp (, ) is free with basis (z, v).

Remark that regular Nielsen transformations and inner automorphisms “com-
mute”. Therefore, if {u, v}is strongly connected, then by (1) and (2) {o(u), 6(v)} is
strongly connected for every regular transformation o. Using a suitable regular trans-
formation, (1), (2}, and Lemma 2.5 again, we can suppose

(3) For every transformation o, 4 is the set of letters occurring in o (u) or a(v).
A is connected.

Case 1. There exist some letter a¢ A and a transformation ¢ such that o(u)=
=a*w'a? and o(v)=a"'a® are minimal forms, where #” and »’ contain letters that do
not commute with a, f+y#0, a+5=0, f—3:20, y—a>£0, and the exponents
a, B, v, 0 need not differ from 0.

By Lemmas 3.5, 2.3, and 2.4 Gp (o (), o(v)) is free with basis (¢ (1), 6()).

Case 2. There exist some transformation ¢ and some letter a such that o(u)=
=a*u’, a is not a letter of #’ and ¢(v), and every letter of u” commutes with a (resp. u
and » are exchanged). Assume that o(4)=a*/. By (3) there is some letter d of o(v)
with [a, d]5<1. By assumption dis not a Jetter of o(u). By Lemma 2.3 (ii) every o(v)*
contains ¢ and not 4 and every o (v)* contains d and not a. If w(xl, X,) 1S any non-
trivial reduced word then the {a, d}-sequence of w(o (), o(v)) is the concatenation
of the a-sequences of the o(u)-powers in w and the d-sequences of the o(v)-powers
in w. Lemma 3.5 implies the assertion.

Cuase 3. Not Case 1, not Case 2, and there is some letter ac A and a transforma-
tion ¢ such that a is not a letter of both o (u) and o (v).
We show by induction on 4(o (1)) + (0 (¥)):

(4) If a and o fulfll the condition of Case 3, then there is some w such that a is
not a letter of both wo(u)w~1 and woe(@w=%, and we(ww-! and we(w)w-! are
cyclic reduced.

Assume that o () and ¢(v) are not both cyclic reduced and a is an element of
o(u). We consider the more difficult case when o (1) has a minimal form c*u’c—#
with «, $=0 or «, §<0. Since the condition of Case 1 is not fulfilled ¢ (v) has w.1. 0. g.
a minimal form ¢*»” or ¢’v”, where ¢ commutes with every letter of »” (y=0 is pos-
sible). First we suppose o (v)=c*’. Then ca, because ¢ is an element of ¢(v). This
implies that a is not a letter of ¢~ % (¥)c”. Furthermore

Ae=2o () ) +A(c™%a (1) ) = AU c* )+ A ) <
= Ac*u’ ¢ B)+A(c*v") = Mo W)+ i(a ().
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SUBGROUPS OF SEMIFREE GROUPS 23

The assertion follows from the induction hypothesis. If ¢ (v) =¢*”, where ¢ commutes

with every letter of »”, then y=0 implies cs#a. Therefore ¢—%¢ (v)c* does not contain
a for every y. We have

Me*0() ) +A(c=*a(v) ) = A(u’ c*~F)+A(c"v") <
< A’ c=B)+A(c"0") = Mo (W) +A(o (v)).

The assertion follows as above from the induction hypothesis.
The situation of Case 3 implies furthermore:

(5) There are letters ¢ and & in A such that [a, b]521 and either a is not in o (v)
and bisin ¢(v) or ais not in o () and b is in o (w).

To prove (5) assume that Case 3 is given and « is an element of ¢ (#). We get g and
b with (5) since the following procedure must break off. Suppose that the letters
ay=a, a,,..., a are chosen such that

(5" {4y, ..-» a} is connected, every g; is an element of ¢(x) but not an element
of o (), and every a; commutes with all elements of ¢ (v).

Since {o(#), o(v)} is connected, there exist some ¢ in ¢(u) or in ¢(») and some
j with 0=j=k and [a;, c]>1. By (§’) c is not an element of o(v). Then either ¢ and
some letter of ¢ (v) fulfil (5) or ay, ..., g, ¢ satisfy (5"). Since {0 (%), 6 (v)} is connected,

the letters of (i) cannot satisfy (5”), therefore the procedure breaks off, and we get
some a, b with (5).

Applying at first (4) and then (5), and using u instead of wo (u)w—* and » instead
of wo (»)w=1 for convenience, we can suppose w. 1. 0. g.

(6) There is some letter @ in u that is not a letter of » and some letter 4 in » such
that [a, b]s#1. u and » are cyclic reduced.

To verify the condition of Lemma 3.5 we show the following:

(7) For every nontrivial reduced word w(x,, x,) the a-sequence of w(u, v) is the
concatenation of the a-sequences of u in w(u, v).

Firstly, we consider the case that w(x;, x,) contains positive (negative, resp.)
powers of x; only. For w(xy, x,)=x% (7) is true since u is c¢yclic reduced and by the
conditions “not Case 1> and “not Case 2”, a cannot be a first and a last letter of u
at the same time. If (7) were false, there would be some subword #?+°u* so that the
last a-power of 7 can “touch” the first a-power of u* after some applications of (R2)
and (R3) (Lemma 2.1). Since (7) is fulfilled for x7 we can suppose y=g=1 (—1, resp.).
If there is one g-power in u only, let u=u, a*u, be a minimal form of . Then for avery
letter ¢ of ug0°u, , [a, c]=1, by assumption. We canreplace (v, v) by (uy *uc’uy, uy *ou) =
= (a*(ugv’u;), uy*vw,) using a suitable transformation. Bur ¢(u)=a*(usv® 1) and
o (v) = ui *ouy fulfil the condition of Case 2, a contradiction.

Otherwise, there is some minimal form u, a*u,a’ u, of u, where a does not occur
in u; and uz. As above [a, c]=1 for every letter ¢ of uyv°u,. There is some transfor-
mation © such that 7(u)=ui ut’u, =a%us(usv*u)a® and t(@)=uy vy;. a does not
occur in ui vy - uy tou, contains b of {6) by Lemma 4.2 below, and in u,(u;9° ;)
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24 A. BAUDISCH

there is some d with [a, d]#1, since such a dis in ,, and [a, ¢]=1 for every ¢ of u s’ u,.
Therefore we have Case 1, a contradiction.

Now let w(x,, x,) be any nontrivial reduced word. We find a minimal form
Wy (31, X2) XE1 Wy (X1, Xp) xE2. .. xE " Twy (3, x) Of W(oxy, X,) Where:

(1) x; is a last letter of w;(xy, x,) for 1=i</

(ii) x, is a first letter of w;(x,, x,) for 1<i=l.

(iii) There are either only positive or only negative powers of x; in w;(x;, x,)
forl=i=lL

(iv) If the powers of x, are positive in w;, then the powers of x, in w; ., are nega-
tive (1=i<I). If the powers of x, are negative in w;, then the powers of x; are posi-
tive in w; 4 (1=i<l).

Let us consider w;(u, »)of w; 1(u,v). Then  w;(x, x3)=w](x;, x0) X1,
Wy (61, %) = x5 Wi q (1, x2) With A(W;(xy, X9))=A(W}(x1, xp)) for j=1i, i+1. Assume
w. L 0. g y=>0>6. (6=0=y is similar.) Let u=u'a* r be a minimal form, where @ isnot
a letter of r, and every power in r occurs in every minimal form of # on the right of a*.
Since (7) holds for w;(u, ») and w; ., (u, v), we get w;(u, v)=W;(u, v)a*r, w; 1 (u, v)=
=r~1a=%W,,1(, v). Now it is suffcient to show that rofr-1 contains the letter b of
assumption (6). This follows from '

LeMmMa 4.2. Assume that the letter b occurs in a word y, and y is cyclic reduced.
Then b is a letter of ryr= for every r.

ProoF. The lemma will be proved by induction on A(r). If there is any cancella-
tion of a full power of b in ryr—1, assume w. 1. 0..g. that y=sbfy" and r=r'b~Fs-1 are
minimal forms, where s does not contain » and s=e is possible. Then ryr—1=
= (¥ sbPyr’ 1. Since y is cyclic reduced, there is no cancellation in (y'sbf), b is a
letter of (3'sbf), and (y’sbP) is cyclic reduced. Since A(#")<A(r), by induction hypoth-
esis ryr—1=#(3y'sbf) ¥’ ~2 contains b. O. E. D.

Case 4. Not Case 1 and for every transformation ¢, each of a(u) and o(v) con-
tains all letters of 4.

Let a be any element of 4. Define 4,(w) to be the length of the g-sequence of w.
By the assumption above we have 1,(c(1))=0 and 1,(c(v))=0 for every transfor-
mation ¢. Now we take ¢ in such a way that /(¢ (4))+4,(c(»)) is minimal. For con-
venience we use « instead of ¢ () and » instead of ¢ (v). Therefore

(8) A,(w)+ A,(v) is minimal with respect to transformations.
We need
(9) A,(xx)=2A,(x) for every x € {u, v, u~*, v=}.

To prove (9) assume w. 1. 0. g. x=u. Firstly consider 2,(x)=1 and A,(xx)<24,(x).
There is some minimal form u, a* zu, of x, where every letter of u; is on the right of
a* in every minimal form of u, every letter of #; is on the left of ¢* in every minimal
form of u, and every letter of z commutes with a. Then 1,(u)=1 implies u;*=u;.
uy Yun, =a”z does not contain every letter of 4, a contradiction to the assumption
of Case 4. '

Now suppose 4,(u)=2 and 2, (uu) <22,(u). Similarly as above you get a minimal
form u;0* usa®ui of u. Then ug luu; =a*ua®. Since we are not in Case 1 and every
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SUBGROUPS OF SEMIFREE GROUPS 25

letter of A occurs in uyloy,, wl.o.g. ¢®v is 2 minimal form of u;ou;. It follows
Ag(a—*us uu a®)+A,(a=*us 'ouya®) = A, (uya* P+ 4,0 a®) <A, (W) + 1, (v),

a contradiction to (8).
Let us assume that there is at most consolidation but not full cancellation of
a-powers. That means:

(10) For every x, y€ {u, u=*, v, v~1} with x> y~1 either

(@) A,(xp)=24(x)+2,(y) or ) _

(ii) x=w;a*w,, y=w, af w, are minimal forms, where « is not a letter of w; and
oa—f#0.

(10) and A,(w), 4,(@)=>1 imply that w(u, v)>21 for any nontrivial reduced
w(Xy, X2).

It remains to settle the case when (w.l.o.g.) a* is the only a-power in u. If for
every x, y€{u, »,u='} (10) () is true, then there is nothing to do. Otherwise, by (9)
w.l.o.g. # and v satisfy (10) (ii).

Applying wit...w;, wlo.g. u=a"w,, v=afw, are minimal forms of u and ».
Then a is not a last letter of u, since otherwise [a, ¢c]=1 for every letter ¢ of u and by
the assumption of Case 4 for every c€ A. This would be a contradiction because 4 is
connected. Similarly, a is not a last letter of » if A,(»)=1. If 1,(»)>1, then ¢ is not a
last letter of v, too. Otherwise, we would have minimal forms u=a%w,, v=a’ wja’,
where by (10) o, 5, 750, a+7y#0, a— 0. Then the condition of Case 1 is fulfilled,
a contradiction.

Therefore, 1,(uv)=A4,(vw)=2,(w)+1,(v). If A,(ww~Y=24,()+1,(v), the asser-
tion follows. Otherwise, 4,(uv1)=4,(v) and we get a contradiction in the follo-
wing way:

If 1,(v)=1, then uwv—t=q*~¥z, where every letter of z commutes with a. If ¢ is the
transformation with o(@)=u, o(v)=ur~?, the assumption of Case 4 is violaied, a
contradiction.

If A,(w)=1, then we have a minimal form w-t=a’w'a~f. By 1,(wv~)=2,(),
y5#0. If a7, the conditions of Case 1 are fulfilled for u and wv—* (remember that
o). If a=y, then

Lo(a=*wo™) a®)+A,(a~"ua®) = A, (W a*F)+1,(wya®) <
< Aa(uv™) +1,(u) = 4,() +4,(w).
This contradicts (8).
Contrary to (10) it remains to suppose that there are x, y¢€{u, v, u~", v=%},

xx=y~t with minimal forms x=wya*w,, y=w,a"ws, Where wy does not contain the
letter g and w;=e is possible. By (9), x=y. Applying wit...w, we can assume w.l.0.g.

(11) u=a*u’ and v=0a"v", where a is not a first letter of 2/, v’".

Then A,(u), 1,(®)=>1, because otherwise A,(u—'v)+4,(w)<i,(w)+1,(») or
Agu 1)+ 4, (0) <2, (1) + 4,(v), a contradiction to (8).

We have 4,(@w)=21,(0u)=2,()+1,). By A()=2, ,(v)=2 there are minimal
forms u=a ula” u, and v=a*v,a%c,, where a is not a letter of u, and vy, GVETY power

in u, occurs in every minimal form of u on the right of af, every power in v, occurs in
every minimal form of » on the right of @*, and u,, v, =e.
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Assume w.lo.g. A,(w)=41,(»). By (8), ,(u~*v), /la(v‘lu)>l w)=2.
If u, v, or 3£y, then full cancellation of a-powers is only poss1ble in products
u~'v. (Remark that u;'v,71 implies the existence of some letter d in u; v, with
[a, d]#l by the construction of #, and v,.)

'» has a minimal form u; *a~#za?v;! since 1, (u='v)=A,(u)=2. We can write
every nontrivial word w(u, v) as a product w; w,...w, with wy=u"1e, or w;=v-1u, or
w;€{u, v, u=% v~} and w,;=u implies w;_;#=v~1, w,=v lmphes w;_ 1;éu‘1, wy= u—l
1mp11es w1540, and w; —p-1 implies w;_ > u. Then there is no full cancellation of an
g-power between w; and W11 1t follows w(u, v)><e. If uy=v, and f=17, we prove

(12) A (wo~Y=1,(w) and A, (u"1v)=1,(u).
By (8) u»~" has a normal form a*za~*. Then A,(wv~Y)=41,(u) would imply

Ao(a=*(uv™0) a®)+ A,(a=*va%) < A, (uv D)+ 4,(0) = 1, (u)+4,(),
contrary to (8).
u~'v has a minimal form u~*v=uz'a=?zafu, by (8), u,=v, and B=y. Then
A(u*v)=2,() would imply

ho(@Pugu=Yvugta=P)+ I, (aPusvusta=?) < L, (u"0)+1,(v) = A, (u)+ 4, (v),

a contradiction to (8).
(12) implies

(13) Z,(xy)=>max (4,(x), 2,(»)) for every x, y€ {u, v, u~%, v~} with x=y-1.

If z has a minimal form Fo@™ 1 a* Fy...1p-y %1y, Where (a™, a%, ..., a%) is the
a-sequence of z and ry=e, r,=e¢ is possible, define m(z) to be the subword a*esn if
I1=2k+1 and m(z)=0%r,a%11f I=2k,

Let w=2z§t...z5" with z,€ {u, v}, &;¢ {1,—1} be any nontrivial reduced word. Then
by (13) the subwords m(z;) will not be cancelled in w. That means if m(z;)=a%1,
m(z;) remains in w, if m(z)=a%r,a%+1, only consolidation of a% and a1 is
possible. Hence ws<1. Q.E.D.

5. Conseguerices

THEOREM 1.2. Let u, v be elements of a semifree group {A, R). Then [u, v]=1
implies that {u, v} is a basis of a free subgroup of rank 2.

PrOOE. Applying a suitable inner automorphism we can suppose:

For every w that contains letters of # and v only the same letters as in » and v
(*)1 occur in wuw-1 and wow-1.

By Lemma 2.5 it is possible to assume that 4 is the set of letters in # and v. If A is
connected, then by (%) {u, v} is strongly connected and the assertion follows from
Theorem 4.1.

Otherwise, A= |J 4; with k=1, every 4, is connected, and [g;, a;]=1 for
1=isk
a;€A; and ;€ A; with i#j. Then (4, R)= & D Gp (4;) by Lemma 2.6. Let u=

1=i=s
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=uuy... 4, and v=0,v,...0; be minimal forms with #;,s,€ Gp (4;). Since [u, v]:£1,
there must be some j with [u;,v;]>1. Since 4 is the set of all letters in « and v, by
Lemma 2.2 (i) 4; is the set of all letters of u; and v;. Therefore, {u;,v;} is strongly
connected by ( *). Applying Theorem 4.1 the assertion follows. Q.E.D.

Further consequences of Theorem 4.1 are the results of [1].

THEOREM 5.1, Let u, v be elements of a semifree group (4, R). Then [u, v]l=1 iff
there are elements w, w;, and integers o;, f; (1 =i=n) such that:
(1) Ifis£j, then every letter of w; commutes with every leiter of w;.
(ii) Every w; is connected.
(i) u=w, [ waw tandv=w J[ whwL

1=i=n 1=i=n

THEOREM 1.1. Every Abelian subgroup of a semifree group is free-Abelian.

6. Counterexamples

Unfortunately, it is not possible to sharpen Theorem 1.2. We need the following
result of Baumslag:

THEOREM 6.1 (BAUMSLAG [2]). For all elements w, v, w of a free group it hoids:
[u, J=w"21 with n=1 implies n=1.

THEOREM 6.2 Let G be the semifree group

({a, b, ¢}, {la,clp) @ (%92}, v 2P
and Gy be Gp ({ax, by, cz}). Then Gy is not semifree.

Proor. Since [ax, cz]=[x, z]=1 and [by, cz]=[b, c]~1, G, is not Abelian and
therefore not cyclic. Furthermore, [x, z], [b, c]€G,, [[x, 2], [b, c]] =1, but[x, z], [, c]
do not generate a cyclic subgroup of G. Then Gp ({[x, z], [b, c]}) is not a cyclic
subgroup of G, and therefore G} is not free. By Theorem 1.2, it is not possible to gene-
rate G, by fewer than three elements.

Assume that G, is semifree. The facts above imply Gy =({u,, s, 3}, R), where R

contains one or two [u;, #;]. Then w.l.o.g. either

() Gy =Gp({u)) & (Gp({u}) x Gp({us})
or

(i) G, = Gp({up*(Go({u.) & Gp({us))-

Case (i). Let ax=r; 8y, by=ry8,, cz=rys; with r,¢Gp ({#1}) and 5,¢Gp ({up}) *
* Gp ({us)) for 1=i=3. Since ax, by, ¢z do not pairwise commute, 5;71 for 1=i=3.
As a subgroup of the free group Gp ({i1,}) *Gp ({5}), Go=Gp ({51, 52, 55}) is a free
subgroup of G. Then [[s;, 5], [sy, 55]] =1 implies the existence of some v€G, and
some integers n, m with [s;, s,] =0v™ and [s,, 5;]=v". By the Theorem 6.1 of Baumslag
|m|=1 and |n|=1. I [s;, s3]=1[s,, 53], then [s,, 5,557 1=1 and therefore [cz,ax(by)~]=
=1, a contradiction by the definition of G. If [s,, s;]=[s,, s:] 7%, then [x, y]=[ax, cz]=
=[s1, 85]=[ss, $5] " =[by, cz]~1={b, c]~%, a contradiction. Therefore, the only pos-
sibility of G, to be semifree is
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Case (ii). Consider [[x, z], [b, c]]=1 and [x, 2], [b, c]€¢G,. By Theorem 5.1 there
are v, w and intergers n, m, ny, my, 0y, my such that [x, z]=wv"w-' and [b, c]=
=wo™w™, where u, is a letter of v or [x, z]=wufzuw=" and [b, cl=wulruMs w1,
W.lLo.g. we can suppose w=e. Otherwise, apply the inner automorphism w-1...w
of G .

The first case above is impossible because otherwise v would be a nontrivial
common element of the subgroups Gp ({x, », z}) and Gp ({a, b, c}) of G.

If [x,z]=uf?uzz and [b, cl=ug>uls, assume that uy=rys, and uz=rys; with
r€Gp ({x, y, z}) and 5,€ Gp ({a, b, c}). Since [x, zZ]6 Gp ({x, y, z}), it follows sEsis=e
and [x, z]=r32ri®. By [uy, us]=1 we have [ry, rs]=1. Therefore and by Theorem 1.1
Gp ({2, 75} is free-Abelian of rank at most two. If there is some r with ry=r¢ and
rs=r’, then [x, z}=ri"+/n By Lemma 2.3 ris an element of the free group Gp ({x,z}).
By the Theorem of Baumslag (6.1) [x, z]=r or [x, z]=r~". Therefore, Gp ({[x, z]})=
=Gp ({73, r3}). Otherwise, (r,, r;) is a basis of free-Abelian group. Since [b, ¢c]=
=sy2s3® and ri2rye=1, it follows m,=m;=0. But this contradicts [b, c]=s¥2s¥3 1.

Analogously, we can show that Gp ({[5, c]}) =Gp ({s., s5}). Therefore, Gp ({u,}) ®
& Gp ({sP EIGy, Gyl. It follows that G4/[G,, Gy] is a cyclic group. This contradicts
the fact that rank (G,/[G,, G\)=3. Q.E.D.
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