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SUBGROUPS O F  SEMIFREE GROUPS 

By 

A. BAUD!SCH (Berlin) 

1. Introduction 

We call a group semifree iff it has a presentation with defining relations [a, b] = I 
between the defining generators only. In [1]it is proved: 

THEOREM I. 1. Every Abelian subgroup of  a semifree group is free-Abelian. 

Our main result in this paper is 

THEOREM 1.2. Let u and v be elements o f  a semifree group. Then [u, v] ~ 1 implies 
that {u, v} is a basis o f  a free group. 

To prove Theorem 1.2 cancellation arguments as firstly developed by Nielsen 
are used. 

COROLLARY 1.3, Every subgroup of  a semifree group generated by two elements is 
semi free. 

Furthermore, it will be shown that Corollary 1.3 is not true for subgroups gene- 
rated by three elements. The counterexample group that is a subgroup of  a semifree 
group has the property that every Abelian subgroup is free-Abelian. 

We are greatly indebted to H. G. Bothe for his interest and helpful suggestions. 

2. Basic facts on semifree groups 

The results stated in this section are proved in [1]. 
Let A be a set. A word over A is a finite sequence a~la~ 2...a]", where aiCA and 

el ~ 0 are integers. Let e be the empty word. a~l...a~, is reduced iff ai ~ ai + 1- 
I f R  is a set of  words, we use (A, R) to denote the group F/N, where F is  the free 

group with basis A and N is the normal closure of  R in F. Then a group is semifree 
i f f i t  has a presentation (.4, R) where R ~  {[a, b]:a, bEA}. 

We use elements of  A (letters) and words over A to denote elements of  (.4, R). 
Obviously, for every uC (A, R) there is some reduced word a~l...a~" in the coset of  u. 
Two words u and v represent the same element of  the semifree group (A, R) iff we 
can carry u into v applying a finite number of  the following transformations: 

(R1) Replace a l~...at~ a'~+~i+l ""a'kk by a~...a~aa -1 a'~+~i+l ""a'~k for some aCA. 

(R2) I f  ai=a=ai+~, replace a'~a',+~i i+1 in a l'~...a k'~ by a',+',+~ and delete it if  e i+  

-1-~i+1 = 0 .  

(R3) Replace a 1 ...a i ai~:l~...ak~ by ~ a 1 ...ai~_*l~ a~ .. .a k 
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20 A. BAUD~SCH 

u=a~l...a] . is a minimal form for u iffn is minimal. We call n the length 2(u) ofu .  
Minimal forms are reduced. 

LEMMA 2.1. I f  u=a~l. . .~" and u=b~. . .b~  "~ is a minimal form of  u, then m~_n 
and it is possible to get b~l...b~" from alex.., a,~, applying (R2) and (R3) only. 

Lemma 2.1 immediately implies 

LI~MMA 2.2. Let a~1...4" and b~l...b~,, be minimal forms o f  u. Then 
(i) n = m  and it is possible to transform one minimal form into the other using 

(R3) only. 
(ii) {a~ A: a=a, for some i}= {aE A: a=b,  for some i}. 

By Lemma 2.2 (ii) it is possible to speak about the letters of  u. Let a~l...a~- be a 
minimal form of  u and a be a letter of u. By Lemma 2.2 (i) the following definitions 
are correct: 

The a-sequence of  u is the sequence a 1...a ,~ where a ~J=ai~s is the j-th a-power 
in a~l...an% 

If  [a, b ] r  we can similarly define the {a, b}-sequenee c~...c~" of  u where c~J 
is the j-th occurrence of a power of  a or b in all...a,'-. 

Furthermore, if [a, b] ~ 1 and [b, c] ~ 1 and u has a minimal f o r m . . . a ' . . . ~ . . . c r . . '  
it is possible to say "b a lies between a" and c~", "b ~ is on the right of a ~'', and so on, 
since by Lemma 2.2 (i) this is true in every minimal form ofu.  

We make the following convention: u = w~ w~...w, is a minimal form means that 
the w~'s are minimal forms and the concatenation of  the w~'s is a minimal form of  u. 
We suppose that w~ r e if there is no other assumption. 

a is afirst (last) letter of  power ~ of u iff u has a minimal form a~u ' (resp. u'a'). 
u is cyclic reduced iff u has no minimal form a~u'a ~ with ~ < 0 < f l  or f l < 0 < ~ .  
We are now interested in the cancellation of  some letter a in products uv. 

LEMMA 2.3. (i) Semifree groups are torsion free. ;~ 
(ii) Let a be a f r s t  (last) letter of  power c~ of  u, and let e be any natural >0.  

I f  there is some b with [a, b ] r  in u, then a is a first (last) letter of  power ~ of  u ~. 
Otherwise a is a first (last)letter of  power ~. ~ of  u ~. u and u ~ contain the same letters. 

I f  a'~...a', is the a-sequence of  u, aPl...a~,, is the a-sequence of  v, and a'l . . .  
...a'.a~...aP,, or a~l...a~,+Pl...a~m is the a-sequence of  uv, then we say that there is 
no full cancellation of  an a-power between u and v. 

LEMMA 2.4. I f  a~. . .a ' ,  is the a-sequence of  u and a&...a~,~ is the a-sequence of  v 
and a, + fi~ ~ O, then there is no full  cancellation of  an a-power between u and v. 

I f  B is any sukset of a group G, then Gp (B) is used to denote the subgroup of  G 
generated by B. The following lemma is easliy proved. 

LEMMA 2.5. I f ( A ,  R) is semifree and BC=A, then Gp (B)=(B,  RB), where Rn= 
= R A  {[a, b]: a, bCB}. 

Let W be any subset of  a semifree group (A, R) and C be the set of  letters that 
occur in some element of  W. W is called to be connected iff for every a, b C C there are 
c~ . . . .  , c, EC such that [a, c~]~l,  [c~, c~+~]~l for l<=i<n, and [c,, b ] ~ l .  Then Wis  
ccnnected iff the graph (C, O) is connected where ~ (a, b) iff [a, b] ~ 1 for a, b ~ C. 
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SUBGROUPS OF SEMIFREE GROUPS 21 

Wis stronglyeonnectedi f fwWw-lis  connectedforeverywthateontainslet ters  of 
Conly. 

L n ~ A  2.6. I f  (A, R) ~ semifree and A =  U Ai with [ai, aj]= 1 for aiE Ai, 
l ~ i ~ k  

ai~Ai ,  i r  then (.4, R)=  �9 Gp (Ai). 
l ~ i ~ k  

3. Nielsen transformations 

Let G be any group. An elementary Nielsen transformation works on vectors 
(ul, u2, ...) where u~ C G. It is one of  the following transformations: 

(T1) Replace some u i by u/-1. 
(T2) Replace some ui by uiuj where j r  
(T3) Delete some ul where ui= 1. 

A finite product of  such transformations is a Nielsen transformation; it is regular 
if there is no factor of type (T3), and singular otherwise. (The definitions above are 
taken from [3].) 

LEMMA 3.1. Every regular Nielsen transformation has an inverse. 

LEMMA 3.2. I f  (ul, ..., U,) is carried in (vl, ..., %) by a Nielsen transformation, 
then u 1 . . . .  , u n and va, ..., Vm generate the same subgroup. 

LENMA 3.3. I f  (ul . . . . .  U,) is a basis o f  a free subgroup F of  G and it is carried in 
(vl, ..., v,,) by a regular Nielsen transformation, then n = m  and (v 1, ..., Vm) is a basis 
ofF.  

LEMMA 3.4. U and v generate a cyclic subgroup of  G iff  it is possible to apply a sin- 
gular Nielsen transformation on (u, v). 

To check freeness we use the following well-known 

LEMMA 3.5. Let ul, ..., u~ be elements of  G. Then (ul . . . .  , un) is a basis for a free 
subgroup of  G iff w(u 1, ..., u~) ~ 1 for every reduced work W(Xl . . . . .  x,). 

4. The main proof 

THEOREM 4.1. Let u and v be elements of  a semifree group G = (A, R) such that 
{u, v} is strongly eonneeted. I f  u and v do not generate a cyclic subgroup, then (u, v) is 
a basis of  a free subgroup. 

By Lemma 2.5 we can assume 

(1) The letters occurring in u or v are axactly the elements of A. 

By a transformation on (u, v) a finite product of elementary Nielsen transfor- 
mations and inner automorphisms is meant. Such a transformation is regular iff there 
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22 A5 BAUDISCH 

is no factor of type (T3), and sir/gular otherwise. Since u 'and ~ d0 not  generate a 
cyclic subgroup of G, Lemma 3.4 implies 

. (2) All possible transformations of (u, v)are regular: 

If  a is a regular transformation on (u, v), then Gp (u, v) is free with basis (u, v) 
iff Gp (a (u), o- (v)) is free with basis (a(u), cr(v)). 

This follows from Lemmas 3.1 and 3.3. Using I_emma 3.5 for a suitable trans- 
formation a it will be shown that Gp (a(u), ~r(v)) is free with basis (a(u), a(v)). By 
(2) a is regular and, therefore, as stated above, Gp (u, v) is free with basis (u, v). 

Remark that regular Nielsen transformations and inner automorphisms "com- 
mute". Therefore, if {u, v} is strongly connected, then by (1) and (2) {a(u), a(v)} is 
strongly connected for every regular transformation a. Using a suitable regular trans- 
formation, (1), (2), and Lemma 2.5 again, we can suppose 

(3) For every transformation a, A is the set of letters occurring in a(u) or ~(v). 
A is connected. 

Case 1. There exist some letter aEA and a transformation o" such that t-(u)= 
=a~u'a t~ and a(v)=arv'a ~ are minimal forms, where u' and v' contain letters that do 
not commute with a, f i+7#O, a+6#O, ~ - 5 # 0 ,  7 - ~ # 0 ,  and the exponents 
a, fl, 7, 5 need not differ from 0. 

By Lemmas 3.5, 2.3, and 2.4 Gp (a(u), ~r(v)) is free with basis (a(u), a(v)). 

Case 2. There exist some transformation a and some letter a such that a (u)=  
= a~u ", a is not a letter of u' and a (v), and every letter of u' commutes with a (resp. u 
and v are exchanged). Assume that a(u)=a~u '. By (3) there is some letter d of a(v) 
With [a, d] # 1. By assumption dis not a letter of a(u). By Lemma 2.3 (ii) every a(u)" 
contains a and not d and every a(v)" contains d and not a. I f  w(xl,  x~) is any non- 
trivial reduced word then the {a, d}-sequence of w(a(u), a(v)) is the concatenation 
of the a-sequences of the a(u)-powers in w and the d-sequences of the a(v)-powers 
in w. Lemma 3.5 implies the assertion. 

Case 3. Not Case 1, not Case 2, and there is some letter aCA and a transforma- 
tion ~ such that a is not a letter of both a(u) and cr (v). 

We show by induction on ,~ (a (u)) + 2 (a (v)): 

(4) If  a and ~r fulfil the condition of Case 3, then there is some w such that a is 
not a letter of both wa(u)w -1 and w~r(v)w -1, and wa(u)w -~ and wa(v)w -1 are 
cyclic reduced. 

Assume that cr(u) and a(v) are not both cyclic reduced and a is an element of 
6(u). We consider the more difficult case when a(u) has a minimal form e~u'c -a 
with cz, f l>0  or a, fl<0. Since the condition of Case 1 is not fulfilled ~(v) has w. 1. o. g. 
a minimal form c~v" or c~v", where c commutes with every letter of v" (7 =0  is pos- 
sible). First we suppose a(v)=c'v ". Then e#a ,  because c is an element of t-(v). This 
implies that a is not a letter of c-~r(v)c ~. Furthermore 

~ ( c - ~ ( u )  c o + 2 ( c -~ (~ )  c~) = ~(u' c~-O +~(v'  c~) < 

< ' c - 0  ' )  = 
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SUBGROUPS OF SEMIFREE GROUPS 23 

The assertion follows from the induction hypothesis. I f  ~ (v)= crv', where c commutes 
with every letter of  v ' ,  then y # 0  implies c#a.  Therefore c-'a(v)e ~ does not contain 
a for every y. We have 

2 ( c - ~ ( u )  e 9 +2(e  - ~ ( v )  c ~) = 2 (u ' c~-0  +2  (c~v'~ < 

< ~ . ( c ' u ' c - 9 + ~ ( c ~ ' ~  = ~(~(~))+~(~(0) .  

The assertion follows as above from the induction hypothesis. 
The situation of Case 3 implies furthermore: 

(5) There are letters a and b in A such that [a, b] # 1 and either a is not in o'(v) 
and b is in o'(v) or a is not in a(u) and b is in ~(u). 

To prove (5) assume that Case 3 is given and a is an element of  a (u). We get a and 
b with (5) since the following procedure must break off. Suppose that the letters 
a0=a,  a~,..., ak are chosen such that 

(5') {a0 . . . .  , ak} is connected, every a~ is an element of o'(u) but not an element 
of  o-(v), and every a~ commutes with all elements of  o'(v). 

Since {o-(u), o-(v)} is connected, there exist some c in o-(u) or in a(v) and some 
j with O~j<=k and [aj, c ] # l .  By (5') c is not an element of  o-(v). Then either c and 
some letter of  ~(v) fulfil (5) or ao ..... , ak, C satisfy (5'). Since {o-(u), o'(v)} is connected, 
the letters of  o-(u) cannot satisfy (5'), therefore the procedure breaks off, and we get 
some a, b with (5). 

Applying at first (4) and then (5), and using u instead of w~(u)w -~ and v instead 
of  w~(v)w -~ for convenience, we can suppose w. i. o. g. 

(6) There is some letter a in u that is not a letter of  v and some letter b in v such 
that [a, b] # 1. u and v are cyclic reduced. 

To verify the condition of  Lemma 3.5 we show the following: 

(7) For  every nontrivial reduced word w(x~, x~) the a-sequence of  w(u, v) is the 
concatenation of  the a-sequences of  u in w(u, v). 

Firstly, we consider the case that w(x~, x2) contains positive (negative, resp.) 
powers of  xl only. For  w(x~, xz)=x~ (7) is true since u is cyclic reduced and by the 
conditions "not  Case 1" and "not  Case 2", a cannot be a first and a last letter of  u 
at the same time. I f  (7) were false, there would be some subword u~v~u ~ so that the 
last a-power of u~ can " touch"  the first a-power of u ~ after some applications of  (R2) 
and (R3) (Lemma 2.1), Since (7) is fulfilled for ~ we can suppose y--e= 1 ( -  1, resp.). 
I f  there is one a-power in u only, let u=u~a~u~ be a minimal form ofu. Then for every 
letter c ofusvau~, [a, c] = l, by assumption. We can replace (u, v) by (u~luv~ul, u~%uO = 
---(a~(u~v~uO, u~vu~) using a suitable transformation. Bur ~r(u)=a'(u~v ~ ua) and 
a (v)= u{%ul fulfil the condition of  Case 2, a contradiction. 

Otherwise, there is some minimal form u~a'u2aaua of  u, where a does not occur 
in ua and u~. As above [a, e] = 1 for every letter e of  u3vau~. There is some transfor- 
mation z such that z(u)=u[~uvau~=a~ue(u~vauOat~ and z(v)=u~vu~, a does not  
occur in u~vu~, u{~vu~ contains b of  (6) by Lemma 4.2 below, and in u~(uavnuO 
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24 A. BAUDISCH 

there is some dwith [a, d ] #  1, since such a dis in uz, and [a, c ]=  1 for every c Of Uzv~Ul. 
Therefore we have Case 1, a contradiction. 

Now let w(xl ,  xz) be any nontrivial reduced word. We find a minimal form 
W 1 (X1, X2) Xg 1 W 2 (X1, X2) X~2~...X~ l -  lW 1(X1, X2) of w (xl, x2) where: 

(i) xl is a last letter of  wi(xl, x~) for l<-i<l. 
(ii) xl is a first letter of wi(xl, x2) for l < i ~ l .  

(iii) There are either only positive or only negative powers of  xl in w~(xl, x2) 
for 1 Ni<-l. 

(iv) I f  the powers of xl are positive in w~, then the powers of  xl in w~+l are nega- 
tive (1 N i<l).  I f  the powers of xl are negative in w~, then the powers of  xl are posi- 
tive in Wi+l ( l<- i< l ) .  

Let us consider wi(u, v)v ~ w~+l(u, v). Then wi(xl, x2)=w~(xl, x~)x~, 
w,+l(x~, x~)=x~w~+x (xl, xe) with 2(wj(xl,  x2))>2(w)(xl, x2)) for j = i ,  i+  1. Assume 
w. 1. o. g. 7 > 0 > 6 .  (6>0~-~ is similar.) Let u=u'a ~ rbe  a minimal form, where a isnot  
a letter of  r, and every power in r occurs in every minimal form of u on the right of a ~. 
Since (7) holds for w~(u, v) and Wi+l(U, v), we get w~(u, v )=~(u ,  v)a'r, wi+l(u, v)=  
=r-~a-~i+~(u,  v). Now it is suffcient to show that rvar -~ contains the letter b of  
assumption (6). This follows from 

LEMMA 4.2. Assume that the letter b occurs in a word y, and y is cyclic reduced. 
Then b is a letter o f  ryr- l  for every r. 

PROOF. The lemma will be proved by induction on L(r). If  there is any cancella- 
tion of a full power of  b in ryr-1, assume w. 1. o.  g. that y =s bay" and r = r'b-P s -~ are 
minimal forms, where s does not contain b and s=e  is possible. Then ryr - l=  
=r'(y 'sbP)r '-L Since y is cyclic reduced, there is no cancellation in (y'sbr b is a 
letter of(y'sba), and (y'sba) is cyclic reduced. Since 2 ( r ' )<2( r ) ,  by induction hypoth- 
esis ryr-~=r'(y'sba)r '-2 contains b. O. E. D. 

Case 4. Not  Case 1 and for every transformation o-, each of a(u) and o'(v) con- 
tains all letters of  A. 

Let a be any element of A. Define 2,(w) to be the length of the a-sequence of  w. 
By the assumption above we have 2~(a(u))>O and 2.(a(v))>O for every transfor- 
mation ~. Now we take cr in such a way that )~.(a(u))+2.(a(v)) is minimal. For  con- 
venience we use u instead of  ~(u) and v instead of  ~(v). Therefore 

(8) 2. (u)+ L. (v) is minimal with respect to transformations. 

We need 

(9) 2,(xx)=22,,(x) for every x~ {u, v, u -~, v-~}. 

To prove (9) assume w. I. o. g. x=u .  Firstly consider 2 , (x )=  1 and 2,,(xx)<22,(x). 
There is some minimal form ula ~ zuz of x, where every letter of  uz is on the right of  
a ~ in every minimal form of  u, every letter of u~ is on the left of  a ~ in every minimal 
form of  u, and every letter of  z commutes with a. Then ,~,(uu) = 1 implies uf l=u3 .  
us = d ' z  does not contain every letter of A, a contradiction to the assumption 
of  Case 4. 

Now suppose 2a(U )_->2 and 2,(uu)<22,(u). Similarly as above you get a minimal 
form u~a ~' u~at~us ~ of u. Then us t~. Since we are not in Case 1 and every 
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SUBGROUPS OF SEMIFREE GROUPS 25 

letter of  A occurs in u~lVUl, w.l.o.g, a'v" is a minimal form of  u~lvul. It follows 

2a(a- 'uf luula~)+ 2a(a-~uflvula ~) = 2a(u2a'+tJ)+ 2,(v' a~)<2,(u)+ 2,(v), 

a contradiction to (8). 
Let us assume that there is at most consolidation but not full cancellation of  

a-powers. That  'means : 

(10) For  every x, yC {u, u -~, v, v -~} with x ~ y  -z either 
(i) 2a(xy)=2,(x)+2,(y) or 

(ii) x=wza'w2, y=w~aPw8 are minimal forms, where a is not a letter of wz and 
e - / ~ / 0 .  

(10) and 2a(U), 2 , ( v ) > l  imply that w(u ,v ) r  for any nontrivial reduced 
w(x.  x~). 

It remains to settle the case when (w.l.o.g.) a" is the only a-power in u. I f  for 
every x, yC {u, v, u -z} (10) (i) is true, then there is nothing to do. Otherwise, by (9) 
w.l.o.g, u and v satisfy (10) (ii). 

Applying wfL..w~, w.l.o.g, u=a'w2, v=aawz are minimal forms of  u and v. 
Then a is not a last letter of  u, since otherwise [a, c] = 1 for every letter e of  u and by 
the assumption of  Case 4 for every cCA. This would be a contradiction because A is 
connected. Similarly, a is not a last letter of v if 2, (v)= 1. I f  2a (v)> 1, then a is not a 
last letter of  v, too. Otherwise, we would have minimal forms u=a~wz, v=at3w~a ~, 
where by (10) ~, t ,  7 r  ~ + 7 # 0 ,  c~-f l r  Then the condition of  Case 1 is fulfilled, 
a contradiction. 

Therefore, 2a(UV)=2,(vu)=L~(u)+2,(v). I f  2~(uv-1)=L~(u)+2,(v), the asser- 
tion follows. Otherwise, 2~(uv-Z)=2,(v) and we get a contradiction in the follo- 
wing way: 

I f  2a (v) = 1, then uv- z = a ~- Pz, where every letter of  z commutes with a. I f  a is the 
transformation with a (u )=u ,  a(v)=uv -~, the assumption of  Case 4 is violated, a 
contradiction. 

I f  2a(v)>l ,  then we have a minimal form uv-Z=arw'a -t3. By 2~(uv-~)=)o,(v); 
?~ 0 .  I f  ~ r  the conditions of  Case 1 are fulfilled for u and uv -~ (remember that 

~/~). I f  c~ = 7, then 

2.(a -~'(uv -1) a ~') + 2,,(a -~'ud') = 2,,(w'a ~'-p) +2,,(w2 a") < 

< /~a(U/) -1) -q-/~a(U) ~- /~a (V) "~-/~a(U). 

This contradicts (8). 
Contrary to (10) it remains to suppose that there are x, yC {u, v, u -~, v-Z}, 

x r  -~ with minimal forms x=wla~w~, y=wxa~'w~, where w~ does not contain the 
letter a and wz=e is possible. By (9), x r  Applying wfL..w~ we can assume w.l.o.g. 

(11) u = a ~ u' and v = a~v ", where a is not  a first letter of u', v'. 
Then 2~(u), 2~(v)>l,  because otherwise 2~(u-%)+2~(u)<2~(u)+2~(v) or 

2~, (u- a v) + 2o (v) < 2, (u) + 2a (v), a contradiction to (8). 

We have 2~(UV)=2a(VU)=2,(U)+2~(V ). By 2,(u)-->2, 2a(V)=>2 there are minimal 
forms u=a~uzaau~ and v=a'v~arc2, where a is not a letter of  uz and v2, every power 
in u2 occurs in every minimal form of  u on the right of  aP, every power in vz occurs in 
every minimal form of  v on the right of  a r, and u2, v2 # e. 
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26 A. BAUDISCH 

Assume w,l.o.g. 2,(u)~2.(v).  By (8), 2, (u-%) ,  2,(v-lu)~2.(u)>=2. 
If  us~v~ or /3 r  then full cancellation of  a-powers is only possible in products 

u-lv .  (Remark that u Z l v z r  1 implies the existence of  some letter d in u~Ivs with 
[a, d] g 1 by the construction of  us and v2 .) 

u - %  has a minimal form u~la-Pza~vZ ~ since 2a(U-lV)>=2,(U)>=2. We can write 
every nontrivial word w(u, v) as a product waws...w,, with w~=u-~v, or wi=v-~u, or 
wiE {u, v, u - l , v  -1} and wi=u implies wi_ l~v  -I, wi=v implies Wi_lr -1, w~=u -x 
implies w~ + x g v, and wz = v-  ~ implies wi +~ ~ u. Then there is no full cancellation of an 
a-power between wi and w~+l. It follows w (u, v ) r  e. If  us = v2 and/3 = 7, we prove 

(12) 2,(uv-1)>2a(U) and 2, (u- lv )>2, (u) .  

By (8) uv -~ has a normal form a'za -~. Then 2,(UV-~)~2a(U) would imply 

~,a(a-~(UV -1) aa)q-~a(a-Zva  ~) < )~a(~V-1)q-,~a(V) ~ ~,a(U)"}-)~a(V), 

contrary to (8). 
u - l v  has a minimal form u-~v'u~a-t~zat~ue by (8), us=v ~ and ]/=7. Then 

2,(U-%)<=2a(U) would imply 

)~a(at~u~u-lvu~la-t~)+ 2,(at~u~vu~ a-~) < 2~(u- lv)+ 2~(v) <= 2a(u)+2,(v), 

a contradiction to (8). 
(12) implies 

(13) 2,(xy) >max  (2~(x), 2,(y)) for every x, y~ {u, v, u -1, v -~} with x~:y -L  

If  Z has a minimal form roa~ rla~ r~...r~_~ a'ofi, where (a% a% ..., a',) is the 
a-sequence of  z and ro=e, r~=e is possible, define m(z) to be the subword a~§ if 
l = 2k + 1 and m (z) = a~ r k a~ + ~ if l =  2k. 

Let w=z]~.. 4 "  with zig {u, v}, ei~ {1, - 1} be any nontrivial reduced word. Then 
by (13) the sub.words m(z~) will not be cancelled in w. That means if m(z~)=a'~+~, 
m(z~) remains in w, if m(z~)=a~r~a'~+~, only consolidation of  a~ and a'~+* is 
possible. Hence w~  1. Q.E.D. 

5. Consequences 

THEOREM 1.2. Let u, v be elements o f  a semifree group (A, R). Then [u, v] ~: 1 
implies that {u, v} is a basis o f  a free subgroup o f  rank 2. 

PROOF. Applying a suitable inner automorphism we can suppose: 

For every w that contains letters of u and v only the same letters as in u and v 
(* )  occur in wuw-!  and wvw -1. 

By Lemma 2.5 it is possible to assume that A is the set of  letters in u and v. I f  A is 
connected, then by ( . )  {u, v} is strongly connected and the assertion follows from 
Theorem 4.1. 

Otherwise, A =  U Ai with k > l ,  every A~ is connected, and [a~, a j ] = l  for 

a~EA~ and a~EAj with i~ j .  Then (A, R ) =  ~ Gp (A~) by Lemma 2.6. Let u =  
l ~ f N k  

Acta Mathematica Academiae Scientiarum Hungarieae 38, i981 



SUBGROUPS OF SEMIFREE GROUPS 27 

=UlU~...Uk and V=VlV2...Vk be minimal forms with u~,viCGp (Ai). Since [u, v ] # l ,  
there must be some j with [u i,  v j] # 1. Since A is the set of  all letters in u and v, by 
Lemma 2.2 (ii) Aj is the set of all letters of  uj and v~. Therefore, {uj, v j} is strongly 
connected by (*).  Applying Theorem 4.1 the assertion follows. Q.E.D. 

Further consequences of  Theorem 4.1 are the results of  [1]. 

THEOREM 5.1. Let u, v be elements of  a semifree group (.4, R). Then [u, v] = 1 iff 
there are elements w, w~, and integers ~ ,  [3 i (1 <= i<= n) such that: 

(i) I f  i # j ,  then every letter of  wi commutes with every letter of  w j. 
(ii) Every wi is connected. 

(iii) U=]4' 1 H w~ ~w- landv=w 1-[ w~ ~w-l" 
l ~ i ~ n  l~_i~_n 

THEOREM 1.1. Every Abelian subgroup of a semifree group is free-Abelian. 

6. Counterexamples 

Unfortunately, it is not possible to sharpen Theorem 1.2. We need the following 
result of  Baumslag: 

THEOREM 6.1 (BAUMSLAG [2]). For all elements u, v, w of a free group it holds: 
[u, v] = w" ~ 1 with n >= 1 implies n = 1. 

THEOREM 6.2 Let G be the semifree group 

({a, b, c}, {[a, c]}) | ({x, y, z}, {[y, z]}) 

and G1 be Gp ({ax, by, cz}). Then G1 is not semifree. 

PROOF. Since [ax, cz] = Ix, z] r 1 and [by, cz] = [b, c] # 1, G1 is not Abelian and 
therefore not cyclic. Furthermore, Ix, z], [b, c]CG1, [Ix, z], [b, e]] = 1, but Ix, z], [b, c] 
do not generate a cyclic subgroup of  G. Then Gp ({[x, z], [b, c]}) is not a cyclic 
subgroup of G1 and therefore G1 is not free. By Theorem 1.2, it is not possible to gene- 
rate G1 by fewer than three elements. 

Assume that G1 is semifree. The facts above imply Gt=({ul,  u2, u3}, R), where R 
contains one or two [u~, uj]. Then w.l.o.g, either 

(i) G1 = Gp({u,}) e(Gp({u2})* Gp({us})) 
o r  

(ii) G1 = Gp({ul})*, (Gp({u2}) | 

Case (i). Let ax=r~sl, by=r2s~, cz=rasa with rCEap ({ul}) and sr ({us})*- 
. Gp ({us}) for 1 <_-i=<3. Since ax, by, cz do not pairwise commute, siC 1 for 1 ~i=<3. 
As a subgroup of the free group Gp ({u~}) *Gp ({us}), G~=Gp ({s~, s~, sa}) is a free 
subgroup of G. Then [[sl, sa], [s~, sa]]= I implies the existence of some vE G~ and 
some integers n, m with [sl, sa]=v m and [s2, sa]=v ". By the Theorem 6.1 of Baumslag 
Ira I= 1 and In[= 1. If  [s~, sa] = [s2, sa], then [sa, slsg 1] = 1 and therefore [cz, ax(by)-1] = 
= 1, a contradiction by the definition of G. If  [sl, sa] = [s~, sa]- 1, then Ix, y] = [ax, cz] = 
=[sl ,  sa]=[s2, sa]-~=[by, cz]-l=[b, c] -1, a contradiction. Therefore, the only pos- 
sibility of  G1 to be semifree is 
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Case (ii). Consider [[x, z], [b, c ] ] = l  and Ix, z], [b, e]~G 1. B y  Theorem 5.1 there 
are v, w and intergers n ,m,  ns, m2, n3, mz such that [x, z]=wv"w -1 and [b,c]= 
=wvmw -1, where ul is a letter of  v or [x, z]=wu~2u~3w -1 and [b, cl=wu'~2u'~3w -1. 
W.l.o.g. we can suppose w=e.  Otherwise, apply the inner automorphism w - L . . w  
of G1. 

The first case above is impossible because otherwise v would be a nontrivial 
common element of the subgroups Gp ({x, y, z}) and Gp ({a, b, c}) of  G. 

If [x,z]=u~u~ ~ and [b , e ] -  , . 2  , . 8  - u s  u3 , assume that u~=r2s 2 and u~=r~s2 with 
r,~Gp ({x, y, z}) and s,~Gp ({a, b, c}). Since [x, z]~Gp ({x, y, z}), it follows s~*@=e 
and [x, z]=rg2rg,. By [us, u3]=1 we have [r 2, r3]=l.  Therefore and by Theorem 1.1 
Gp ({r~, 1"3}) is free-Abelian of  rank at most two. If  there is some r with r~=r i and 
r3=ri, then [x, z] =ri".~+J".. By Lemma 2.3 r is an element of the free group Gp ({x,z}). 
By the Theorem of Baumslag (6.1) [x, z] = r  or [x, z ] = r  -1. Therefore, Gp ({[x, z]})= 
= G p  ({r2, ra}). Otherwise, (rs, r~) is a basis of free-Abetian group. Since [b, e l=  
=s~2s~ ~ and r ~ r ~  = 1, it follows ms =m3=0.  But this contradicts [b, c] =s~,s~ ~ ~ 1. 

Analogously, we can show that Gp ({[b, c]}) = Gp ({ss, s3}). Therefore, Gp ({us}) @ 
Q Gp ({us}) = [G1, G~]. It follows that GI/[G~, G~] is a cyclic group. This contradicts 
the fact that rank (G~/[G~, G~])= 3. Q.E.D. 
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