Acta Mathematica Academiae Scientiarum Hungaricae Tomus 81 (1-4), (1981), 19-28.

SUBGROUPS OF SEMIFREE GROUPS

Bу

A. BAUDISCH (Berlin)

1. Introduction

We call a group semifree iff it has a presentation with defining relations [a, b]=1 between the defining generators only. In [1] it is proved:

THEOREM 1.1. Every Abelian subgroup of a semifree group is free-Abelian.

Our main result in this paper is

THEOREM 1.2. Let u and v be elements of a semifree group. Then $[u, v] \neq 1$ implies that $\{u, v\}$ is a basis of a free group.

To prove Theorem 1.2 cancellation arguments as firstly developed by Nielsen are used.

COROLLARY 1.3. Every subgroup of a semifree group generated by two elements is semifree.

Furthermore, it will be shown that Corollary 1.3 is not true for subgroups generated by three elements. The counterexample group that is a subgroup of a semifree group has the property that every Abelian subgroup is free-Abelian.

We are greatly indebted to H. G. Bothe for his interest and helpful suggestions.

2. Basic facts on semifree groups

The results stated in this section are proved in [1].

Let A be a set. A word over A is a finite sequence $a_1^{\alpha_1}a_2^{\alpha_2}...a_n^{\alpha_n}$, where $a_i \in A$ and $\alpha_i \neq 0$ are integers. Let e be the empty word. $a_1^{\alpha_1}...a_n^{\alpha_n}$ is reduced iff $a_i \neq a_{i+1}$.

If R is a set of words, we use (A, R) to denote the group F/N, where F is the free group with basis A and N is the normal closure of R in F. Then a group is *semifree* iff it has a presentation (A, R) where $R \subseteq \{[a, b]: a, b \in A\}$.

We use elements of A (letters) and words over A to denote elements of (A, R). Obviously, for every $u \in (A, R)$ there is some reduced word $a_1^{\alpha_1} \dots a_n^{\alpha_n}$ in the coset of u. Two words u and v represent the same element of the semifree group (A, R) iff we can carry u into v applying a finite number of the following transformations:

(R1) Replace $a_{1}^{\alpha_{1}}...a_{i}^{\alpha_{i}}a_{i+1}^{\alpha_{i+1}}...a_{k}^{\alpha_{k}}$ by $a_{1}^{\alpha_{1}}...a_{i}^{\alpha_{i}}aa^{-1}a_{i+1}^{\alpha_{i+1}}...a_{k}^{\alpha_{k}}$ for some $a \in A$.

- (R2) If $a_i = a = a_{i+1}$, replace $a_i^{\alpha_i} a_{i+1}^{\alpha_{i+1}}$ in $a_1^{\alpha_1} \dots a_k^{\alpha_k}$ by $a^{\alpha_i + \alpha_{i+1}}$ and delete it if $\alpha_i + \alpha_{i+1} = 0$.
- (R3) Replace $a_{1}^{\alpha_{1}}...a_{i}^{\alpha_{i}}a_{i+1}^{\alpha_{i+1}}...a_{k}^{\alpha_{k}}$ by $a_{1}^{\alpha_{1}}...a_{i+1}^{\alpha_{i+1}}a_{i}^{\alpha_{i}}...a_{k}^{\alpha_{k}}$ if $[a_{i}, a_{i+1}] \in \mathbb{R}$.

 $u = a_1^{\alpha_1} \dots a_n^{\alpha_n}$ is a minimal form for u iff n is minimal. We call n the length $\lambda(u)$ of u. Minimal forms are reduced.

LEMMA 2.1. If $u = a_1^{\alpha_1} \dots a_n^{\alpha_n}$ and $u = b_1^{\beta_1} \dots b_m^{\beta_m}$ is a minimal form of u, then $m \leq n$ and it is possible to get $b_1^{\beta_1} \dots b_m^{\beta_m}$ from $a_1^{\alpha_1} \dots a_n^{\alpha_n}$ applying (R2) and (R3) only.

Lemma 2.1 immediately implies

LEMMA 2.2. Let $a_1^{\alpha_1} \dots a_n^{\alpha_n}$ and $b_1^{\beta_1} \dots b_m^{\beta_m}$ be minimal forms of u. Then

(i) n=m and it is possible to transform one minimal form into the other using (R3) only.

(ii) $\{a \in A: a = a_i \text{ for some } i\} = \{a \in A: a = b_i \text{ for some } i\}$.

By Lemma 2.2 (ii) it is possible to speak about *the* letters of u. Let $a_1^{\alpha_1} \dots a_n^{\alpha_n}$ be a minimal form of u and a be a letter of u. By Lemma 2.2 (i) the following definitions are correct:

The *a*-sequence of *u* is the sequence $a^{\alpha_{i_1}} \dots a^{\alpha_{i_m}}$ where $a^{\alpha_{i_j}} = a_{i_j}^{\alpha_{i_j}}$ is the *j*-th *a*-power in $a_{j_1}^{\alpha_{j_1}} \dots a_{j_m}^{\alpha_{j_m}}$.

If $[a, b] \neq 1$, we can similarly define the $\{a, b\}$ -sequence $c_1^{\gamma_1} \dots c_m^{\gamma_m}$ of u where $c_j^{\gamma_j}$ is the *j*-th occurrence of a power of a or b in $a_1^{\alpha_1} \dots a_n^{\alpha_n}$.

Furthermore, if $[a, b] \neq 1$ and $[b, c] \neq 1$ and u has a minimal form $\dots a^{\alpha} \dots b^{\beta} \dots c^{\gamma} \dots$, it is possible to say " b^{β} lies between a^{α} and c^{γ} ", " b^{β} is on the right of a^{α} ", and so on, since by Lemma 2.2 (i) this is true in every minimal form of u.

We make the following convention: $u = w_1 w_2 \dots w_n$ is a minimal form means that the w_i 's are minimal forms and the concatenation of the w_i 's is a minimal form of u. We suppose that $w_i \neq e$ if there is no other assumption.

a is a first (last) letter of power α of *u* iff *u* has a minimal form $a^{\alpha}u'$ (resp. $u'a^{\alpha}$). *u* is cyclic reduced iff *u* has no minimal form $a^{\alpha}u'a^{\beta}$ with $\alpha < 0 < \beta$ or $\beta < 0 < \alpha$. We are now interested in the cancellation of some letter *a* in products *uv*.

LEMMA 2.3. (i) Semifree groups are torsion free.

(ii) Let a be a first (last) letter of power α of u, and let ε be any natural >0. If there is some b with $[a, b] \neq 1$ in u, then a is a first (last) letter of power α of u^{ε} . Otherwise a is a first (last) letter of power $\alpha \cdot \varepsilon$ of u^{ε} . u and u^{ε} contain the same letters.

If $a^{\alpha_1}...a^{\alpha_n}$ is the *a*-sequence of u, $a^{\beta_1}...a^{\beta_m}$ is the *a*-sequence of v, and $a^{\alpha_1}...a^{\alpha_n}a^{\beta_1}...a^{\beta_m}$ or $a^{\alpha_1}...a^{\alpha_n+\beta_1}...a^{\beta_m}$ is the *a*-sequence of uv, then we say that there is no full cancellation of an *a*-power between u and v.

LEMMA 2.4. If $a^{\alpha_1}...a^{\alpha_n}$ is the a-sequence of u and $a^{\beta_1}...a^{\beta_m}$ is the a-sequence of v and $\alpha_n + \beta_1 \neq 0$, then there is no full cancellation of an a-power between u and v.

If B is any subset of a group G, then Gp (B) is used to denote the subgroup of G generated by B. The following lemma is easily proved.

LEMMA 2.5. If (A, R) is semifree and $B \subseteq A$, then $\operatorname{Gp}(B) = (B, R_B)$, where $R_B = = R \cap \{[a, b]: a, b \in B\}$.

Let W be any subset of a semifree group (A, R) and C be the set of letters that occur in some element of W. W is called to be *connected* iff for every $a, b \in C$ there are $c_1, \ldots, c_n \in C$ such that $[a, c_1] \neq 1$, $[c_i, c_{i+1}] \neq 1$ for $1 \leq i < n$, and $[c_n, b] \neq 1$. Then W is connected iff the graph $\langle C, \varrho \rangle$ is connected where $\varrho(a, b)$ iff $[a, b] \neq 1$ for $a, b \in C$.

Acta Mathematica Academiae Scientiarum Hungaricae 38, 1981

W is strongly connected iff wWw^{-1} is connected for every w that contains letters of C only.

LEMMA 2.6. If (A, R) is semifree and $A = \bigcup_{\substack{1 \le i \le k}} A_i$ with $[a_i, a_j] = 1$ for $a_i \in A_i$, $a_j \in A_j$, $i \ne j$, then $(A, R) = \bigoplus_{\substack{1 \le i \le k}} \operatorname{Gp}(A_i)$.

3. Nielsen transformations

Let G be any group. An elementary Nielsen transformation works on vectors $(u_1, u_2, ...)$ where $u_i \in G$. It is one of the following transformations:

(T1) Replace some u_i by u_i^{-1} .

(T2) Replace some u_i by $u_i u_j$ where $j \neq i$.

(T3) Delete some u_i where $u_i = 1$.

A finite product of such transformations is a *Nielsen transformation*; it is *regular* if there is no factor of type (T3), and *singular* otherwise. (The definitions above are taken from [3].)

LEMMA 3.1. Every regular Nielsen transformation has an inverse.

LEMMA 3.2. If $(u_1, ..., u_n)$ is carried in $(v_1, ..., v_m)$ by a Nielsen transformation, then $u_1, ..., u_n$ and $v_1, ..., v_m$ generate the same subgroup.

LEMMA 3.3. If $(u_1, ..., u_n)$ is a basis of a free subgroup F of G and it is carried in $(v_1, ..., v_m)$ by a regular Nielsen transformation, then n=m and $(v_1, ..., v_m)$ is a basis of F.

LEMMA 3.4. u and v generate a cyclic subgroup of G iff it is possible to apply a singular Nielsen transformation on (u, v).

To check freeness we use the following well-known

LEMMA 3.5. Let $u_1, ..., u_n$ be elements of G. Then $(u_1, ..., u_n)$ is a basis for a free subgroup of G iff $w(u_1, ..., u_n) \neq 1$ for every reduced work $w(x_1, ..., x_n)$.

4. The main proof

THEOREM 4.1. Let u and v be elements of a semifree group G = (A, R) such that $\{u, v\}$ is strongly connected. If u and v do not generate a cyclic subgroup, then (u, v) is a basis of a free subgroup.

By Lemma 2.5 we can assume

(1) The letters occurring in u or v are axactly the elements of A.

By a transformation on (u, v) a finite product of elementary Nielsen transformations and inner automorphisms is meant. Such a transformation is regular iff there is no factor of type (T3), and singular otherwise. Since u and v do not generate a cyclic subgroup of G, Lemma 3.4 implies

(2) All possible transformations of (u, v) are regular.

If σ is a regular transformation on (u, v), then Gp (u, v) is free with basis (u, v) iff Gp $(\sigma(u), \sigma(v))$ is free with basis $(\sigma(u), \sigma(v))$.

This follows from Lemmas 3.1 and 3.3. Using Lemma 3.5 for a suitable transformation σ it will be shown that Gp ($\sigma(u)$, $\sigma(v)$) is free with basis ($\sigma(u)$, $\sigma(v)$). By (2) σ is regular and, therefore, as stated above, Gp (u, v) is free with basis (u, v).

Remark that regular Nielsen transformations and inner automorphisms "commute". Therefore, if $\{u, v\}$ is strongly connected, then by (1) and (2) $\{\sigma(u), \sigma(v)\}$ is strongly connected for every regular transformation σ . Using a suitable regular transformation, (1), (2), and Lemma 2.5 again, we can suppose

(3) For every transformation σ , A is the set of letters occurring in $\sigma(u)$ or $\sigma(v)$. A is connected.

Case 1. There exist some letter $a \in A$ and a transformation σ such that $\sigma(u) = a^{\alpha}u'a^{\beta}$ and $\sigma(v) = a^{\gamma}v'a^{\delta}$ are minimal forms, where u' and v' contain letters that do not commute with $a, \beta + \gamma \neq 0, \alpha + \delta \neq 0, \beta - \delta \neq 0, \gamma - \alpha \neq 0$, and the exponents $\alpha, \beta, \gamma, \delta$ need not differ from 0.

By Lemmas 3.5, 2.3, and 2.4 Gp ($\sigma(u)$, $\sigma(v)$) is free with basis ($\sigma(u)$, $\sigma(v)$).

Case 2. There exist some transformation σ and some letter a such that $\sigma(u) = a^{\alpha}u'$, a is not a letter of u' and $\sigma(v)$, and every letter of u' commutes with a (resp. u and v are exchanged). Assume that $\sigma(u) = a^{\alpha}u'$. By (3) there is some letter d of $\sigma(v)$ with $[a, d] \neq 1$. By assumption d is not a letter of $\sigma(u)$. By Lemma 2.3 (ii) every $\sigma(u)^{\alpha}$ contains a and not d and every $\sigma(v)^{\alpha}$ contains d and not a. If $w(x_1, x_2)$ is any non-trivial reduced word then the $\{a, d\}$ -sequence of $w(\sigma(u), \sigma(v))$ is the concatenation of the a-sequences of the $\sigma(u)$ -powers in w and the d-sequences of the $\sigma(v)$ -powers in w. Lemma 3.5 implies the assertion.

Case 3. Not Case 1, not Case 2, and there is some letter $a \in A$ and a transformation σ such that a is not a letter of both $\sigma(u)$ and $\sigma(v)$.

We show by induction on $\lambda(\sigma(u)) + \lambda(\sigma(v))$:

(4) If a and σ fulfil the condition of Case 3, then there is some w such that a is not a letter of both $w\sigma(u)w^{-1}$ and $w\sigma(v)w^{-1}$, and $w\sigma(u)w^{-1}$ and $w\sigma(v)w^{-1}$ are cyclic reduced.

Assume that $\sigma(u)$ and $\sigma(v)$ are not both cyclic reduced and a is an element of $\sigma(u)$. We consider the more difficult case when $\sigma(u)$ has a minimal form $c^{\alpha}u'c^{-\beta}$ with α , $\beta > 0$ or α , $\beta < 0$. Since the condition of Case 1 is not fulfilled $\sigma(v)$ has w. 1. o. g. a minimal form $c^{\alpha}v'$ or $c^{\gamma}v''$, where c commutes with every letter of v'' ($\gamma=0$ is possible). First we suppose $\sigma(v)=c^{\alpha}v'$. Then $c\neq a$, because c is an element of $\sigma(v)$. This implies that a is not a letter of $c^{-\alpha}\sigma(v)c^{\alpha}$. Furthermore

$$\lambda(c^{-lpha}\sigma(u)c^{lpha}) + \lambda(c^{-lpha}\sigma(v)c^{lpha}) = \lambda(u'c^{lpha-eta}) + \lambda(v'c^{lpha}) < < \lambda(c^{lpha}u'c^{-eta}) + \lambda(c^{lpha}v') = \lambda(\sigma(u)) + \lambda(\sigma(v)).$$

Acta Mathematica Academiae Scientiarum Hungaricas 38, 1981

The assertion follows from the induction hypothesis. If $\sigma(v) = c^{\gamma}v''$, where c commutes with every letter of v'', then $\gamma \neq 0$ implies $c \neq a$. Therefore $c^{-\alpha}\sigma(v)c^{\alpha}$ does not contain a for every γ . We have

$$\begin{split} \lambda \big(c^{-\alpha} \sigma(u) \, c^{\alpha} \big) + \lambda \big(c^{-\alpha} \sigma(v) \, c^{\alpha} \big) &= \lambda (u' c^{\alpha-\beta}) + \lambda (c^{\gamma} v'') < \\ &< \lambda (c^{\alpha} u' c^{-\beta}) + \lambda (c^{\gamma} v'') = \lambda (\sigma(u)) + \lambda (\sigma(v)). \end{split}$$

The assertion follows as above from the induction hypothesis.

The situation of Case 3 implies furthermore:

(5) There are letters a and b in A such that $[a, b] \neq 1$ and either a is not in $\sigma(v)$ and b is in $\sigma(v)$ or a is not in $\sigma(u)$ and b is in $\sigma(u)$.

To prove (5) assume that Case 3 is given and a is an element of $\sigma(u)$. We get a and b with (5) since the following procedure must break off. Suppose that the letters $a_0=a, a_1, \ldots, a_k$ are chosen such that

(5') $\{a_0, ..., a_k\}$ is connected, every a_i is an element of $\sigma(u)$ but not an element of $\sigma(v)$, and every a_i commutes with all elements of $\sigma(v)$.

Since $\{\sigma(u), \sigma(v)\}$ is connected, there exist some c in $\sigma(u)$ or in $\sigma(v)$ and some j with $0 \le j \le k$ and $[a_j, c] \ne 1$. By (5') c is not an element of $\sigma(v)$. Then either c and some letter of $\sigma(v)$ fulfil (5) or $a_0, ..., a_k$, c satisfy (5'). Since $\{\sigma(u), \sigma(v)\}$ is connected, the letters of $\sigma(u)$ cannot satisfy (5'), therefore the procedure breaks off, and we get some a, b with (5).

Applying at first (4) and then (5), and using u instead of $w\sigma(u)w^{-1}$ and v instead of $w\sigma(v)w^{-1}$ for convenience, we can suppose w. l. o. g.

(6) There is some letter a in u that is not a letter of v and some letter b in v such that $[a, b] \neq 1$. u and v are cyclic reduced.

To verify the condition of Lemma 3.5 we show the following:

(7) For every nontrivial reduced word $w(x_1, x_2)$ the *a*-sequence of w(u, v) is the concatenation of the *a*-sequences of *u* in w(u, v).

Firstly, we consider the case that $w(x_1, x_2)$ contains positive (negative, resp.) powers of x_1 only. For $w(x_1, x_2) = x_1^n$ (7) is true since u is cyclic reduced and by the conditions "not Case 1" and "not Case 2", a cannot be a first and a last letter of uat the same time. If (7) were false, there would be some subword $u^y v^{\delta} u^{\varepsilon}$ so that the last *a*-power of u^y can "touch" the first *a*-power of u^{ε} after some applications of (R2) and (R3) (Lemma 2.1). Since (7) is fulfilled for x_1^n we can suppose $\gamma = \varepsilon = 1$ (-1, resp.). If there is one *a*-power in u only, let $u = u_1 a^x u_3$ be a minimal form of u. Then for every letter c of $u_3v^{\delta}u_1$, [a, c] = 1, by assumption. We can replace (u, v) by $(u_1^{-1}uv^{\delta}u_1, u_1^{-1}vu_1) =$ $= (a^{\alpha}(u_3v^{\delta}u_1), u_1^{-1}vu_1)$ using a suitable transformation. Bur $\sigma(u) = a^{\alpha}(u_3v^{\delta}u_1)$ and $\sigma(v) = u_1^{-1}vu_1$ fulfil the condition of Case 2, a contradiction.

Otherwise, there is some minimal form $u_1 a^{\alpha} u_2 a^{\beta} u_3$ of u, where a does not occur in u_1 and u_3 . As above [a, c] = 1 for every letter c of $u_3 v^{\delta} u_1$. There is some transformation τ such that $\tau(u) = u_1^{-1} u v^{\delta} u_1 = a^{\alpha} u_2 (u_3 v^{\delta} u_1) a^{\beta}$ and $\tau(v) = u_1^{-1} v u_1$. a does not occur in $u_1^{-1} v u_1 \cdot u_1^{-1} v u_1$ contains b of (6) by Lemma 4.2 below, and in $u_2 (u_3 v^{\delta} u_1)$ there is some d with $[a, d] \neq 1$, since such a d is in u_2 , and [a, c] = 1 for every c of $u_3 v^{\delta} u_1$. Therefore we have Case 1, a contradiction.

Now let $w(x_1, x_2)$ be any nontrivial reduced word. We find a minimal form $w_1(x_1, x_2) x_2^{\beta_1} w_2(x_1, x_2) x_2^{\beta_2} \dots x_2^{\beta_{l-1}} w_1(x_1, x_2)$ of $w(x_1, x_2)$ where:

(i) x_1 is a last letter of $w_i(x_1, x_2)$ for $1 \le i < l$.

(ii) x_1 is a first letter of $w_i(x_1, x_2)$ for $1 < i \le l$.

(iii) There are either only positive or only negative powers of x_1 in $w_i(x_1, x_2)$ for $1 \le i \le l$.

(iv) If the powers of x_1 are positive in w_i , then the powers of x_1 in w_{i+1} are negative $(1 \le i < l)$. If the powers of x_1 are negative in w_i , then the powers of x_1 are positive in w_{i+1} $(1 \le i < l)$.

Let us consider $w_i(u, v)v^{\beta}w_{i+1}(u, v)$. Then $w_i(x_1, x_2) = w'_i(x_1, x_2)x_1^{\gamma}$, $w_{i+1}(x_1, x_2) = x_1^{\beta}w'_{i+1}(x_1, x_2)$ with $\lambda(w_j(x_1, x_2)) > \lambda(w'_j(x_1, x_2))$ for j=i, i+1. Assume w. l. o. g. $\gamma > 0 > \delta$. ($\delta > 0 > \gamma$ is similar.) Let $u = u'a^{\alpha}r$ be a minimal form, where a is not a letter of r, and every power in r occurs in every minimal form of u on the right of a^{α} . Since (7) holds for $w_i(u, v)$ and $w_{i+1}(u, v)$, we get $w_i(u, v) = \overline{w}_i(u, v)a^{\alpha}r$, $w_{i+1}(u, v) =$ $= r^{-1}a^{-\alpha}\overline{w}_{i+1}(u, v)$. Now it is sufficient to show that $rv^{\beta}r^{-1}$ contains the letter b of assumption (6). This follows from

LEMMA 4.2. Assume that the letter b occurs in a word y, and y is cyclic reduced. Then b is a letter of ryr^{-1} for every r.

PROOF. The lemma will be proved by induction on $\lambda(r)$. If there is any cancellation of a full power of b in ryr^{-1} , assume w. l. o. g. that $y=sb^{\beta}y'$ and $r=r'b^{-\beta}s^{-1}$ are minimal forms, where s does not contain b and s=e is possible. Then $ryr^{-1}==r'(y'sb^{\beta})r'^{-1}$. Since y is cyclic reduced, there is no cancellation in $(y'sb^{\beta})$, b is a letter of $(y'sb^{\beta})$, and $(y'sb^{\beta})$ is cyclic reduced. Since $\lambda(r') < \lambda(r)$, by induction hypothesis $ryr^{-1}=r'(y'sb^{\beta})r'^{-2}$ contains b. O. E. D.

Case 4. Not Case 1 and for every transformation σ , each of $\sigma(u)$ and $\sigma(v)$ contains all letters of A.

Let *a* be any element of *A*. Define $\lambda_a(w)$ to be the length of the *a*-sequence of *w*. By the assumption above we have $\lambda_a(\sigma(u)) > 0$ and $\lambda_a(\sigma(v)) > 0$ for every transformation σ . Now we take σ in such a way that $\lambda_a(\sigma(u)) + \lambda_a(\sigma(v))$ is minimal. For convenience we use *u* instead of $\sigma(u)$ and *v* instead of $\sigma(v)$. Therefore

(8) $\lambda_a(u) + \lambda_a(v)$ is minimal with respect to transformations.

We need

(9) $\lambda_a(xx) = 2\lambda_a(x)$ for every $x \in \{u, v, u^{-1}, v^{-1}\}$.

To prove (9) assume w. 1. o. g. x=u. Firstly consider $\lambda_a(x)=1$ and $\lambda_a(xx)<2\lambda_a(x)$. There is some minimal form $u_1a^{\alpha} zu_3$ of x, where every letter of u_3 is on the right of a^{α} in every minimal form of u, every letter of u_1 is on the left of a^{α} in every minimal form of u, every letter of u_1 is on the left of a^{α} in every minimal form of u, and every letter of z commutes with a. Then $\lambda_a(uu)=1$ implies $u_1^{-1}=u_3$. $u_1^{-1}uu_1=a^{\alpha}z$ does not contain every letter of A, a contradiction to the assumption of Case 4.

Now suppose $\lambda_a(u) \ge 2$ and $\lambda_a(uu) < 2\lambda_a(u)$. Similarly as above you get a minimal form $u_1 a^{\alpha} u_2 a^{\beta} u_1^{-1}$ of u. Then $u_1^{-1} u u_1 = a^{\alpha} u_2 a^{\beta}$. Since we are not in Case 1 and every

Acta Mathematica Academiae Scientiarum Hungaricae 38, 1981

letter of A occurs in $u_1^{-1}vu_1$, w.l.o.g. $a^{\alpha}v'$ is a minimal form of $u_1^{-1}vu_1$. It follows

$$\lambda_a(a^{-\alpha}u_1^{-1}uu_1a^{\alpha}) + \lambda_a(a^{-\alpha}u_1^{-1}vu_1a^{\alpha}) = \lambda_a(u_2a^{\alpha+\beta}) + \lambda_a(v'a^{\alpha}) < \lambda_a(u) + \lambda_a(v),$$

a contradiction to (8).

Let us assume that there is at most consolidation but not full cancellation of a-powers. That means:

(10) For every $x, y \in \{u, u^{-1}, v, v^{-1}\}$ with $x \neq y^{-1}$ either

(i) $\lambda_a(xy) = \lambda_a(x) + \lambda_a(y)$ or

(ii) $x = w_1 a^{\alpha} w_2$, $y = w_1 a^{\beta} w_3$ are minimal forms, where *a* is not a letter of w_1 and $\alpha - \beta \neq 0$.

(10) and $\lambda_a(u)$, $\lambda_a(v) > 1$ imply that $w(u, v) \neq 1$ for any nontrivial reduced $w(x_1, x_2)$.

It remains to settle the case when (w.l.o.g.) a^{α} is the only *a*-power in *u*. If for every $x, y \in \{u, v, u^{-1}\}$ (10) (i) is true, then there is nothing to do. Otherwise, by (9) w.l.o.g. *u* and *v* satisfy (10) (ii).

Applying $w_1^{-1}...w_1$, w.l.o.g. $u=a^{\alpha}w_2$, $v=a^{\beta}w_3$ are minimal forms of u and v. Then a is not a last letter of u, since otherwise [a, c]=1 for every letter c of u and by the assumption of Case 4 for every $c \in A$. This would be a contradiction because A is connected. Similarly, a is not a last letter of v if $\lambda_a(v)=1$. If $\lambda_a(v)>1$, then a is not a last letter of v, too. Otherwise, we would have minimal forms $u=a^{\alpha}w_2$, $v=a^{\beta}w'_3a^{\gamma}$, where by (10) α , β , $\gamma \neq 0$, $\alpha + \gamma \neq 0$, $\alpha - \beta \neq 0$. Then the condition of Case 1 is fulfilled, a contradiction.

Therefore, $\lambda_a(uv) = \lambda_a(vu) = \lambda_a(u) + \lambda_a(v)$. If $\lambda_a(uv^{-1}) = \lambda_a(u) + \lambda_a(v)$, the assertion follows. Otherwise, $\lambda_a(uv^{-1}) = \lambda_a(v)$ and we get a contradiction in the following way:

If $\lambda_a(v) = 1$, then $uv^{-1} = a^{\alpha - \beta}z$, where every letter of z commutes with a. If σ is the transformation with $\sigma(u) = u$, $\sigma(v) = uv^{-1}$, the assumption of Case 4 is violated, a contradiction.

If $\lambda_a(v) > 1$, then we have a minimal form $uv^{-1} = a^{\gamma}w'a^{-\beta}$. By $\lambda_a(uv^{-1}) = \lambda_a(v)$, $\gamma \neq 0$. If $\alpha \neq \gamma$, the conditions of Case 1 are fulfilled for u and uv^{-1} (remember that $\alpha \neq \beta$). If $\alpha = \gamma$, then

$$\lambda_a(a^{-\alpha}(uv^{-1})a^{\alpha}) + \lambda_a(a^{-\alpha}ua^{\alpha}) = \lambda_a(w'a^{\alpha-\beta}) + \lambda_a(w_2a^{\alpha}) < \\ < \lambda_a(uv^{-1}) + \lambda_a(u) = \lambda_a(v) + \lambda_a(u).$$

This contradicts (8).

Contrary to (10) it remains to suppose that there are $x, y \in \{u, v, u^{-1}, v^{-1}\}$, $x \neq y^{-1}$ with minimal forms $x = w_1 a^{\alpha} w_2$, $y = w_1 a^{\alpha} w_3$, where w_1 does not contain the letter a and $w_1 = e$ is possible. By (9), $x \neq y$. Applying $w_1^{-1} \dots w_1$ we can assume w.l.o.g.

(11) $u = a^{\alpha}u'$ and $v = a^{\alpha}v'$, where a is not a first letter of u', v'.

Then $\lambda_a(u)$, $\lambda_a(v) > 1$, because otherwise $\lambda_a(u^{-1}v) + \lambda_a(u) < \lambda_a(u) + \lambda_a(v)$ or $\lambda_a(u^{-1}v) + \lambda_a(v) < \lambda_a(u) + \lambda_a(v)$, a contradiction to (8).

We have $\lambda_a(uv) = \lambda_a(vu) = \lambda_a(u) + \lambda_a(v)$. By $\lambda_a(u) \ge 2$, $\lambda_a(v) \ge 2$ there are minimal forms $u = a^{\alpha}u_1a^{\beta}u_2$ and $v = a^{\alpha}v_1a^{\gamma}c_2$, where a is not a letter of u_2 and v_2 , every power in u_2 occurs in every minimal form of u on the right of a^{β} , every power in v_2 occurs in every minimal form of u^{γ} , and $u_2, v_2 \ne e$.

Assume w.l.o.g. $\lambda_a(u) \ge \lambda_a(v)$. By (8), $\lambda_a(u^{-1}v)$, $\lambda_a(v^{-1}u) \ge \lambda_a(u) \ge 2$.

If $u_2 \neq v_2$ or $\beta \neq \gamma$, then full cancellation of *a*-powers is only possible in products $u^{-1}v$. (Remark that $u_2^{-1}v_2 \neq 1$ implies the existence of some letter *d* in $u_2^{-1}v_2$ with $[a, d] \neq 1$ by the construction of u_2 and v_2 .)

 $u^{-1}v$ has a minimal form $u_2^{-1}a^{-\beta}za^{\gamma}v_2^{-1}$ since $\lambda_a(u^{-1}v) \ge \lambda_a(u) \ge 2$. We can write every nontrivial word w(u, v) as a product $w_1w_2...w_n$ with $w_i=u^{-1}v$, or $w_i=v^{-1}u$, or $w_i \in \{u, v, u^{-1}, v^{-1}\}$ and $w_i=u$ implies $w_{i-1}\neq v^{-1}$, $w_i=v$ implies $w_{i-1}\neq u^{-1}$, $w_i=u^{-1}$ implies $w_{i+1}\neq v$, and $w_i=v^{-1}$ implies $w_{i+1}\neq u$. Then there is no full cancellation of an *a*-power between w_i and w_{i+1} . It follows $w(u, v)\neq e$. If $u_2=v_2$ and $\beta=\gamma$, we prove

(12) $\lambda_a(uv^{-1}) > \lambda_a(u)$ and $\lambda_a(u^{-1}v) > \lambda_a(u)$.

By (8) uv^{-1} has a normal form $a^{\alpha}za^{-\alpha}$. Then $\lambda_{\alpha}(uv^{-1}) \leq \lambda_{\alpha}(u)$ would imply

$$\lambda_a(a^{-\alpha}(uv^{-1})a^{\alpha}) + \lambda_a(a^{-\alpha}va^{\alpha}) < \lambda_a(uv^{-1}) + \lambda_a(v) \le \lambda_a(u) + \lambda_a(v),$$

contrary to (8).

 $u^{-1}v$ has a minimal form $u^{-1}v = u_2^{-1}a^{-\beta}za^{\beta}u_2$ by (8), $u_2 = v_2$ and $\beta = \gamma$. Then $\lambda_a(u^{-1}v) \leq \lambda_a(u)$ would imply

$$\lambda_a(a^{\beta}u_2u^{-1}vu_2^{-1}a^{-\beta}) + \lambda_a(a^{\beta}u_2vu_2^{-1}a^{-\beta}) < \lambda_a(u^{-1}v) + \lambda_a(v) \leq \lambda_a(u) + \lambda_a(v),$$

a contradiction to (8).

(12) implies

(13) $\lambda_a(xy) > \max(\lambda_a(x), \lambda_a(y))$ for every $x, y \in \{u, v, u^{-1}, v^{-1}\}$ with $x \neq y^{-1}$.

If z has a minimal form $r_0 a^{\alpha_1} r_1 a^{\alpha_2} r_2 \dots r_{l-1} a^{\alpha_0} r_l$, where $(a^{\alpha_1}, a^{\alpha_2}, \dots, a^{\alpha_l})$ is the a-sequence of z and $r_0 = e$, $r_l = e$ is possible, define m(z) to be the subword $a^{\alpha_{k+1}}$ if l = 2k + 1 and $m(z) = a^{\alpha_k} r_k a^{\alpha_{k+1}}$ if l = 2k.

Let $w = z_1^{\varepsilon_1} \dots z_n^{\varepsilon_n}$ with $z_i \in \{u, v\}$, $\varepsilon_i \in \{1, -1\}$ be any nontrivial reduced word. Then by (13) the subwords $m(z_i)$ will not be cancelled in w. That means if $m(z_i) = a^{\alpha_{k+1}}$, $m(z_i)$ remains in w, if $m(z_i) = a^{\alpha_k} r_k a^{\alpha_{k+1}}$, only consolidation of a^{α_k} and $a^{\alpha_{k+1}}$ is possible. Hence $w \neq 1$. Q.E.D.

5. Consequences

THEOREM 1.2. Let u, v be elements of a semifree group (A, R). Then $[u, v] \neq 1$ implies that $\{u, v\}$ is a basis of a free subgroup of rank 2.

PROOF. Applying a suitable inner automorphism we can suppose:

(*) {For every w that contains letters of u and v only the same letters as in u and v occur in wuw^{-1} and wvw^{-1} .

By Lemma 2.5 it is possible to assume that A is the set of letters in u and v. If A is connected, then by (*) $\{u, v\}$ is strongly connected and the assertion follows from Theorem 4.1.

Otherwise, $A = \bigcup_{1 \le i \le k} A_i$ with k > 1, every A_i is connected, and $[a_i, a_j] = 1$ for $a_i \in A_i$ and $a_j \in A_j$ with $i \ne j$. Then $(A, R) = \bigoplus_{1 \le i \le k} Gp(A_i)$ by Lemma 2.6. Let u =

Acta Mathematica Academiae Scientiarum Hungaricae 38, 1981

 $=u_1u_2...u_k$ and $v=v_1v_2...v_k$ be minimal forms with $u_i, v_i \in \text{Gp}(A_i)$. Since $[u, v] \neq 1$, there must be some j with $[u_j, v_j] \neq 1$. Since A is the set of all letters in u and v, by Lemma 2.2 (ii) A_j is the set of all letters of u_j and v_j . Therefore, $\{u_j, v_j\}$ is strongly connected by (*). Applying Theorem 4.1 the assertion follows. Q.E.D.

Further consequences of Theorem 4.1 are the results of [1].

THEOREM 5.1. Let u, v be elements of a semifree group (A, R). Then [u, v] = 1 iff there are elements w, w_i , and integers $\alpha_i, \beta_i (1 \le i \le n)$ such that:

- (i) If $i \neq j$, then every letter of w_i commutes with every letter of w_j .
- (ii) Every w_i is connected.
- (iii) $u = w_1 \prod_{1 \le i \le n}^{l} w_i^{\alpha_i} w^{-1} \text{ and } v = w \prod_{1 \le i \le n} w_i^{\beta_i} w^{-1}.$

THEOREM 1.1. Every Abelian subgroup of a semifree group is free-Abelian.

6. Counterexamples

Unfortunately, it is not possible to sharpen Theorem 1.2. We need the following result of Baumslag:

THEOREM 6.1 (BAUMSLAG [2]). For all elements u, v, w of a free group it holds: $[u, v] = w^n \neq 1$ with $n \ge 1$ implies n = 1.

THEOREM 6.2 Let G be the semifree group

$$(\{a, b, c\}, \{[a, c]\}) \oplus (\{x, y, z\}, \{[y, z]\})$$

and G_1 be $Gp(\{ax, by, cz\})$. Then G_1 is not semifree.

PROOF. Since $[ax, cz] = [x, z] \neq 1$ and $[by, cz] = [b, c] \neq 1$, G_1 is not Abelian and therefore not cyclic. Furthermore, [x, z], $[b, c] \in G_1$, [[x, z], [b, c]] = 1, but [x, z], [b, c] do not generate a cyclic subgroup of G. Then Gp ({[x, z], [b, c]}) is not a cyclic subgroup of G_1 and therefore G_1 is not free. By Theorem 1.2, it is not possible to generate G_1 by fewer than three elements.

Assume that G_1 is semifree. The facts above imply $G_1 = (\{u_1, u_2, u_3\}, R)$, where R contains one or two $[u_i, u_j]$. Then w.l.o.g. either

(i)
$$G_1 = \operatorname{Gp}(\{u_1\}) \oplus (\operatorname{Gp}(\{u_2\}) * \operatorname{Gp}(\{u_3\}))$$

or

(ii)
$$G_1 = \operatorname{Gp}(\{u_1\}) * (\operatorname{Gp}(\{u_2\}) \oplus \operatorname{Gp}(\{u_3\})).$$

Case (i). Let $ax=r_1s_1$, by $=r_2s_2$, $cz=r_3s_3$ with $r_i\in \text{Gp}(\{u_1\})$ and $s_i\in \text{Gp}(\{u_2\}) *$ * Gp $(\{u_3\})$ for $1 \le i \le 3$. Since ax, by, cz do not pairwise commute, $s_i \ne 1$ for $1 \le i \le 3$. As a subgroup of the free group Gp $(\{u_2\}) *$ Gp $(\{u_3\})$, $G_2 =$ Gp $(\{s_1, s_2, s_3\})$ is a free subgroup of G. Then $[[s_1, s_3], [s_2, s_3]] = 1$ implies the existence of some $v \in G_2$ and some integers n, m with $[s_1, s_3] = v^m$ and $[s_2, s_3] = v^n$. By the Theorem 6.1 of Baumslag |m|=1 and |n|=1. If $[s_1, s_3] = [s_2, s_3]$, then $[s_3, s_1s_2^{-1}] = 1$ and therefore $[cz, ax(by)^{-1}] =$ = 1, a contradiction by the definition of G. If $[s_1, s_3] = [s_2, s_3]^{-1}$, then [x, y] = [ax, cz] = $= [s_1, s_3] = [s_2, s_3]^{-1} = [by, cz]^{-1} = [b, c]^{-1}$, a contradiction. Therefore, the only possibility of G_1 to be semifree is Case (ii). Consider [[x, z], [b, c]] = 1 and $[x, z], [b, c] \in G_1$. By Theorem 5.1 there are v, w and intergers n, m, n_2, m_2, n_3, m_3 such that $[x, z] = wv^n w^{-1}$ and $[b, c] = wv^m w^{-1}$, where u_1 is a letter of v or $[x, z] = wu_2^{n_2}u_3^{n_3}w^{-1}$ and $[b, c] = wu_2^{m_2}u_3^{m_3}w^{-1}$. W.l.o.g. we can suppose w = e. Otherwise, apply the inner automorphism $w^{-1}...w$ of G_1 .

The first case above is impossible because otherwise v would be a nontrivial common element of the subgroups Gp $(\{x, y, z\})$ and Gp $(\{a, b, c\})$ of G.

If $[x, z] = u_2^{n_2} u_3^{n_3}$ and $[b, c] = u_2^{m_2} u_3^{m_3}$, assume that $u_2 = r_2 s_2$ and $u_3 = r_3 s_3$ with $r_i \in \operatorname{Gp}(\{x, y, z\})$ and $s_i \in \operatorname{Gp}(\{a, b, c\})$. Since $[x, z] \in \operatorname{Gp}(\{x, y, z\})$, it follows $s_2^{n_2} s_3^{n_3} = e$ and $[x, z] = r_2^{n_2} r_3^{n_3}$. By $[u_2, u_3] = 1$ we have $[r_2, r_3] = 1$. Therefore and by Theorem 1.1 Gp $(\{r_2, r_3\})$ is free-Abelian of rank at most two. If there is some r with $r_2 = r^i$ and $r_3 = r^j$, then $[x, z] = r^{in_2 + jn_3}$. By Lemma 2.3 r is an element of the free group Gp $(\{x, z\})$. By the Theorem of Baumslag (6.1) [x, z] = r or $[x, z] = r^{-1}$. Therefore, Gp $(\{[x, z]\}) = -\operatorname{Gp}(\{r_2, r_3\})$. Otherwise, (r_2, r_3) is a basis of free-Abelian group. Since $[b, c] = s_2^{m_2} s_3^{m_3}$ and $r_2^{m_2} r_3^{m_3} = 1$, it follows $m_2 = m_3 = 0$. But this contradicts $[b, c] = s_2^{m_2} s_3^{m_3} \neq 1$. Analogously, we can show that Gp $(\{[b, c]\}) = \operatorname{Gp}(\{s_2, s_3\})$. Therefore, Gp $(\{u_2\}) \oplus$

Analogously, we can show that Gp ({[b, c]})=Gp ({ s_2, s_3 }). Therefore, Gp ({ u_2 }) \oplus \oplus Gp ({ u_3 }) \subseteq [G_1, G_1]. It follows that $G_1/[G_1, G_1]$ is a cyclic group. This contradicts the fact that rank ($G_1/[G_1, G_1]$)=3. Q.E.D.

References

- A. BAUDISCH, Kommutationsgleichungen in semifreien Gruppen, Acta Math. Acad. Sci. Hungar.. 29 (1977), 235–249.
- [2] G. BAUMSLAG, Some Aspects of Groups with unique Roots, Acta Math., 104 (1960), 217-303,
- [3] R. C. LYNDON, P. E. SCHUPP, Combinatorial Group Theory, Springer-Verlag (Berlin-Heidelberg-New York, 1977).

(Received October 4, 1979)

ZENTRALINSTITUT FÜR MATHEMATIK UND MECHANIK DDR 108 BERLIN MOHRENSTRASSE 39