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Abstract: Following a comprehensive bibliography recently published in this journal, we review 
major results in fractional programming. The emphasis is on structural properties of fractional pro- 
grams and their algorithmic implications. We limit the discussion to those types of ratio optimiza- 
tion problems for which we see a significant interest in the applications. It is attempted to provide 
a theoretical framework for future research in this area. 

Zusammenfassung: Im Anschlufi an die kfirzliche Ver6ffentlichung einer umfassenden Bibliogra- 
phie zur Quotientenprogrammierung in dieser Zeitschrift wird in der vorliegenden Arbeit ein fJber- 
blick fiber wichtige Ergebnisse auf diesem Gebiet der nichtlinearen Programmierung gegeben. Es 
stehen dabei strukturelle Eigenschaften yon Quotientenprogrammen sowie deren Bedeutung ftir 
L6sungsverfahxen im Mittelpunkt der Untersuchung. Die Diskussion beschr~inkt sich auf solche 
Quotientenprogramme, die ftir die Anwendungen yon gr6t~erem Interesse sind. Es witd in der Ar- 
beit versucht einen theoretischen Rahmen zu entwickeln, der fOr weitere Untersuchungen zur Quo- 
tientenprogrammierung hilfreich sein kann. 

1. Introduction 

Some decision problems in management science as well as other extremum prob- 
lems give rise to the optimization of ratios. Constrained ratio optimization problems 
are commonly called fractional programs. They may involve more than one ratio in the 
objective function. 

One of the first fractional programs (though not called so) was discussed as early 
as 1937 in yon Neumann's classical paper on an expanding economy [see yon Neu- 
mann, 1937, 1945]. In this economic equilibrium model the growth rate, i.e. the smal- 
lest of several output-input ratios is to be maximized. Von Neumann proposed a duali- 
ty theory for this fractional program. 

I) Invited survey. 
2) Prof. Dr. Siegfried Schaible, Department of Finance and Management Science, Faculty of 

Business, University of Alberta, Edmonton, Canada T6G 2G1. This research was supported by 
J.D. Muir Fund, Faculty of Business, University of Alberta. 

0340-9422/83/010039-5452.50 �9 1983 Physica- Verlag, lCiirz burg. 



40 S. Schaible 

Since that time, but mainly after the classical paper by Charnes/Cooper [1962] 
about 500 publications have appeared in fractional programming. A comprehensive 
bibliography as of March 1982 was recently published in this journal [see Schaible, 
1982a]. 

Fractional programming has meanwhile been recognized by "International Ab- 
stracts in Operations Research," "Mathematical Reviews," and "Zentralblatt f~  Ma- 
thematik" as a separate entity within the area of nonlinear programming like quadratic 
programming or convex programming. 

However, the discussion of fractional programs in textbooks is still quite limited 
and often restricted to the linear case. In 1978 a monograph solely devoted to frac- 
tional programming appeared [see Schaible, 1978]. In it a detailed survey of (poten- 
tial) applications is given and theoretical and algorithmic results for concave fractional 
programs are presented. 

In the present paper we review some major fractional programming results. Here we 
mainly focus on the theory and on solution strategies that result from the theory. For 
a review of applications and computational results see Schaible/lbaraki [1983]. 

The material is organized as follows: 
Section 2 provides notation and def'mitions; in Section 3 we briefly list some of the 
major application areas of fractional programming; Section 4 is devoted to the theory 
of singleratio problems whereas Section 5 deals with multiratio problems. In both sec- 
tions we discuss the linear and the concave case. Nonconcave fractional programs are 
addressed in Section 6. Finally Section 7 deals with solution strategies resulting from 
the structural properties of fractional programs. 

The bibliography at the end is not meant to be representative for the various efforts 
to build up a theory of fractional programming. In this paper we restrict our attention 
to those types of fractional programs for which we see a significant chance of being ac- 
tually used. But even here the intention was not to include all the results, but to pro- 
vide a framework for future work in fractional programming. A comprehensive biblio- 
graphy is given in Schaible [1982a]. 

2. Notation and Definitions 

Suppose f, g, h/(j  = 1 . . . .  , m) are realvalued functions which are defined on the 
set X of R n. Let h = (hi . . . .  , hm) T. We consider the ratio 

f(x) 
q(x)= 

g(x) 

over the set 

s= {x x: h (x)<o). 

We assume that g (x) is positive on X. I fg  (x) is negative then 
q (x) = ( - - f ( x ) ) / ( - - g  (x)) may be used instead. The nonlinear program 

(1) 

(2) 
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(P) sup (q (x): x e s} (3) 

is called a fractional program. 
In some applications more than one ratio appears in the objective function. Exam- 

pies of such models are 
p 

sup (/--$1"-- qi(x):  x E S }  (4) 

and 

(GP) sup { rain qi (x): x �9 S}. (5) 
l <<.i <<.p 

Here qi (x) = fi  (x)/gi (x) (i = 1 , . . . ,  p) where ft" gi are realvalued functions on X 
with gi (x) > 0. Problem (GP) is sometimes referred to as a generalizedfractionalpro- 
gram [Crouzeix/Ferland/Schaible; Jagannathan/Schaible ]. Both problems (4) and (5) 
are related to the multiobjective fractional program 

max (ql (x) . . . .  , qp (x)) (6) 
x~S 

[ Choo ; Warburton ]. 

3. Applications 

In this section we briefly list major application areas of fractional programming. 
For more details and references see Schaible [ 1978, 1981] and Schaible/Ibaraki 
[ 1983 ]. Earlier applications are reviewed in Grunspan [ 1971 ]. 

We find the following types of applications in the literature: economic applications, 
non-economic applications, indirect applications. 

a) Economic Applications 
Ratios to be optimized often describe some kind of an efficiency measure for a sys- 
tem. Among others the following examples are found [for more examples see Korn- 
bluth/Steuer, 1981b]: 

relative usage of material, productivity, profit/capital, profit/revenue, return/cost, 
return/risk, cost/time, expected cost/time, profit/time, liquidity, earnings per share, 
dividend per share. 

These ratios arise in resource allocation, transportation, production, finance, main- 
tenance or applications of stochastic processes or Markov renewal programs. 

b) Non-Economic Applications 
Outside management science fractional programs occur in information theory, ap- 
plied linear algebra and approximation theory for example. 

c) Indirect Applications 
Finally, fractional programs are sometimes encountered as part of a solution proce- 
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dure for another optimization problem. Examples are approximations to numerical- 
ly untractable portfolio selection problems, dual location problems, subproblems in 
large-scale programming and deterministic substitutes of  stochastic programs. Since 
some of  these models arise in a variety of  planning situations fractional programs 
occur indirectly in many different contexts. 

After this brief review of  applications we turn now to theoretical results. 

4. Concave Singleratio Programs 

The focus in fractional programming has been on the objective function and not on 
the constraint set S. As far as S is concerned it is assumed in most publications that S 
is a convex set o f R  n. Accordingly, we will require in this paper that the domain X of  
all functions in (3), (4), (5) and (6) is a (nonempty)  convex set and the constraint 
functions hj are convex on X. This implies convexity of  the feasible region S. 

In this section we discuss the singleratio problem (P) in (3). In many applications of  
(3) the ratio q (x) in the objective satisfies the following concavity/convexity assump- 
tion: 

f i s  concave and g is convex on X; 

K: f i s  positive on S i f g  is not affine (linear plus constant). 

A ratio problem (3) is called a concave fractional program if  condition K is satisfied. 
For such nonlinear programs Proposition 1 - 4  below can be proved [see Mangasarian, 
1969a; AvrielS)]: 

Proposition 1: The objective function q (x) in a concave fractional program is semi- 
strictly quasieoncave on S. It is strictly quasiconcave if either f is strictly concave or g 
is strictly convex. 

Proposition 2: I f  f, g are differentiable in a concave fractional program then the objec- 
tive function q (x) is pseudoconcave on S. It is strictly pseudoconcave there if either f 
is strictly concave or g is strictly convex. 

From Proposition 1 and 2 we conclude: 

Proposition 3: In a concave fractional program (P) any local maximum is a global 
maximum, and (P) has at most  one maximum if f is strictly concave or g is strictly con- 
vex. In a differentiable concave fractional program a solution of  the Karush-Kuhn- 
Tucker conditions is a maximum of  (P). 

A special case of  a concave fractional program is the linear fractional program 
where f, g are affine functions and S is a convex polyhedron: 

3) Instead of "strictly quasiconcave" and "strongly quasiconcave" as in Avriel [1976] we use 
the terms "semistrictly quasiconcave" and "strictly quasiconcave" respectively which were intro- 
duced in Avriel et aL [1981 ] to streamline the various definitions of concave and generalized con- 
cave functions. 
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{ crx+~ } 
- -  :Ax<<.b,x  >~O . (7) sup drx + [3 

Here c, d E R n, b E R m , ~, [3 C R,  A is a m • n matrix and T denotes the transpose. 
More generally (P) is called a quadraticfraetionalprogram if  f, g are quadratic func- 

tions and S is a convex polyhedron. 
As we see concave, linear and quadratic fractional programs are extensions of  con- 

cave, linear and quadratic programs where a convex, affme or quadratic denominator, 
respectively, is introduced. 

For linear fractional programs we have in addition to Proposition 1 -3 :  

Proposition 4: In a linear fractional program (7) the objective function is quasiconvex 
on the feasible region S, and therefore a maximum is attained at a vertex o f S  i f S  is 
nonempty  and bounded. 

We have seen that concave and linear fractional programs have several important  
properties in common with concave and linear programs, respectively. 

In the following we want to discuss the possibilities of  reducing concave fractional 
programs to a concave program. Later in this section we then introduce duality for 
these quasiconcave programs. 

In order to relate an optimization problem to a concave program one might try to 
find either a suitable range transformation or a variable transformation [Avriel]. It  was 
shown in Schaible [1971] that any quadratic program that is quasiconcave can be re- 
duced to a concave program with help of  a range transformation. Unfortunately, the 
same is not possible for fractional programs that are quasiconcave. In fact, one can 
prove that in case of  the simple linear ratio q (x) = Xl/X2 there does not  exist any 
strictly increasing function H such that H (q (x)) is concave on an open convex set in 
the halfspace S = (x E R 2 : x 2  > 0}. 

However, a subclass of  concave fractional programs can be reduced to an equivalent 
concave program by a range transformation [Schaible, 1974]: 

Proposition 5: I f  in a concave fractional program (g (x)) e is still convex on S for some 
e E (0, 1) then the equivalent problem 

sup (-- q (x ) t :  X E S) (8) 

is a concave program for t />  e/(1 -- e). 
As an application consider the fractional program 

sup q ( x ) =  x--~Dx : x E S  

where f i s a  positive concave function and g (x) = x T D x  is a positive convex quadratic 
form on S. Then the equivalent problem 

sup {- q (x)-I  : x ~ S)  

has a concave objective function since x/g (x) is still convex, and thus we can use t />  1 
in Proposition 5. 
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It is also possible to relate a very large class of concave fractional programs to a con- 
cave program by separating numerator and denominator with help of a parameter X 
[Jagannathan; Dinkelbach; for similar approaches see Geoffrion, 196 7 ; Ritter ; Cam- 
bini]. Consider the parametric problem 

(Px) sup { f ( x ) - -Xg(x ) :xES} .  (9) 

Suppose f, g are continuous and S is a (nonempty) compact set. Then 

F(~) = max ( f(x)--Xg(x)  : x ~S} 

is a strictly decreasing, continuous function on R where F (X) ~ + ~ (-- ~)  if 
X --> - ~ (+ ~). Let ~ denote the unique zero of F (X). It is easily seen [Jagannathan; 
Dinkelbach ]: 

Proposition 6: The optimal solutions of (PX) and (P) are the same and X= q (2) 
where ~ is an optimal solution of (P). 

If (P) is a concave fractional program then (Px) is a parametric concave program for 
each X in the range of q (x). Hence, any concave fractional program considered above 
can be reduced to a parametric concave program. 

In the transformations above, variables were not changed. We will now show that 
by a suitable transformation of variables every concave fractional program reduces to a 
parameter-free concave program. For the special case of a linear fractional program 
this transformation was suggested in Charnes/Cooper [1962]. It was extended to the 
concave case in Schaible [1973, 1976a]. 

We differentiate between problems with affine and nonaffine denominators. 

Proposition 7: A concave fractional program (P) with an affine denominator can be 
reduced to the concave program 

(P'___) sup{tf(y/t): thj(y/t)<<,O ]= 1 . . . . .  m, tg(y/t)= 1, y / tEX ,  t > 0 }  (10) 

by the transformation 

1 1 
y = ~ - ~ x ,  t=~.g(x) (11) 

In the proof one shows that (11) is a one-to-one mapping of S onto the feasible 
region of (P'=), and that condition K and convexity of S imply that ( P ' )  is a concave 
program. 

In the special case of a linear fractional program (7), (P'=) becomes the linear pro- 
gram 

sup {cTy + at: Ay --bt<~ O, dTy +/3t = 1,y/> 0, t > 0} (12) 

[Charnes/Cooper, 1962]. Note that the strict inequality t 3> 0 can be replaced by t 1> 0 
if (7) has an optimal solution. 

In the case of a concave fractional program with a nonaffme denominator we relax 
the equality tg (y/t) = 1 in (10) to the inequality tg (y/t) ~< 1. Then the following is 
true: 
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Proposition 8: A concave fractional program (P) with a nonaffine denominator is 
equivalent to the concave program 

(P') sup{tf(y/t):th](y/t)<.O j = l , . . , , m ,  tg(y/t)<.l,y/tEX, t>O) (13) 

applying the transformation (11). 
In the proof it is shown that at an optimal solution of (P') the inequality tg(y/t)<<. 1 

is satisfied as an equality. 
I fg  is not affme the additional constraint tg (y/t) < 1 in (P') is nonlinear. Such a 

nonlinear constraint can be avoided if the numerator f i s  affine by applying transfor- 
mation (11) to the problem sup (--g (x)/f(x): x E S) which is equivalent to (P). 

We illustrate this by the following example. In stochastic programming the maxi- 
mum probability model [Charnes/Cooper, 1963] gives rise to the concave fractional 
program 

sup {q(x)= eTx--k "Ax<~b,x>~O . , (14) 

~/x r Vx 

where V is positive definite. 
This is equivalent to 

-- x/xT Vx 
sup eTx -- k 

:Ax<b, x>~O } 

assuming eTx -- k > 0 on the feasible region. Applying transformation (11) we then 
obtain the concave program 

sup {--~/yTVy :Ay --bt<<.O, eTy --kt = 1 ,y />0 ,  t > 0 )  

which can be reduced to the concave quadratic program 

sup ~--yTVy:Ay--bt<~O, eTy--kt= 1,y~>0, t > 0 ) .  (15) 

In concave programming the concept of duality plays a crucial role in both theory 
and applications. For nonconcave programs such as concave fractional programs stand- 
ard concave programming duality concepts are not useful since basic duality relations 
are no longer true, even in linear fractional programming [Schaible, 1976c]. Therefore, 
duality has to be defined in a new way. 

In case of a concave fractional program the equivalence to a concave program can 
be used to introduce duality. A classical dual of the equivalent concave program (P') 
((P'__) for affme g) can be used to deffme a dual of (P) in a meaningful way. We want to 
illustrate this. 

Consider the concave fractional program 

(P) sup q(X)=gt.--X':xEX, h(x)~O . (16) 
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The Lagrangean dual of the equivalent program (P') (after retransforming variables 
into x) is 

r ,'P "1 

(D) inf suPxIf(x)--v-s~h(x).v>~O~.L gt'~) J (17) 

This reduces to the classical Lagrangean dual of a concave program i fg  (x) = 1 [see 
Geoffrion, 1971 for duality in concave programming]. 

Because of the equivalence of (P) and (P') shown in Proposition 8 classical duality 
relations can be extended to the pair (P) and (D). In particular we find for the optimal 
value in (P) and (D): 

if(P) 
holds 

!~SO~ 
more details see Schaible, 1976c, 1978]. 

If all functions f, g, hi in (16) are differentiable on X and X is an open set, then 
Wolfe's dual [Mangasarian, 1969a] may be applied to (P') (or (P ' )  i fg is affine). This 
yields 

-+ inf 

-Vf (x )  + (Vh (x) )rv  + uVg (x) = 0 

(O w) - f (x) + (h (x ) )rv  + ug (x)  >i 0 (20) 

x E X ,  vERm,  v>/O,l~>~O 

(tl not signrestricted i fg is affine). 
As in the nondifferentiable case weak, strong and converse duality relations can be 
established [Schaible, 1976a, 1978]. 

In the special case of a linear fractional program (7) we obtain the following dual 
program 

/~ ~ inf 

A Tv + l~d >/ c 

-- bTv + lag >/a (21) 

v>~O, / ~ R .  

The dual of a concave quadratic fractional program with an affine denominator is a 
linear program with one additional concave quadratic constraint. Several duality theo- 
rems were derived for linear and quadratic fractional programs that extend those in 

sup (P) ~< inf (D); (18) 

is feasible, sup (P) is finite and a constraint qualification [Mangasarian, 1969a] 
then 

sup (P) = min (D). (19) 

other duality relations such as converse duality theorems can be proved [for 
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linear and quadratic programming [Schaible, 1976c, 1978]. 
Like in concave programming the dual fractional program can be used to determine 

the sensitivity of an optimal solution with regard to right-hand-side changes. Consider 
the differentiable fractional program 

max q ( X ) = g ( x  ) : x E X ,  hi(x)<<. ~ / = 1  . . . . .  m . (22) 

Let E/(b) denote the optimal value as a function ofb  = (bl . . . . .  bm) T. The bi's may 
represent capacities and ~/(b) the maximal return on investment for example. 

Now let 2 be an optimal solution of (22) for b = b ~ and g an optimal solution 
P 

of the dual (Dw). Then under mild additional assumptions 

aft (b) b=bo 1 Obj = g (Yc) v/ ] = 1 . . . . .  m, (23) 

[see Schaible, 1978]. Hence the marginal increases of ~/(b) with respect to bi are pro- 
portional to the dual variables ~/.. The value of 3~l/bbi can be calculated from (23) 
once a dual optimal solution is known. Applications of (23) have been discussed in 
Schaible [1978]. 

We mention that sensitivity analysis for the special case of linear fractional pro- 
grams has been extensively studied by Bitran/Magnanti [1976]. For further results see 
the references there. 

There have been suggested several approaches to introduce duality in linear or con- 
cave fractional programming. It can be shown that many of the resulting duals are 
classical duals of the equivalent concave program (P') or (P'=) [for details see Schaible, 
1976a, 1976c, 1978]. Very recently new concepts of duality in fractional program- 
ming have been proposed by Flachs/Pollatschek [1982], Deumlich/Elster [1980], 
Craven [1981],Mond/Weir [1981], Passy [1981] which challenge further discussions. 

5. Concave Multiratio Programs 

We now rum to the multiratio problems (4), (5) and (6). Much less is known about 
such optimization problems than in the singleratio case. Since we obtained strong re- 
suits for those fractional programs (P) which satisfy condition K it seems to be natural 
to make the same assumption in the multiratio case. In many applications of (4), (5) 
or (6) condition K is indeed satisfied by the ratios qi (x) (i = 1 . . . . .  p). 

However, so far not much is known about the properties of (4) even i fK  holds. 
Certainly the objective function in (4) is no longer quasiconcave in general, and there- 
fore nonglobal local maxima may exist [Schaible, 1977]. On the other hand, some 
helpful results could be obtained for the two-ratio problem. These properties may be 
of interest in simultaneous optimization of absolute and relative terms [Schaible, 
1982b]. 



48 S. Schaible 

Problem (5) is a much more tractable one than problem (4). Extending an earlier 
definition we call (5) a concave generalized fractional program if all ratios in (5) satisfy 
condition K. Since the minimum of semistrictly quasiconcave functions is semistrictly 
quasiconcave we have: 

Proposition 9: In a concave generalized fractional program (GP) the objective func- 
tion is semistrictly quasiconcave and hence any local maximum is a global maximum. 

We now introduce duality for concave generalized fractional programs. In the previ. 
ous section we saw that duality relations for singleratio programs can be obtained in a 
straightforward way with help of the transformation (11). Unfortunately, there has 
not been found any range or variable transformation that reduces an (arbitrary) con- 
cave generalized fractional program (GP) to a concave program. Therefore, duality can- 
not be introduced in the same simple fashion as in the singleratio case. Nevertheless, it 
is possible to obtain a dual and duality relations through convex analysis. We follow 
here the recent approach in Jagannathan/Schaible [1982]. Other approaches often lead 
to the same dual [see Crouzeix/Ferland/Schaible]. 

Consider the concave generalized fractional program 

(GP) sup { rain f / (x)  } l<i<p gi(x) :xEX,  h(x)<~O . (24) 

Without loss of generality we can assume the following signrestriction that is some- 
what stronger than in K: if at least one gi is not affme then allfi are positive on S. 
Furthermore we require that -.f/, gi and h~ are lower semicontinuous on X and X is com- 
pact. Let F = (fl . . . . .  fp)T and G = (gl . . . . .  gp)T. Now assume S :/: 0. Then using 
an alternative theorem for convex inequalities one can derive problem 

{ uTF(x)--vTh(X) :u>~O,u:/:O,v>~O} (25) (GD) inf sup 
xeX urG (x) 

which has the property that 

sup (GP) = inf (GD) (26) 

holds. Problem (GD) can be considered as a dual of (GP). 
The dual (GD) is again a generalized fractional program. It involves possibly infi- 

nitely many ratios. The objective function in (GD) is semistrictly quasiconvex, and 
hence any local minimum is a global minimum. 

In the singleratio case (p = 1) the dual (GD) reduces to (D), see (17). Hence the dif- 
ferent duality approaches in Section 4 and 5 lead to the same dual in the case p = 1. 

Now consider the linear generalized fractional program 

l <i<p d~x + ~i 

Here cT. (respectively dir.) denotes row i of a p • n matrix C (respectively D). Column ] 
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of C (respectively D, A) is denoted by c.] (respectively d. i, a.]). Let a = (~1 . . . . .  ap)T 
and ~ = (~1 . . . . .  ~p)T. Under the assumption D i> 0 and ~ > 0 the dual of (27) can be 
written as follows: 

[ r162 + bTv 
inf max #Tu 

with the convention 

p__= { + ~  i f p > 0  
0 - - =  i fp  ~<0. 

C U--( l . i l )  
max :u>~O, u4=O,v>~O 

1 <]<n dTu 
(28) 

Note that compactness of X or S is not assumed in the linear case. 
We see that the dual of a linear generalized fractional program is again a linear gen- 

eralized fractional program. It involves finitely many ratios. 
Duality relations for the pair (27), (28) are discussed in detail in Crouzeix/Ferland/ 

Schaible [1981 ]. For p = 1 the dual (28) reduces to the dual linear fractional program 
in (21). 

Recently also multiobjective fractional programs (6) have been studied [Choo; War- 
burton; Kornbluth/Steuer, 198 la; Weber; Schaible, 1983 ]. There again it is mostly as- 
sumed that all ratios qi (x) satisfy condition K with special attention given to linear 
ratios. Among others the geometric properties of the set of weakly (strongly) efficient 
solutions such as closedness and connectedness have been investigated. However more 
work is to be done in multiobjective fractional programming. This may also provide 
additional insight into the structure of problem (4) and (5). For applications of multi- 
objective fractional programming see Kornbluth/Steuer [1981 b], Schaible/lbaraki 
[1983]. 

6. Nonconcave Fractional Programs 

It is true that in many applications of single-or multiratio programming the concavi- 
ty/convexity assumption K is satisfied. However, there are other ratio programs of 
interest for which this is not so. 

In the singleratio case sometimes the quotient of two concave or two convex func- 
tions or the quotient of a convex and a concave function is to be maximized. It was 
shown in Schaible [1976d] that all three problems can be solved by maximizing a 
related quasiconvex function after possibly transforming variables. In such a problem 
an optimal solution is an extreme point of the feasible region. There is more work to 
be done on ratio problems of this type, however. 

Another type of a nonconcave fractional program arises in portfolio theory. Ohl- 
son/Ziemba [ 1976] introduce the following approximation to a numerically untracta- 
ble model: 

{ cTx :x~S }. (29) 
max q (x)  = ( x r W x )  ~ 
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Here c E R n, c > 0, W is a positive definite n X n matrix and 3' E (0, 1/2). Both c and 
W are expressed in terms of the expected returns as well as the variances and covari- 
ances. The exponent 7 is related to the risk aversion parameter of the utility function. 

Since the denominator in (29) is neither convex nor concave this model belongs to 
none of the classes of problems discussed before. The analysis in Schaible/Ziemba 
[1982] shows among others: there is a large class of variance-covariance matrices often 
met in applications for which the ratio q (x) in (29) is concave on the positive orthant 
ofR n provided 7 E [0, 70 ]; however q (x) is not even quasiconcave there if 
3' E (70, 1/2). The critical value 70 decreases when more risky data are involved or the 
number of securities is increased. The smaller 70 becomes the less likely it is for a 
given utility function that the approximating problem is a quasiconcave program [for 
additional results see Schaible/Ziemba, 1982]. 

A multiratio problem that does not satisfy condition K was recently encountered in 
Hodgson/Lowe [1982]. The authors discuss a material control problem for a ware- 
house in which the sum of set up cost, inventory carrying cost and material handling 
cost is to be minimized. In this way the optimal lot sizes and the optimal ordering of 
the various products in the warehouse are simultaneously determined. 

In the suggested iterative procedure a fractional program (4) has to be solved at 
each step. Several of the ratios qi (x) do not satisfy condition K. What is worse the 
total cost function is not even quasiconvex. However it could be shown in Schaible/ 
Lowe [1982] that by a suitable transformation of variables this problem can be re- 
duced to a (strictly) convex minimization problem. We learn from this example that a 
fractional program which does not satisfy condition K may still be tractable. 

7. Algorithms 

There have been suggested several solution procedures in fractional programming. 
Most of them solve linear or, more generally, concave fractional programs (3). Such 
methods can be classified as follows: 

I. direct solution of the quasiconcave program (P), 
II. solution of the concave program (P') or (P ' ) ,  
III. solution of the dual program (D), 
IV. solution of the parametric concave program (Px)" 

In the following we outline these methods. 

Strategy L" Direct solution of the quasiconcave program (P) 

As seen in Proposition 3 concave fractional programs have several important proper- 
ties in common with concave programs due to the generalized concavity properties of 
(P). Pseudoconcave programs can be solved by some of the standard concave program- 
ming techniques as shown in Zangwill [1969], Martos [1975] and Craven [1978]. For 
example, the method by Frank/Wolfe [1956] can be applied where at each iteration 
the objective function is linearized. In case of fractional programs either the ratio as a 
whole is linearized [Mangasarian, 1969b] or the numerator and denominator separately 
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[Meister/Oettli]. Then a sequence of linear programs or linear fractional programs is to 
be solved i fS  is a convex polyhedron. In either linearization the solutions to the sub- 
problem converge to a global maximum of (P). 

If in a concave fractional program the objective function is quasiconvex as in linear 
fractional programming (Proposition 4) and if the feasible region is a compact convex 
polyhedron then an optimal solution is attained at a vertex and a simplex-like proce- 
dure can be applied to calculate a global maximum. By it a sequence of adjacent ver- 
tices of S with increasing values o fq  (x) is determined. The method is finite under 
mild additional assumptions [for details see Martos, 1975]. 

Strategy 11: Solution of the concave program {P') or (P" ) 

Some of the concave programming algorithms are not suitable in pseudoconcave 
programming [Martos, 1975]. Concave fractional programs, however, can be reduced 
to a concave program by a transformation of variables (see Proposition 7 and 8). This 
enables us to get access to any concave programming algorithm [Avriel; Gill/Murray]. 

In case there is a special algebraic structure in the numerator and/or denominator, 
one may prefer to solve (P') ((P'__)) rather than (P). As an example, we mention the 
maximum probability model (14). We saw that it can be reduced to a concave quad- 
ratic program (15) by applying the variable transformation (I 1). In this way the frac- 
tional program can be solved by a standard quadratic programming algorithm. 

Furthermore, the transformation of a linear fractional program (7) yields a linear 
program (12). For problems (7) with a bounded feasible region ICagner/Yuan [1968] 
have shown that several other methods in linear fractional programming are algorith- 
mically equivalent to solving the linear program (12) with the simplex method, in the 
sense that they generate the same sequence of feasible solutions. Bitran [1979] has 
done a numerical comparison of some of these solution procedures on randomly gen- 
erated linear fractional programs. It seems that the algorithm by Martos [ 1964] is com- 
putationally superior to several other methods. 

We have seen in Proposition 5 a restricted class of concave fractional programs can 
be reduced to a concave program by a range transformation. In contrast to the variable 
transformation (11) such a range transformation does not change the feasible region. 
It may therefore be particularly useful in fractional programs where variables are re- 
stricted to be integers. For algorithms in integer fractional programming, see for exam- 
ple Bitran/Magnanti [ 1976 ], Granot/Granot [ 1977 ], Chandra/Chandrarnohan [ 1980] 
and Schaible [1981 ]. 

Strategy 11I: Solution of the dual program (D) 

Sometimes it may be advantageous to solve a dual program of (P') rather than (P') 
itself. For instance, for concave quadratic fractional programs with an affine denomi- 
nator, the dual (20) becomes a linear program with one additional concave quadratic 
constraint [Schaible, 1976c]. 

An additional advantage of the dual approach is that the dual optimal solution pro- 
vides insight into the sensitivity of a primal optimal solution (see (23)). 
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As in the singleratio case, the dual (DP) of a generalized fractional program (GP) 
may have computational advantages over the primal. For a linear problem (GP) the 
dual is again of this type (see (28)). In contrast to the primal, it has only normegativity 
constraints (assuming B is strictly positive). 

Strategy IV: Solution o f  the parametric concave program (Px ) 

When the parametric problem (Px) in (9) is used, the zero X of the strictly decreas- 
ing function 

F (X) = max {f(x) - Xg (x): x E S} 

has to be calculated; see Proposition 6. The disadvantage of solving a parametric prob- 
lem rather than the parameter-free program (P') may be outweighted by other bene- 
fits. For instance, for a quadratic fractional program, the structure of the model is not 
well exploited when (P') is used whereas (Px) is a concave quadratic program for each 
X. This can be treated by standard techniques. 

The zero of F may be calculated by parametric programming techniques or by 
methods that solve (Px) for discrete values 3, = Xi converging to ~. Such an iterative 
procedure was suggested by Dinkelbach [1967]. For details on convergence properties 
and modifications of Dinkelbach's algorithm, see Ibaraki et al. [1976], Schaible 
[1976b, 1978], Ibaraki [1981] and Schaible/Ibaraki [1983]. lbaraki [19.82] compared 
numerically several iterative procedures that fred ~. 

An extension of Dinkelbach's algorithm to linear generalized fractional programs 
(5) was suggested by Charnes/Cooper [1977] [for an additional analysis see Crouzeix/ 
Ferland/Schaib le ]. 

A more detailed presentation of different parametric procedures using (Px) is given 
in Schaible/lbaraki [1983]. There also the relative efficiency of these methods is dis- 
cussed. 

In spite of all efforts in fractional programming it is probably fair to say that the 
structural properties of fractional programs have not yet been well enough exploited 
in algorithms. Furthermore, more computational comparisons of the various solution 
methods have to be performed in order to determine which technique is most efficient 
for a particular type of fractional program. 
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