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Upper Bound of the Speed of Convergence of Moment Density 
Estimators for Stationary Point Processes 

By E. Jol ive t ,  Jouy en Josas 1 ) 

Summary: The speed of convergence of moment density estimators for stationary point processes 
is studied. Under relevant assumptions the order of magnitude for its upper bound is the same as in 
the i.i.d, case, when the process is Brillinger-mixing. The case of convariance density estimators is 
also considered. 

1. Introduction 

Let P be some stationary point process on the space R d. In accordance with 
Kr ickeberg  [1982] the following notations are used for the various considered measures. 

v (k) is the moment measure of order k, 

b(k) is the factorial moment measure of order k, 

~/(k) is the cumulant measure of order k, 

~t (k) is the factorial cumulant measure of order k. 

As P is stationary, all these measures, when they exist, can be desintegrated in the 
sense that, for v (k)  for instance, there exists v ' (k)  such that formally 

v (k)  (dx~ . . . . .  d X k )  = v ' (k)  (du~ . . . . .  d U k . 1 ) d x  k (1.1) 

whereu i = x i - x  k ,  i = l ,  . . . , k - 1 .  

v ' (k)  is the reduced moment measure of order k. In the sequel, a "prime" denotes a 
reduced measure. Expression (1.1) shows that, for the knowledge of the process, it is 
equivalent to estimate v (k) or v ' (k) .  

The processes considered in that paper are mixing in the sense of Brillinger that is, 
for each k = 2, 3 . . . . .  the reduced factorial cumulant exists and is a o-finite measure 

on R d (k l ) .  

1 ) E. Jolivet, I.N.R.A. - Laboratoire de Biom~trie du C.N.R.Z., 78350 Jouy en Josas, France. 
0026-1335/84/060349-36052.50 �9 1984 Physica-Verlag, Vienna. 
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In order to obtain asymptotical results, the domain of  observation is choosen as 
member of  a regular family {Gr)rER+ growing to R d where r tends to infinity. 

In this paper, an upper bound for the local estimation speed of density estimators 
for reduced moments of  any order is computed. Then, the global estimation speed of 
a covariance density estimator is evaluated. 

2. Density Estimation 

Assume that the reduced factorial moment measure exists and admits a density 

p(k) with respects to ~| Lebesgue measure on R d(k ' l ) .  Le tg  be a bounded 

continuous function on R d(k ' l ) ,  with integral 1. The family of  functions 
{gr}rER+ is defmed by 

gr (v) =/~/r (k ' l )  g (fir 1 v). (1.2) 

where r ~/3 r is a nonnegative application on R+,/3 r decreasing to 0 as r tends to in- 

finity. Clearly, ~| (gr) = 1, and when r tends to infinity,g r (v) tends to the 

Dirac measure at point v in the sense of  distributions. 

2.1 Recalls on Existing Estimators 

Brillinger [1975], and then Krickeberg [1982] proposed estimators o f p  (k) (u), 

when u is a point of  continuity for p(k). 

Brillinger estimator 

k 
iO (k) (U, /d) = ~ (Gr)-I  fRdk\A k iN=l lGr (Xi)g r (Xl --X k --Ul . . . . .  Xk. 1 --X k - -  

- -  U k _ l )  ~ (dJr �9 �9 �9 , / / (dx  k) 

(2.1) 

where A k = (x E Rdk ; 3 i and/" such that x i = xi} 

Krickeberg estimator 

~(k) (u, bt) = k (Gr)-1 fRdk \A  k 1Gr (Xk) g r (Xl --X k - -Ul ,  . . . ,Xk_ 1 --X k --Uk.1) 

# ( d x l ) . . . / a  (dxk). (2.2) 
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Both of them are biased estimators o f p  (k) (u): 

E ~ r  (k) (u, ~)) = f g (v l  . . . . .  Vk.1)p (k) (Ul - l - ~ r V l  . . . .  ,Uk. 1 + 
k-1 

G r 
+ ~r Vk-1) dvl " " " dVk-l" 

E (~k) (u, ~)) = f 
Rd(k-1) 

g (Vl . . . .  , Vk.1 )p(k) (ul + ~r vl . . . . .  Uk. 1 -4- 

-4-/3 r Vk.1) dv I . . . dVk. 1 . 

Brillinger [1975] states a theorem of convergence in law for i ~(k) (u, t2) on R. That 

theorem can be extended to R d for both estimators. To prove it, it is necessary to 
study the behaviour of  the so defined estimator cumulants. In the sequel, only the 

case ofib~ k) is considered, that of  P~rk) being very similar. 

2.2 Cumulants of /~k)  

Assuming the existence o f  the moments of  the process up to the order hk, it is possible 

to write the cumulant o f  order of  ft. (k) (u) [Jolivet]. 
The moment of  order h is written as 

f 

kh 1 l h 
X(Gr)h . 22 Z ~, f rl Yl 6 

l=1 ~/ S=I Qs R dl m=l]EPrn (Xm--Z])'i--l]l 1Gr(Zik)" 
(2.3) 

�9 1 c ( z )  �9 gr (z(i-1)k+l --Zik --Ul . . . . .  gik-1 --Zik --Uk-1) " 
A k 

s ~(#qr) (dx~l , �9 rI . . . .  d x a  ) 
r=l #qr 

22 is the sum on all the partitions o f  {I . . . . .  kh)  in l subsets p l ,  p2 . . . . .  /~ where PI 

and ~ is the sum on all the partitions of  (1 ,2  . . . . .  l) in s subsets ql ,  q2 . . . . .  qs" 

The cumulant of order h is the sum of indecomposable integrals - that is: they 
can not be written as a product of  integrals on natural decompositions of  (Rd) / - 
included in the expression of  the moments. Among these terms, only those with 
argument o f  any function gr formed by k different points of  R d are nonnul. On the 
other hand, as gr tends to the Dirac measure, gr (u) gr (v) tends to a nonnul distribu- 
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rion only when u = v. The only terms to take into account in the asymptotic estimate 
of  the cumulant are then of  the type: 

(Gr)-h f ~ i ni (X[ i xi  __ i 1Gr(Xk)gr --Xk--Ul . . . . .  k-1 Xk--Uk-1)" Rdnk i= l 

~(#ql) (dy~ d ' ) ~ (#qs) s �9 '" " ' '  Y#ql "'" (dyS . . . . .  dy#qs)" 

The various assumptions: 

g bounded, continuous, integrable 

P mixing in the sense of  Brillinger 

integral on R dnk indecomposable 

enable the proof that such a term is asymptotically a 0 [~ (Gr)l'h flr(k-1)(I"h)]. 
Accordingly, the leading terms of  the sum construing the cumulant are those 
with I = 1 and then their sum is 

[~(Gr)~r(k'l)] l'h f gh(va  . . . . .  Vk.1)p(k)(ul +~rVl  . . . . .  Uk. 1 + 
Rd(k-1) 

+/3 r Vk. 1) dvl . . .  dVk. 1 �9 

Then, asymptotically, the cumulant of  order h of/3~ k) (u) behaves as 

[X(Gr)~r(k-1)]l-hp(k)(u) f gh (v, . . . . .  Vk.1)dv I . . .dVk.  1 
Rd(k-1 ) 

i fp  (k) is continuous in u. 

3. Overestimation of  the Convergence Speed 

3.1 Criterion Selection 

As commonly used in density estimation works, the selected criterion o f  the 
quality of  the estimator is the expectation o f  the absolute difference between p(k) 
and its estimator, to the power h, for some h greater than 1, that is 

E [I b~ k) ( u l , . . . ,  Uk. 1 ) __p(k) (Ul . . . . .  Uk. 1) Ihl �9 

That quantity is overestimated by the sum of  two terms, one for the bias and the 
other for the random variations. 

Rh (~(k ) (u),p(k ) (u)) =E [I b~ k) (u) _p(k)  (u) t h ] 

~< 2 h ' l  [E Ib~ k) ( u ) _ ~ k )  (u) I h -4-t~ k) (u)_p(k)  (u) I hI 
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where 
p k) = Ep k) (.)). 
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3.2 Overestimation of the Bias 

The bias overestimation no introduces any new problem with respect to point 
processes. The framework adopted will be reasonable for applications, that is without 
too many restrictive assumptions, as in the following lemma [Doukhan/Ghindes]. 

Let D f b e  the differential o f f  and II Df (x )  II the norm of  the linear application 
y ~ (y, Df (x)), that is: 

II Df (x )  ll = sup I (y ,  Df (x) )  I. 
Ilyll<l 

Let g~ be the application x ~ ~--~g . 

Lemma 3.1: Let g be a measurable function of  R d into R, non negative and with sum 
1 ; let ~ be a positive real number and f a measurable function of  R d into R m with one 
of the following properties: 

(i) f i s  differentiable in the distribution sense 
(ii) f i s  differentiable almost everywhere with locally bounded directional 

derivatives 
(iii) f i s  locally lipschitz. 

It is assumed, in addition, that the differential application Df defined almost every- 
where under these assumptions is such that: 

II Dfll q = f  II Df(x) I I  q dx <oo 

and 

IlDfll** = sup ( l l D f ( x ) [ I ) <  ~o i f q = +  oo. 
xER d 

Then: 

f l f ( x ) - - f * g #  (x) I q dx <<. (3 q �9 f III x II q g (x) I dx �9 II Df II q (3.1) 
R d R d 

sup I f ( x ) - f * g a ( x ) l < ~  �9 f I l l x l l g ( x )  l d x ' l l D f l l ~  i f q = +  ~176 (3.2) 
xER d R d 

With more assumptions on the function f and on the kernel g, the preceding lemma 
can be extended to functions with derivations up to the order s, generalizing results 
obtained on R [Bretagnolle/Huber]. 
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Let DSf(u) be the differential of  order s at point u and II DSf(u) [I its norm as 
s-linear form on R d �9 g, function on R d, is said strong symmetric if 
g (xl . . . . .  x d) = g (~1xl . . . . .  a d Xd) for every set (al . . . . .  ad) of  {-- 1, 1 )d. 

Lemma 3.2: Let g be a continuous bounded strong symmetric kernel such that 

f g ( x ) d x  = 1 
R d 

rl r d 
f x l  �9 �9 x d g (x) dx = 0 for each set o f d  positive integers rl . . . . .  r d, 
Rd d 
O ~  ~, r i d s  

i=1 

f IIx II s I g ( x ) I d x < ~ .  
R d 

Let f be an s times differentiable function such that 

Then 

with 

and 

II DSfl[ q = f II DSf(u)  II q du < o o  

R d 

IIDSfll** = sup IIDS f ( u )  l l < ~ .  
u~R d 

() 1 II~[I s U d~'. 
Sg(u)=fo0 f ( s ~ - ~ ,  g 

is g (u) I du] q (3.3) 

[ I f - - f * g ~  If, <[Js ~ iiDSfll,~ f [Sg(u)[du .  (3.4) 
R d 

As on R, the proof of  that lemma rests on the overestimation of  the Lq-norm of the 
convolution product of  the rest of  order s of  the Taylor expansion of  f by the kernel 
Sg 

Kernels satisfying the above assumptions exist: one can choose products of  Parzen 
s-kernel on R. 

3.3 Asymptotic Overestimation of  the Random Part and Optimal choice o f  [Jr 

As mentioned earlier, the cumulant of  order h ofp~ k) (u) have the same behaviour 
as 

[~ d(k-1) 1-h p(k) gh 
(Gr) [Jr ] (u) f (vl . . . . .  Vk. 1) dr1 . .  �9 dVk. 1. 

Rd(k-1 ) 
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If C1, C2 . . . . .  C k are the cumulants up to the order h ofiv~ k) (u), the moment of  

order h,/1~ h , oft3~ k) (u) can be written as 

h 
Z ~ N~, (nl . . . . .  hi) Cnl . . .Cnt .  i=1 n 1 . . . . .  ni~(2 . . . . .  h) "" 

nl + . . .+ni=h 

where N h (nl . . . . .  ni) is the number of  partitions of {1,2 . . . .  , h ) in i subsets with 
respective cardinal numbers nl , �9 �9 �9 n r 

Taking into account the results of  2.2, i f h  is even, ,~r h is equivalent to 

N h (2 . . . . .  2) C h/2 

that is to say 

d(k-1) -hi2 h! [p(k) (u) f g2 (v)dr]  h/2 CA (Gr) O r ) . 
2 h/2 (h/2)! Rd(k-l) 

If h is odd, 

E [I b~ k) (u) _ ~ k )  (u) I h ] ~< [E (/~k) (u) _p~k)  (u))h+l ]h/(h+l). 

The right-hand side of  the inequality is equivalent to 

(h + 1)! 
2 (h+l)/2 ((h + 1)/2)! 

h/(h+l) 
[p(k) (u) f g2 (v)dv]h/2 (k(Gr)[3dr(k-1)).h/2. 

Rd(k-1) 

Putting together this result and that of  lemma 3.2, choosing k (Gr) and/3 r bound by 
the relation 

(~ (Gr)-rt3d(k'l)~h/2-- -r t~sh = Q 

with Q some fixed real number, we have the 

Theorem 3.3: If the point process P on R d is Brillinger-mixing and if the density 

p(k) of  the reduced factorial moment of order k exists and is continuous in u; if 
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p(k) is s time differentiable and if the norm II DSp (k) (v) [I is bounded;if, an the other 
hand, the kernel g verifies the hypothesis of lemma 3.2 then 

li--m X (Gr)S h/(2s+d(k-1)) g I t3~ k) (u) _p(k) (u) I h (3.5) 
rt,,* 

<~ C [(p(k)(u))h/2 Q-(d(k-1)/(2s+d(k-1)) + liD s p(k) ilh a(2s/(2s+d(k-1))] 

where C depends only on s, h and on the kernel g. 

Remarks: 

(1] Under the assumptions of  the lemma 3.1, a similar result is obtained with 
s = l .  

(2) because the reduced moment measures are not o-finite in the classical examples, 
it will not be natural to introduce such an assumption in view to obtain a global 
overestimation. A global overestimation result will be proved later for the co- 
variance measure which is, by hypothesis, o-finite. 

4. Case of the Covariance Measure 

The cumulant of order 2, the covariance, being of a great interest in the applications 
and also being rather simple to manage, we shall consider the problem of the estimation 
of its density. 

4.1 Estimation of the Density 

It is assumed that the cumulants of the process admit a density up to the order 4. 
z being the density of the itensity of the process, the density q(2) of the covariance 

measure is estimated by 

~ 2 )  (U) = X (Gr)-l fR 2d\ A21Gr (x2 ) g r (Xl -- x2 --u) (I,l (dxl ) - -  

- z X  (~1)) (u (dx2) - z X  (dx~)). (4.1) 

The variance o f ~  2) (u) is given by 

x (ar)  ~ vat ( ,~2 )  (u) )  = 
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The same type of considerations as developed in 2.2 enables the demonstration of  the 
fact that, if the point process is Brillinger-mixing, and if q(2) is continuous in u, then 

var (t)~ 2) (u)) = [X (Gr)/3rd]-I q(2) (u)II g II 22 + o IX (Gr)/3d)-~ ]. (4.3) 

4.2 Overestimation of the Risk 

Let us now consider the evaluation of the global risk for u in a compact K of R d. 

RK (@2), ~(2)) = Ep f(r (u) - q(2) (u))2 au 

= f var (~2)  (u)) du + f ((/~2) (u) - q(2) (u))2 du 
K K 

where 0~ 2) is the expectation of ~ 2 ) .  

Then, it can be proved without any other assumption than that of  Britlinger mixing 
that 

f var (~2)  (u)) au <~ 
K 

1 [llg.gll| lll +411q(3)  l l l + l l q ( 2 ) l h ) + H g l l ~ l l q ( 2 ) l l ~  

" 9  
+ IIg 1[~ IIg II1 [I q(2) I[~ X (K)] + ~ IIg *g II1 q(2) 1112 

If it is also assumed that 

]l f q(4)(',x,y)dxdy[[~+llf q(3)(.,x)dxllo.+llq(2)ll~.<oo 
R 2d R d 

(4.4) 

then, the following relation is true 

f var (q(r 2) (U)) du 
K 

1 
�9 [I g II~ �9 II q ( 2 )  Ill + 

<" X (Gr) [3dr 

+ 1 X  (Gr) [ [1 g *g Ih �9 (q(4) ( '+x+y,x ,y )dxdy l l .+2l lq(2)[ l~+l l  Rfd 

+ Ilq (2) I[~ �9 Ilq (2) Ill �9 [Ig I[~ x<g)/. 
/ 

(4.5) 
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Asymptotically, the right hand sides of formula (4.4) and (4.5) are of  the same order, 
and the choice of/~ r will be equivalent to get the optimal speed. That choice is preci- 
sed in an assumption framework leading to the second overestimation. We restrict 
ourself to the case, generally sufficient for the applications, where q(2), q(3), q(4) are 
respectively bound continuous on R d, R 2d , R 3d , which ensure that the L** norms in 
formula (4.5) are finite. 

Theorem 4.1: 

If the point process P on R d is Brillinger mixing 

if the densities q(2), q(3), q(4) are bounded continuous 

i fq  (2) is s times differentiable and if II O s q(2) 1122 exists 

if, on the other hand, the kernel g verifies the hypothesis of lemma 3.2. 

Then 

lim X (Gr)2S/(2s+d)gp fK (~2)(u)- q(2)(u))2 du 

C [11 q(2) [11 Q-d/(2s+d) + II D s q(2) ii 2 Q2S/(2s+d)] 

where C depends only on g and s. 

The overestimation is optimal for 

Q = II g 1122 It Sg 11~2 II q(2) II1 IID s q(2) IlK2 . 

Then 

(4.6) 

rt**lim )t (G)2S/(2s+d)Ep f ( ~ 2 )  (u) _q (2 )  (u))2 du 

(4.7) 

~< 2 II g II 4sl(2s+a) II Sg 112al(2s+a) II q(2) ii~sl(Zs+a) IID s q(2) 112al(2s+a). 

Remarks 

(i) Under the same assumptions on the q(i) and g, the same overestimation o f  the 
global risk is obtained on a family K r o f  compact subsets o f  R d such that 
X (KrJ = O (~rd ). 

(ii) Under the same assumptions, an asymptotic speed of  same order is obtained 
taking ~ (Kr) = 0 ((Jr d) but with a larger constant. 

(iii) I f  the assumptions for g are preserved, but i f  q (2), q(3) and q(4) are only assumed 
integrable, a speed o f  the same order is obtained, with a different constant, K 
being ptx ed. 
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