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Based on previously reported approximations of the temperature integral, a new 
approximation 

Sexp(-E/RT)dT = RTZ~ !52(RT/EI 1 
E L1-5 (nT /e )  2 exp(-E/RT) 

has been proposed for modeling nonisothermal reactions. It has been found that the equation of 
Coats and Redfern deviates by less than 1% from the exact solution for E/RTratio greater than 
23 and by less than 10% for E/RT ratio greater than 6. The exact solution was obtained 
independently by solving the exponential temperature integral numerically by the Simpson's rule 
and the Trapezoidal rule. The Gorbaehev equation deviates by less than 0.1% for E/RT ratio 
greater than 41 and by less than 1% for E/RTratio greater than 11. The Li equation deviates by 
less than 0. 1% for E/RTratio greater than 21 and by less than 1% for E/RTratio greater than 9. 
The proposed equation deviates by less than 0.1% for E/RT greater than 7. 

Nonisothermal techniques are being extensively used in studying various 
reactions (example: chemical reactions, surface reactions, diffusion controlled 
reactions, and other physical decompositions reactions such as phase trans- 
formation and nucleation) [1-6]. Nonisothermal methods of analyzing reactions 
usually involve heating the reactants at a constant rate from ambient temperature 
to a temperature sufficiently high that the reactant undergoes a transformation. To 
study the mechanism and kinetics of the reactions, changes in parameters such as 
weight loss, or concentration, or enthalpy changes are continuously recorded as a 
function of time or temperature. The physical changes in weight can be recorded by 
either thermogravimetry (TG) or thermal volatilization techniques. The enthalpy 
changes are usually recorded by differential thermal analysis (DTA) or differential 
scanning calorimetry (DSC) devices. These instruments are highly automated, 
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simple to operate and yield rapid results. These factors have greatly contributed to 
the acceptance and thus popularity of the non-isothermal techniques. 

The importance of the nonisothermal methods are also due to the fact that a large 
amount of information can be obtained from a single measurement. However, these 
devices have certain limitations. The first group of limitations may be classified as 
instrumental limitation which include: inability to provide an accurate measure of 
the sample temperature, inability to minimize temperature gradients across the 
sample and other factors include bouyancy and aerodynamic effects which 
contribute to the drift in the baseline. The second complication is in the 
mathematical analysis of the data since there is no closed form solution of the 
temperature integral. 

The purpose of this communication is to report on a new approximate solution of 
the temperature integral which is more accurate than previously known 
approximations. A comparison of the proposed approximation is also made with 
the popular approximations available in the literature. It has been shown that the 
proposed approximation is accurate to within 0.2% of the exact solution for an 
E/RT ratio as low as 6. 

Nonisothermal kinetics 

The rate of reaction of a substrate is generally expressed by the relation: 

d~t 
dt  = k f(~) (1) 

where ~ represents the fraction of the reactant at time t,f(~) is the conversion factor 
of ~ and k is the rate constant. In chemical reaction studies the temperature 
dependence of the rate constant is given by the Arrhenius equation: 

k = A exp ( -  E/RT) (2) 

where A is the frequency factor and E the activation energy. The tremendous 
success of the Arrhenius equation in explaining the temperature dependence of the 
rate constant in most chemical reactions has resulted in a similar definition of k in 
physical decomposition theories. For a nonisothermai system where the temper- 
ature is linearly increased at a heating rate of/~, (d T/dt), Eq. (1) combined with Eq. 
(2) can be written as 

d~ A 
- ~exp ( -  E/RT) dT (3) 

f(~) P 
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Integrating Eq. (3) between the initial temperature T o, and any final temperature 
T, and the reactant fraction between 1 and a, we have 

dot _ A 
f(~t) fl exp ( -  E/RT) dT (4) 

1 To 

If the initial temperature To is low enough such that no reaction occurs, then the 
lower limit may be neglected. The left hand side of Eq. (3) can be analytically 
integrated provided a mathematical definition of f(ot) is available. Table 1 
summarizes some well known integrated expressions for both chemical and 
physical decomposition models. The category of grouping various equations are 
similar to that used by Brown et al. [1]. Ifa chosen equation fits the data, then it does 
not necessarily imply that the mechanism described by the equation iscorreet. This 
is because some equations in Table 1 contain enough parameters and logarithmic 
terms, that the equation becomes insensitive. Therefore, the equation can fit the 

Table I Various integrated express ions  of S da/f( , ' )  popular in decomposition studies  

1 Chemical decomposition process  

n th order chemical reaction 

First order chemical reaction 

2 Aeceleratory rate equat ions  

Power law 

Exponential law 

3 Sigmoid rate equation 
Avrami-Erofe'ev Nuclei growth  

Prout-Tompkins Branching nucleation 

4 Deceleratory rate equat ions  

4.1 Based on diffusion mechanisms 
One dimensional diffusion 
(Parabolic law) 
T w o  dimensional diffusion 
(Valensi equation) 
Three  dimensional diffusion 
(Cylindrical geometry ot Ginstling-Brounshtein equation) 
Three dimensional diffusion 
(Spherical geometry or Jander equation) 

4.2 Based on geomelric symmetry 
Contracting area (or cylindrical symmetry) 
('onlnlcling volume (or spherical symmetry) 

, ' 1 - n  l 
(n~ 1) 

l - n  
In,, (n= l )  

, ' l /n  

In a 

[ - l n  (! _a)]l/. (n=2, 3 and 4) 
In [a/(l - ~t)] 

~2 

~ + ( 1 - , ' )  In ( I - , ' )  

[I - (2~/3)]  - (1 - ~)2/3 

[1 - - ( I  -- ~t)l/3] 2 

I-( I-:~)1 2 

I - ( I  _ ~ ) l  3 

J. 77wrma/ Anal. 32, 1987 



152 A G R A W A L :  N E W  E Q U A T I O N  F O R  M O D E L I N G  N O N I S O T H E R M A L  R E A C T I O N S  

data to within the experimental error even though the reaction mechanism does not 
obey the equation. In such a case care must be taken to insure the uniqueness of the 
results. In case of reactions with enthalpy changes, the results may be extended to 
DTA and DSC through the assumption that the rate is proportional to d T/A, or 
dH/dT. Where d T is the observed temperature difference between the sample and 
reference substance temperature, A, is the area under the thermal trace and H is the 
enthalpy of the reaction. 

Accuracy of the integral approximations 

The right-hand side of Eq. (4) is known as the temperature integral or the 
exponential integral and is not analytically integrable. For large values of E/RT, 
Coats and Redfern [7] approximated the integral by the relation 

Iexp(-E/RT)dr= 1- --E---jexp(-E/Rr) (5) 

Coats and Redfern [7] obtained this solution for the ternperatu/e integral by ap- 
proximating the sum of the first three terms of asymptotic series. Figure 1 corn- 
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Fig. I Logarithm of % deviation of various temperature integral approximations versus logarithm of 
the E/Rt ratio. Symbols: 1 - Coats and Redfern (Eq. (5)), II  - preliminary approximation (Eq. 

(7)), 111 - Gorbachev or first approximation (Eq. (8)), IV - Li or second approximation (Eq. 

(9)), and V - this work (Eq. (I I))  
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pares the deviations of the Coats and Redfem approximation [7] from the exact solu- 
tion for various values of E/RT. Figure 1 compares the logarithm of % deviation 
from the exact solution versus logarithm of the E/RT ratio because it is more 
sensitive and brings out more details than a plot of % deviation versus the E/RT 
ratio. The exact value of the temperature integral was independently obtained by 
numerically integrating the integral using the 1/3 ra Simpsons rule and the 1/4 th 

Trapezoidal rule. Agreement between the Simpson, Trapezoidal and the mathemat- 
ical tables of Abramowitz and Stegun [8] proved the preciseness of the reference 
values. The results summarized in Fig. 1 indicates that the Coats and Redfern 
approximation underpredicts the value of the temperature integral for all values of 
E/RT. For E/RT ratio of over 80, Coats and Redfern equation deviates from the 
exact solution by less than 0.1%. However, the deviation is greater than 1% for 
E/RT ratio less than 23 and greater than 10% for E/RT ratio less than 6. 

Alternatively, the temperature integral can be expanded and integrated by parts 
to yield the following equation 

f ( 2 R T \  TRT2 1 + --E--) exp ( - E/RT) = exp ( -  E/RT) (6) 

If as a preliminary approximation, it is assumed that 2R T/Eis much less than unity 
and hence neglected, than Eq. (6) can be written as: 

RT 2 
S exp ( - E/RT) = --E-- exp ( -  E/RT) (7) 

A comparison of deviations of the preliminary approximation from the exact 
solution indicates that Eq. (7) overestimates the value of the temperature integral 
and is a very poor approximation with a deviation of over 2% for an E/RTratio of 
80. At lower values of the E/RT ratio the deviations are significantly higher. Hence, 
this equation is not  suited for modeling nonisothermal reactions. In order to 
improve the approximation, if it is assumed that the ratio 2RT/E is very much less 
than unity and, that the value of (1 + 2RT/E) to be in the neighbourhood of unity 
such that it can be assumed to be constant. With these assumptions the term (1 + 
2RT/E) can be taken out of the integral and Eq. (6) may be approximated as 

Iexp(-E/RT)dT= i-+f-RT[-E exp(-E/RT) (8) 

This equation was suggested by Gorbachev [9] to be more accurate than the 
equati6n of Coats and Redfern [7]. Figure 1 summarizes the deviations of 
the Gorbachev approximation from the exact solution and reaffirms the findigs 
of Gorbaehev [9]. The Gorbachev eqaation underestimates the value of the 
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temperature integral for all values of the E/RT ratio. The deviation is less than 0.1% 
for E/RT ratio greater than 41 and less than 1% for E/RT ratio greater than 11. 

Li [10], in order to improve the approximation integrated the temperature 
integral twice to arrive at the equation" 

--E-RT2 [ 1-2(RT/E) 1 Sexp(-E/RT)dT= [ ~ j e x p ( - E / R T )  (9) 

Figure 1 indicates that this second approximation of Li overestimates the values 
of the temperature integral. For this equation the deviation is less than 0.1% for 
E/RT ratio greater than 21 and less than 1% for E/RT ratio greater than 9. 

Multiplying the numerator and denominator of Eq. (8) by (1 -2RT/E)  we 
obtain 

RT2[ 1-2(RT/E) ] , 
Sexp(-E/RT)dT= ---E-- ~ f _ ~ ~ j e x p ~ - E / R T )  (10) 

A comparison of Eqs (9) and (10) indicates a striking resemblence. The only 
difference being the integers of the term (RT/E) 2 in the denominator. The integer 4 
in the denominator of Eq. (10) results in an under prediction of the temperature 
integral, whereas the integer 6 results in an over prediction of the temperature 
integral. Hence, to minimize these ddviations we replaced the integer by 5. The 
temperature integral can now be approximated as 

~exp(_E/RT)dT=RT2[ 1-2(RT/E) ] - - ' , i - ~  exp(-E/RT) (11) 

From Fig. 1 it can be seen that the proposed approximation yields a deviation of 
less than 0.1% for E/RT ratio greater than 7. For E/RT ratio less greater than 
5. For E/RTratio less than 5, the best value of the number multiplying the term, 
(RT/E) 2 in the denominator of equation (11) is between 4 andS.For highva_lues of 
E/RT, the approximations of Coats and Redfern, Gorbachev, Li and this work 
yield comparable results. 

Table 2 Percent absolute deviations of various approximations 

Equation 
Value of E/RT ratio 

5 I 0 25 50 

Preliminary approximation (Eq. (7)) 34.8 18.0 7.6 3.9 
Coats and Redfern (Eq. (5)) 18.5 5.0 0.9 0.23 
Gorbachef (Eq. (8)) 3.4 1.2 0.25 0.07 
Li (E~I (9)) 6.5 0.8 0.06 0.007 
This work (Eq. (11)) 1.3 0.18 0.09 0.03 
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Table 2 summarizes the results of various proposed approximations of the 
temperature integral. Our studies indicate that the proposed equation is more 
accurate than the previously proposed equations. Since the proposed approxi- 
mation is accurate to within 0.2% for E/RTratio greater than 6, it may be used in 
combination with various equations summarized in Table 1 for modeling 
nonisothermal reactions. 
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Zusammenfassung- Basierend auf friiher mitgeteilten N/iherungsl6sungen fiir das Temperaturintegral 

wird eine neue Nfiherung 

Sexp(-E/RT)dT= RT2[ 
E L 1 - 5 ( m m l m ~  j 

zur Modellierung nicht-isothermer Reaktionen vorgeschlagen. Es wurde festgestellt, dab die Gleichung 
von Coats und Redfern ffir E/RT-Verh:,iltnisse gr6Ber als 23 um weniger als 1%, fiir E/RT-Verh:~ltnisse 
gr6Ber als 6 dagegen um weniger als 10% vonder exakten L6sung abweicht. Die exakte L6sung wurde 
unabh~ingig dutch L6sung des exponentiellen Temperaturintegrals auf numerischem Wege nach der 
Simpson-Regel und der Trapezoid-Regel erhalten. Die Gorbachev-Gleichung weicht bei E/RT- 
Vcrhfiltnissen gr613er als 41 um weniger als 0.1%, bei E/RT-Verh:,iltnissen gr613er als 11 um weniger als 
1% ab. Die Li-Gleichung weight bei E/RT-Verhfiltnissen gr613er als 21 um weniger als 0.1%, bei E/RT- 
Verhfiltnissen gr613er als 9 um weniger als 1% ab. Die vorgeschlagene Gleichung weicht bei E/RT- 
Verhfiltn~sen gr613er als 7 um weniger als 0.1%. 
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Pe:.oMe - -  Ha  ocnoae  p a , e e  coo6tt tc.nblX npn6J1HxeHrlfi ,Ran rlHTerpa..aa TeMnepaTypbl, /l.Jl~i 

Mo~e.abnblX HeH3OTepM,qecKHx peat t tnf i  rIpe~,aOXCHO'HOaOe ypasnenHe:  

~ e x p ( -  E /RT)dT  = RT--~z[ I - 2(RT/E) ] exp - 5(RT/E) 2 

Hafiaeno,  qTo ypaaHeHHe KoyTca-P:~adpepaa OTr.no,aeTca raeaee, qeM Ha 1% OT TO~noro p e m e u a a  

.mc.aoaoro OTHome.aa E/RT 6oaee  23 H raeaee 10% npn quc.aenuoM OT,OmeUMH E/RT 6oaee  6. 

T o q a o e  petuemae TeMnepaTypnoro rinTerpa,aa 6bLaO no~y~eno ,aayM~ He3aBliCitMbiMil qHc.noabiMn 

Mero,aaMu: no upaaa.ay C n M n c o , a  rt . p a a a a y  Tpane3oHgbL Y p a s n e n n e  F o p 6 a q e a a  o'rtcaouaeTca 

raenee 0, I %  , p n  E/RT6om, tue 41 n Me.ee 1% - -  npn  E/RT6o:Ibme I I. YpaaueHxe  ./In OTr.aouaeTca 

Menee 0 ,1% r ip ,  E/RT 6o.abme 21 a Meane I %  - -  ~ a a  E/RT 6o.J1bme 9. Hpe,aaoa~eHnoe . o n o e  

ypaanenne  OTr.aottaeTca Me,ee 0 ,1% n p a  E/RT paanbIM 7. 
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