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Based on previously reported approximations of the temperature integral, a new
approximation

fexp(—E/RT)dT = RTZ[ 1 - 2RTE)

E T:‘sﬁem]“"(‘””’

has been proposed for modeling nonisothermal reactions. It has been found that the equation of
Coats and Redfern deviates by less than 1% from the exact solution for £/RT ratio greater than
23 and by less than 10% for E/RT ratio greater than 6. The exact solution was obtained
independently by solving the exponential temperature integral numerically by the Simpson’s rule
and the Trapezoidal rule. The Gorbachev equation deviates by less than 0.1% for E/RT ratio
greater than 41 and by less than 1% for £/RT ratio greater than 11. The Li equation deviates by
less than 0.1% for E/RT ratio greater than 21 and by less than 1% for E/RT ratio greater than 9.
The proposed equation‘ deviates by less than 0.1% for E/RT greater than 7,

Nonisothermal techniques are being extensively used in studying various
reactions (example: chemical reactions, surface reactions, diffusion controlled
reactions, and other physical decompositions reactions such as phase trans-
formation and nucleation) [1-6]. Nonisothermal methods of analyzing reactions
usually involve heating the reactants at a constant rate from ambient temperature
to a temperature sufficiently high that the reactant undergoes a transformation. To
study the mechanism and kinetics of the reactions, changes in parameters such as
weight loss, or concentration, or enthalpy changes are continuously recorded as a
function of time or temperature. The physical changes in weight can be recorded by
either thermogravimetry (TG) or thermal volatilization techniques. The enthalpy
changes are usually recorded by differential thermal analysis (DTA) or differential
scanning calorimetry (DSC) devices. These instruments are highly automated,
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simple to operate and yield rapid results. These factors have greatly contributed to
the acceptance and thus popularity of the non-isothermal techniques.

The importance of the nonisothermal methods are also due to the fact that a large
amount of information can be obtained from a single measurement. However, these
devices have certain limitations. The first group of limitations may be classified as
instrumental limitation which include: inability to provide an accurate measure of
the sample temperature, inability to minimize temperature gradients across the
sample and other factors include bouyancy and aerodynamic effects which
contribute to the drift in the baseline. The second complication is in the
mathematical analysis of the data since there is no closed form solution of the
temperature integral. ‘

The purpose of this communication is to report on a new approximate solution of
the temperature integral which is more accurate than previously known
approximations. A comparison of the proposed approximation is also made with
the popular approximations available in the literature. It has been shown that the
proposed approximation is accurate to within 0.2% of the exact solution for an
E/RT ratio as low as 6.

Nonisothermal kinetics

The rate of reaction of a substrate is generally expressed by the relation:
do
= 1
- = k@) (1)

where o represents the fraction of the reactant at time ¢, f («) is the conversion factor
of o and k is the rate constant. In chemical reaction studies the temperature
dependence of the rate constant is given by the Arrhenius equation:

k = Aexp (- E/RT) )

where A is the frequency factor and E the activation energy. The tremendous
success of the Arrhenius equation in explaining the temperature dependence of the
rate constant in most chemical reactions has resulted in a similar definition of & in
physical decomposition theories. For a nonisothermal system where the temper-
ature is linearly increased at a heating rate of §, (dT/d¢), Eq. (1) combined with Eq.
(2) can be written as

da

A
— = —exp(~ E/RT)dT 3
7@ ﬂ}’-xp( /RT) A3)
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Integrating Eq. (3) between the initial temperature 7, and any final temperature
T, and the reactant fraction between 1 and «, we have

a T
dae A

1 To
If the initial temperature T, is low enough such that no reaction occurs, then the
lower limit may be neglected. The left hand side of Eq. (3) can be analytically
integrated provided a mathematical definition of f(a) is available. Table 1
summarizes some well known integrated expressions for both chemical and
physical decomposition models. The category of grouping various equations are
similar to that used by Brown et al. [1]. If a chosen equation fits the data, then it does
not necessarily imply that the mechanism described by the equation is correct. This
is because some equations in Table 1 contain enough parameters and logarithmic
terms, that the equation becomes insensitive. Therefore, the equation can fit the

Table 1 Various integrated expressions of { da/f(a) popular in decomposition studies

I Chemical decomposition process
1-a__

n' order chemical reaction

n#1)
First order chemical reaction Ina (n=1)

2 Acceleratory rate equations
Power law a'
Exponential law Ina

3 Sigmoid rate equation
Avrami-Erofe’ev Nuclei growth [-In(1-)]'* (n=2, 3 and 4)
Prout-Tompkins Branching nucleation In fa/(1—a)]

4 Deceleratory rate equations
4.1 Based on diffusion mechanisms
One dimensional diffusion
(Parabolic law) o?
Two dimensional diffusion
(Valensi equation) at+{(l—a)ln(l—a)
Three dimensional diffusion
(Cylindrical geometry ot Ginstling-Brounshtein equation) [1-Qu/3)]—(1 —a)¥?
Three dimensional diffusion
(Spherical geometry or Jander equation) [1=(1-x)!32
4.2 Based on geometric symmetry
Contracting arca (or cylindrical symmetry) I—(l—-2)'?
Contracting volume (or spherical symmetry) I-(1-x)'?

J. Thermal Anal. 32, 1987



152 AGRAWAL: NEW EQUATION FOR MODELING NONISOTHERMAL REACTIONS

data to within the experimental error even though the reaction mechanism does not
obey the equation. In such a case care must be taken to insure the uniqueness of the
results. In case of reactions with enthalpy changes, the results may be extended to
DTA and DSC through the assumption that the rate is proportional to AT'/A, or
dH/dT. Where AT is the observed temperature difference between the sample and
reference substance temperature, A4, is the area under the thermal trace and H is the
enthalpy of the reaction.

Accuracy of the integral approximations

The right-hand side of Eq. (4) is known as the temperature integral or the
exponential integral and is not analytically integrable. For large values of E/RT,
Coats and Redfern [7] approximated the integral by the relation

Eexp(—E/RT)dT= RTZ(I—%)exp(—E/RT) 5

Coats and Redfern [7] obtained this solution for the temperature integral by ap-
proximating the sum of the first three terms of asymptotic series. Figure 1 com-
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Fig. 1 Logarithm of % deviation of various temperature integral approximations versus logarithm of
the E/Rt ratio. Symbols: I — Coats and Redfern (Eq. (5)), 11 - preliminary approximation (Eq.
(7)), Il - Gorbachev or first approximation (Eq. (8)), IV - Li or second approximation (Eq.
(9)), and V - this work (Eq. (11))
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pares the deviations of the Coats and Redfern approximation [7] from the exact solu-
tion for various values of E/RT. Figure 1 compares the logarithm of % deviation
from the exact solution versus logarithm of the E/RT ratio because it is more
sensitive and brings out more details than a plot of % deviation versus the E/RT
ratio. The exact value of the temperature integral was independently obtained by
numerically integrating the integral using the 1/3" Simpsons rule and the 1/4®
Trapezoidal rule. Agreement between the Simpson, Trapezoidal and the mathemat-
ical tables of Abramowitz and Stegun [8] proved the preciseness of the reference
values. The results summarized in Fig. 1 indicates that the Coats and Redfern
approximation underpredicts the value of the temperature integral for all values of
E/RT. For E/RT ratio of over 80, Coats and Redfern equation deviates from the
exact solution by less than 0.1%. However, the deviation is greater than 1% for
E/RT ratio less than 23 and greater than 10% for E/RT ratio less than 6.

Alternatively, the temperature integral can be expanded and integrated by parts
to yield the following equation

j (1+ i’g) exp (~ EJRT) = X1 exp (~ EIRT) ®)

If as a preliminary approximation, it is assumed that 2RT /E is much less than unity
and hence neglected, than Eq. (6) can be written as:

2

[exp(—E/RT) = Rg exp (— E/RT) )

A comparison of deviations of the preliminary approximation from the exact
solution indicates that Eq. (7) overestimates the valu¢ of the temperature integral
and is a very poor approximation with a deviation of over 2% for an E/RT ratio of
80. At lower values of the E/RT ratio the deviations are significantly higher. Hence,
this equation is not suited for modeling nonisothermal reactions. In order to
improve the approximation, if it is assumed that the ratio 2RT/E is very much less
than unity and, that the value of (1+2RT/E) to be in the neighbourhood of unity
such that it can be assumed to be constant. With these assumptions the term (1 +
2RT/E) can be taken out of the integral and Eq. (6) may be approximated as

RT? |
- = : exp(— E/RT 8
fexp (- E/RT)dT = X2 [HZRT/E_] p(~ E/RT) ®

This equation was suggested by Gorbachev [9] to be more accurate than the
equatién of Coats and Redfern [7]. Figure 1 summarizes the deviations of
the Gorbachev approximation from the exact solution and reaffirms the findigs
of Gorbachev [9]. The Gorbachev eqaation underestimates the value of the
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temperature integral for all values of the E/RT ratio. The deviation isless than 0.1%
for E/RT ratio greater than 41 and less than 1% for E/RT ratio greater than 11.

Li {10], in order to improve the approximation integrated the temperature
integral twice to arrive at the equation:

RT? [ 1-2(RT |E)

{exp(— E/RT)dT = 5 | 1-arTE?

]exp(“E/RT) ®)

Figure 1 indicates that this second approximation of Li overestimates the values
of the temperature integral. For this equation the deviation is less than 0.1% for
E/RT ratio greater than 21 and less than 1% for E/RT ratio greater than 9.

Multiplying the numerator and denominator of Eq. (8) by (1 —-2RT/E) we
obtain

fexp (—E/RT)dT =

RTZ[ 1-2(RT/E)

E 1—4(RT/E)2]CXP(“E/RT) (10)

A comparison of Egs (9) and (10) indicates a striking resemblence. The only
difference being the integers of the term (RT'/E)? in the denominator. The integer 4
in the denominator of Eq. (10) results in an under prediction of the temperature
integral, whereas the integer 6 results in an over prediction of the temperature
integral. Hence, to minimize these déviations we replaced the integer by 5. The
temperature integral can now be approximated as

RTZ[ 1 —2(RT/E)
E | '1-5(RT/E)*

From Fig. 1 it can be seen that the proposed approximation yields a deviation of
less than 0.1% for E/RT ratio greater than 7. For E/RT ratio less greater than
5.For E/RT ratio less than 5, the best value of the number multiplying the term.
(RT/E)? in the denominator of equation (11) is between 4 and 5. For highvalues of
E/RT, the approximations of Coats and Redfern, Gorbachev, Liand this work
yield comparable results.

fexp(—E/RT)dT = ]exp(-—E/RT) (1

Table 2 Percent absolute deviations of various approximations

Value of E/RT ratio

Equation
5 10 25 50
Preliminary approximation (Eq. (7)) 34.8 18.0 7.6 39
Coats and Redfern (Eq. (5)) 185 5.0 0.9 0.23
Gorbachef (Eq. (8)) 34 1.2 0.25 0.07
Li (Eq. (9)) 6.5 0.8 0.06 0.007
This work (Eq. (11)) 1.3 0.18 0.09 0.03

J. Thermal Anal. 32, 1987



AGRAWAL: NEW EQUATION FOR MODELING NONISOTHERMAL REACTIONS 155

Table 2 summarizes the results of various proposed approximations of the
temperature integral. Our studies indicate that the proposed equation is more
accurate than the previously proposed equations. Since the proposed approxi-
mation is accurate to within 0.2% for £/RT ratio greater than 6, it may be used in
combination with various equations summarized in Table 1 for modeling
nonisothermal reactions.
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Zusammenfassung — Basierend auf frither mitgeteilten Naherungslosungen fiir das Temperaturintegral
wird eine neue Niherung

fexp(— E/RT)dT =

RTZ[ | —2(RT/E)

E |1 ~5(RT/RT/E)2} exp (~ E/RT)

zur Modellierung nicht-isothermer Reaktionen vorgeschlagen. Es wurde festgestellt, daB die Gleichung
von Coats und Redfern fiir £/ RT-Verhiltnisse groBer als 23 um weniger als 1%, fiir E/RT-Verhiltnisse
groBer als 6 dagegen um weniger als 10% von der exakten Lsung abweicht. Die exakte Losung wurde
unabhiingig durch Losung des exponentiellen Temperaturintegrals auf numerischem Wege nach der
Simpson-Regel und der Trapezoid-Regel erhalten. Die Gorbachev-Gleichung weicht bei E/RT-
Verhiltnissen groBer als 41 um weniger als 0.1%, bei E/RT-Verhiltnissen groBer als 11 um weniger als
1% ab. Die Li-Gleichung weight bei E/RT-Verhiltnissen groBer als 21 um weniger als 0.1%, bei £/RT-
Verhiltnissen groBer als 9 um weniger als 1% ab. Die vorgeschlagene Gleichung weicht bei E/RT-
Verhiltnizsen groBer als 7 um weniger als 0.1%.
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Peziome — Ha ocnese pasee cooOuleHHBIX NpUORAMKEHHH AN HHTErpaja TEMNEPATYpHI, IS
MOJIEJILHBIX HEH3OTEPMUYECKHX PEAKLMi NIPEIoXKeHO HOBOE YPAaBHEHHUE:

RTZI: 1-2(RT/E)

Jexp (- E/RT)dT = —— 1=5(RTJE)

E :Iexp(—E/RT)

Haiigeno, uro ypasneune Koyrca-Pangepsa otknonsercs MeHee, YeM Ha 1% OT TOYHOTO peleHus
ugcsaosoro otHowenus E/RT 6onee 23 u menee 10% npu yucnenHoMm otHoweHuu E£/RT Gosee 6.
Tounoe peleHue TEMNEPATYPHOTO MHTErpaia GbUIO NOJNYYEHO JBYMSA HE3dBHCHMBIMH YHCIOBBHIMH
MeTofamu: 110 TipaBiay CHMIICOHA M TPaBHY Tpane3ouasl. Ypashenue [opbauepa OTKIOHAETCA
mesee 0,1% npu E/RT Gonbiue 41 u menee 1% — npu E/RT 6onbiue 11, Ypasterue JIn oTknonseTcs
Menee 0,1% npu E/RT Gonbwe 21 n meune 1% — ana E/RT Gonbine 9. [pemnoxenHoe HoBoe
ypasHenue otknonseTcs Medee 0,1% npu E/RT passbiM 7.
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