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The kinetic equation which describes many electronic as well as atomic or chemical
reactions under the condition of a steadily linear raise of the temperature, is con-
sidered in a mathematically exact and straightforward way. Therefore, the equation
has been transformed into a dimensionsless form, using with profit the maximum
condition for the intensity peak. The two temperatures 7} and 75, corresponding to the
half-height of the intensity peak, are found as unique polynomials of the small argu-
ment y = kT/E only (T = temperature of peak maximum). Thereupon, further
combinations give half-width 8, peak asymmetry 4 = 8,/8, or A = C/(1 — C) and the
maximum of the intensity peak J; they again all depend only on . In some cases this
dependence is weak, so that e.g. it is deduced that the half-width energy product

divided by 77 is an invariant, different for every kinetic order :

5 E[eV] 1/4998 K for monomolecular processes

TZ

= 11/3542 K for bimolecular processes
1/2872 K for trimolecular processes

By means of these correlations, activation energy values E [eV] can be determined
accurately to within 0.5 %, so that for most experiments the inaccuracy of the § values
becomes dominant and limiting. A special nomogram for the express estimation of

E from experimentally observed 6 and T is demonstrated.

Many different physical and chemical processes have been described by the rate

equation
de cr

Tar e Ky~ e R ¢y = o(zy) )
with the usual notations: ¢ = concentration of some kind of reactant; y =
kinetic order; K, = frequency factor which can include such further quantities
as jump number, reaction or trapping cross sections and a distinct own-tempe-
rature dependency, but this will not be discussed here; £ = activation energy;
T = time; T = temperature, and k& = Boltzmann constant.

A special and suitable manner for experimental investigations consists in the
observation of the enhancement of such processes when the temperature of the
system is raised continuously with a constant heating rate ¢ = d7/dz. It is known
that then the exponential term in Eq. (1) is strongly accelerated. At some moment
the process rate reaches a maximum and decreases because of the exhaustion
of the reactant concentration. Typical effects have been investigated: Thermo-
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320 BALARIN: HALF-WIDTH OF GLOW PEAKS

Stimulated Luminescence, TS Exoelectron Emission, TS Polarization or De-
polarization, TS Charge or Capacity effects, TS Desorption, TS Creep, TS Calori-
metry or Gravimetric effects, and in many other combinations. Therefore, a cor-
rect mathematical solution for the general case is needed, besides the various speci-
fied approaches which have been developed for special circumstances for the above-
mentioned effects.

Concentration and intensity curves, i.e. glow curves, exhibit a characteristic
shape, asymmetry and prominent points, which will be discussed and calculated
in this note and which are illustrated in Fig. 1 for the particular cases y = 0, 1,
2 and 3. Commonly the rate equation is solved directly with respect to the tem-
perature dependence of the concentration and as functions of the process param-
eters E, K, and y and the experimental condition g [1 —4]. It is the aim of this
note to deduce some general features of the concentration and the intensity be-
haviour, and therefore the usual solution procedure should be altered slightly.

Reduced dimensionless reaction equation

From the maximum condition* d%/dT”7 = 0 and with the use of ¢, one gets

@

v—1
7w
(the dash refers on all symbols to the peak maximum position). Therefore, instead
of Eq. (1) it is more easy to use as a starting equation with separated variables
-, dC E En T
vl . — .
—y-C YRR ekT( T)dT. 3
It is the scope of this form of the equation to indicate that its integral should
depend only on the following relatives: y = kT/E, t = T/T = y/y and C(T) =
= ¢(T)/c,. Physically, this means some normalization: the actual temperature T
is to be related to T and energies E have to be compared with £7. For the consid-
ered physical processes it holds without artificial limitations that y < 0.1, and
the processes occur only in a small temperature interval around 7.
Integration of Eq. (3) starting at t =0, T=0,y = 0and C, =1 up to C(T)
gives:

o
K, E . QEIKT Ifg
| ¢

O
foryyél,#Oy———[ —IJ

y—-1 (!
1 = %+ 7O - 1(y) @
f =1 In—
or y D
fory=0 1-C

* The case y = 0 is included, although here an inflection point cannot occur for C®; here

the maximum comes from the absolute exhaustion C (Iz') = 0 at a moment 7> 1, so that the
maximum condition reads:

nG) - 2 exp (1 — 1DF] = 1.
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Fig. 1. a) Concentration and b) intensity curves for processes obeying different kinetic orders
y =0, 1, 2 or 3, against a commxmon reduced temperature # = 7/7; the numerical scales are
chosen for a case ¥ = 0.04; + : half-height positions; ¢, 6%’: lower and upper half-widths.
Steepest slope (Fig. 1a) in the concentration curves corresponds to the peak maximum in the
intensity curves (Fig. 1b). Intercepts AT had been proposed in [8, 16]for use in the system-
atic analysis methods; in practice the case y = 0 can not easily be determined from experimental
data. From C curves alone it is difficult to find the position 7 = 1; one can make use of sys-
tematic similarities and deviations between A7 and 8{” [16].
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1y —2
where nM=1+ Y (D" (@m+ Dy, Q)
n=1

Although the terms in this last series are very small due to y < 0.1, they have
to be taken into account for a correct calculation. Several authors admitted some
rounding errors in their derivations; we shall not do so, on the consequences of an
incorrect account of these small terms in this correction function #(y) see [5],
which on the other hand is always close to unity: #(y) < 1.

From (4) it follows that

l y — 1 JUe=D
(1— ; ﬁ] for y#1,#0

C=CT)=1 ,-x y =1 (6)
1 -7 y=0
and
Y Hir—1)
-1
7= G = 07+ 7 = Dot exp [~
o)
“C T |exp [n — nt* - exp 1-ur H M
y
— n2 1. __/ /1_
(1 nt exp( 7 ” ( )

Half-width temperatures T

Now those two temperature positions T; = T; and T, should be determined, where
the intensity J(T) = —dC/dT is half of the maximum intensity. By means
of Eq. (1) or (3)

J( ) (v B ™ cy 1 — 1/
o1 ] ALY w5

The superscript (y) indicates the individual solution for every distinct kinetic

order.
Inserting (7) in (8) and with a slight rearrangement, we get the following equa-

tions for t (and T%):
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_r 1 — 1 t»
2 . ,y',v—l exp / J
, - 1 /z(a/) v[(r—1)
—y =@ =D+ =Dyt exp l] =0 ©)
for y#1,#0
1 — 1/t® 1 — 1/t®
1n2+—}_}/1~+'7—'11'ti(1) exp | )=0 (10)
for y =1
Let us remember that y; = y - t;, so that
1jy—2

mEAG) = 0GB =i+ X (=D @D @ -, (D

Finally, this means for every individual 7 that if (9) or (10) can be solved with
respect to ¢, then these solutions should be unique functions of ¥, only.

Because 7 and #; are polynomials in ¥, itis to be expected that the solutions can
also be found in the form of a series expansion

D =144aQ 5 +dQ 5+ ... (12)
with a;; < 0, a5, > 0.

For a suitable solution procedure, see Appendix I. Numerical results are sum-
marized in Table 1.

Table 1

Temperatures T/, corresponding to the half-height J(T;) = %}(f) of the intensity peak

A=1— 2% -+ 6 - y — 24~ P4 120 34—+ ...

TO/T = 1f® = 1 — 0.69315p + 2.480455 — 11.105615° + 51.9109* —+ ...
TOT=1"=1 +2 y:— 8 Y+ 38.6679% —+ ...

TO/T = 1 = 1 — 1.461195 + 3.252465% — 8.6006 7° + 2264154 —+ . ..
TOIT = 6 = 1 + 0985205 — 0.17380p2 4+ 0.0412 32 —  0.4443% +— ...

TOIT = 12 = 1 — 1.76275p + 5.6469752 — 22.8422 % — 101.8635¢ — + . ..
TOIT = 1t = 1 + 1.76275y — 14040252 + 1.6274 38 + 0.9935% +— . ..

TOIT = 1 = 1 — 1.973047 + 7.9812032 — 42.4583 3° — 237.5925% +— ...
TOIT = 1t = 1 + 2479587 — 4.089543% + 8.8971 7° + 51.7645% —+ ...
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Half-width, asymmetry and peak height

Now let us return to the physical situation. Lower, upper and full half-widths
of the intensity peak are given for every y by (see Table 2).

WMT=1~-1"=—af} 5 —a 75— ... (13)
WIT=1tP - 1=aR " 7+a -7 +... (14)
ST = (0P + 8P)T = (aR — af)) *§ + (@) — af) - 7>+ ... (15

More important, an extremely weak variance with § follows for

sW - F tgv) — t&y)
K== =@ —a) - @ )y (16

and for the peak asymmetry, which is well established experimentally,

8 P —1 a1+ gy Flay + ...

AD = = =
81— —aP 1 +ay ylag +...°

(17)

For corresponding polynomials see Table 2; in the vicinity of § = 0.04 the quan-
tities 4 and x are practically invariants — see right side of Table 2: Y=y —
—0.04; | Y| < 0.015.

It should be noticed that the calculational accuracy should only be limited by
the practical demand of precision which is considered in Appendix II. Here, never
a term has been neglected and other approximations have not been admitted, never
that the rate equation has been solved for the first time in a mathematically full
and consistent way.

Previous attempts at a mathematical treatment of experimentally evidenced
half-width and peak asymmetry led to crude, but close relations, which could not
be well distinguished. Grossweiner [6] found E - 8{9/KT, * T = 1.51 for the low-
temperature shoulder for monomolecular processes; later Dussel and Bube [7]
claimed that this value should be better 1.40...1.42 (with some difference in
T, < T this is to be compared with our —a{?). Lushchik [8] concluded from graph-
ical similarities between & and AT (see Fig. 1) for the high-temperature side that
— in our notation — &% =~ 1 and a9 =~ 2.

Other authors developed trial-and-error methods for the evaluation of relations
between E and 7 and & [9—15]. The best critical examination was given by Chen
[13] who showed that for y = 1 and y = 2 systematic errors arose for §,, 6, and 4,
due to inaccuracies in the treatment of the reaction equation, but which because
of their systematic nature can be used as “empirical” correction factors. Another
means of correction has been with the aid of the steepest slope in a monomolecular
concentration curve and the systematic error in P/(AT;) [16].

For the first time it was deduced how such relations arise from the reaction
equation itself in [17—19], and now details are obtained as to how such correla-
tions are governed by the values ¥ = kT/E and #(y), i.e. by the correct account
of the exponential integral. Therefore, there is also a demand to determine y
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directly from measured data. This can be done with the help of Eqs (13)—(15),
but more straightforwardly with the inverse polynomials (see Appendix 11I);
e.g. it yields

0.409 * §/T * (1 + 0.5736/T + 0.076¥T2 + ...) for y=1
0.284 - 6/T - (1 + 0.5678/T + 0.088%T> + .. ) y=2 (18)
0.225 * §/T - (1 + 0.6098/T + 0.16 63 T> + .. ) y =3

<
il

or still more easily
0.453 (3/T — 0.0928 +...) for y=1
J =004+ 0.328(5/T — 0.131 +...) y=2 (19)
0.268 (/T — 0.162 + ...) y=3

Another quantity of interest is the steepest slope of the concentration curve
(see Fig. 1a), i.e. the peak height of the intensity curve:

J = _ gjg =C» - k_ETE = CO - )@, (20

The rectangular area J - § should be comparable to Sop JT) dT=Cy=1. In

fact, J® - 69 is close to unity (see Table 3), but not (e]:xactly, due to the typical
Table 3

Variance intervals for the considered properties, according to 0.03 < ¥ < 0.05

=0 { y=1 y =2 =3
!

c» 0.5719..0.5732 | 0.8126..0.8235 | 0.8703 .. 0.8806 | 0.9459 .. 0.9518
c 0.0553 . . 0.0880 [0.3888..0.4017 0.5276 . . 0.5440 | 0.6084 . . 0.6261

(>0)! (> 1/e)! (>1/2)! (>1/4/3)
cy 0 ‘0.0750..0.0792 0.1645..0.1761 | 0.2316 . . 0.2523
Z(Wl = 0.0585..0.0965 | 0.6361 ..0.6715 | 1.1170 .. 1.1930 | 1.5540 . . 1.6745
AP =0,/5, | 00856..01419 |0.7149..0.7412] 1.0687 .. 1.1112 | 1.3397 . . 1.3903
i | (1.0554..1.0889)* |0.3888..0.4017 | 0.2784 . .0.2959 | 0.2252 . . 0.2454
) 0.7189 . . 0.7353 0.9142..0.9226‘]0.9280..0.9534 0.9305 . . 0.9705

*for y = 0 the indicated intensity value belongs to 7 = #, > 1, where the intensity drops
from this value to zero
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Fig. 2. Nomogram for the correlation 6 - E/f2 =k x™ (0.04)

Example A: for py =2, § = 27 deg, T = 240 K — E > 0.60 eV;
Example B: for y = 1, 6 = 55 deg, T = 360°C — E =~ 1.45 eV.

curve shapes. Also, other quantities, C{(T,) and C§X(T},), can be treated as char-
acteristic invariants for every 7.

After the verification of the kinetic order y from the curve shape and asymmetry
A (or from 4 = C/(1 - C)), all the above-given correlations are helpful in analyzing
experimental results.

It was shown earlier that a constant half-width energy product,  * E/(kT?) =
= const., allows the construction of a nomogram for the first approximation
of the activation energy values, which iteratively had to be improved. Now this
iteration was already included in our polynomial expansion and we obtained di-
rectly usable constants x®’(0.04), which are lower than x“(0) by 5.2% (for
y = 1) and 7.6%; (for y = 2), and which are used for the new nomogram (Fig. 2):

kx©(0.04) = (17115 k)~
kx®(0.04) = (4998 K)~*

21
kx®(0.04) = (3542 K)~*

kx®(0.04) = (2872 K)L.

5% J. Thermal Anal. 17 1979
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Lastly, the frequency factor can be determined by Eq. (2), but again more easily
from a relative expression:
exp (7 — 25)

K0) = K004 - 2 e
Tk
K,(0.04) = ’JT S 4.5 10 = F[Z\_/T -3.88 - 10",

The only possibility for the experimentalist to influence the reaction consists in
the change of the heating rate, which causes a small temperature shift connected by
din7T 3  dlny _ dln(§/T)

= = x 23
dIng 1+ 2y dlng dlng @3)

Of the same order is the opposite relative change of peak height J(fj on the basis
of a temperature scale

d In JYXT) 2y
S= - —. (24)
ding 1+ 2y
Measured on the basis of a time scale, J—(%—) increases with ¢:
dn JO 2y
dinJP@) _ P . (25)
dilng 1+ 2y

However, quantities having a constant first term in their polynomial representa-
tion, such as x and 4, are shifted only by the order of y?; e.g.
din C® dlng 2y*

dlng  dlng 1+25° (26)

This demonstrates once more their relative invariance.

Appendix

1. Solution for half-height temperatures in polynomial representation

a) Let us first consider the bimolecular case: y = 2 (the special superscript () is omitted
for brevity); from Eq. (9) we have to solve the following equation:

1— 1/4 _ 1— 1/11\7*
8'exp( A/‘)—[Z—n—}-nit?'exp( _/iﬂ=0. (A
y y
It was maintained that 7; should be near T and that it would be a polynomial function of y;
then it can be described by _
n=1+ Y a3 (A2)
n=1

and therefore
- _1=1x Zay, "y
(P) = _ = — =g, + al -y (A3)
fl(y) -3 1+Zain _yn i1 n;. in " Y

where the af, are given by the a,.
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Hernce, all expressions ¢, f3, 7; and 7 in Eq. (A1) are in principle ascending power series of
the argument y, and all mathematical operations between them (addition, multiplication, exp)
lead to power series in y, too. Now Eq. (A1) is fulfilled only if the coefficients for every power
term " are zero identically. This gives a system of equations for the determination of all a,.
For example, the simplest equation at 3° reads:

8edil — {1 4 eail]2 =0 (A4)
with two solutions
ay=1In(3 F /8) = F1.762747.

Knowing these first values a;; and a,, the next a,, can be determined from the coefficient at
', and so on. For an easier calculation of the a;,, a recursive procedure seems to be suitable.

Let us assume that the first m values g;; . . . a;, have been determined already, especially
a,, alone. Then, all expressions in Eq. (A1) should be approximated by a finite series expansion
up to terms with y™ i.e.

tim=1+2am-y“; nm=1+z... and so on. (A5)

Particularly, with these finite sums it follows that:

1y 1 1 1 _ _
f(l——J/ Ef(l——)+aim+1'ym=fim+ﬂim+1'ym (A6)
y ti m y tim
1— 1/ - _
o [T// = intam ™ o (1 + iy g+ 57 (A7)
m

Inserting these finite polynomials into Eg. (A1) and solving it with respect to @y 41, ODE gets:

1 . 1 — .
Timy1 = e — 3) yllfé {;; Betm — [2— oy + T Ty e‘WF)} (A8)
b) For monomolecular processes the procedure follows the same route for the determining
equation coming from (10)

fitn—n e+ In2=0 (A9)
At y°:
a,+1—e14+In2=0 (A10)
a;; = —1.461 1863; a,, = 0.985 1998;
1 ) 1 _
ai, = a1 lim {——H (fim & T — T " b * €™+ In 2) } (Al11)
er—1 5.0y

II. Precision of the polynomial expansion with respect to the physically governed smallness of y

In principle all polynomial # can be determined following the procedure deduced in
Appendix I up to an arbitrarily high power »", and the irrational coefficients a;, can be solved
to any desired high accuracy.

For the physical processes of our interest the actual variation of y is intrinsically limited
to y < 0.1, and mainly to 0.025 < y < 0.05. The first coefficients, a;,, a;, are of the order of
unity; a;; is sometimes of the order of 20, but not very much higher; and so forth. Therefore,
the series for ¢, n;; fj converge quickly.
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In practice, the precision is limited by the experimental conditions and measuring equip-
ment. For example, the deviations for absolute temperature values can be of the order 47 =
= +1JK; for relative temperatures within AT/T = 1% ...0.1%; but for relative half-width
only A8/8 = 3% . ..0.5%. Therefore, it would be exaggerated to calculate x with an accuracy
much better than Ax/x = 0.5%, and the possible accuracy for the activation energy value will
be of the same order. Correspondingly, for #* it is quite sufficient to take into account only
terms up to n = 4 and to restrict the number of digits for the individual coefficients aff, so

e A\ _
that their accuracy is limited by da;, < (—K ™
K

Further, one can make use of the fact that y is naturally closer to y=0.025 ... 0.05 than
to y = 0. A re-expansion of the various series X(¥) in the vicinity of a mean selected value in
this interval, e.g. around y = 0.04, as X/y — 0.04), will then tend to a further strong increase
of the convergency, so that the necessary number of terms of the polynomial and the number
of digits of each coefficient may be lowered still more (see Table 2 — right side).

II1. Inverse polynomial

Especially for the first determination of y by means of experimental observables, for in-

stance by 6 and T, relation (15) can be used, but it will be more straightforward to solve this
equation with respect to y. Very commonly, for a quickly converging series

XG— )= A+ Al'(;—_JA})+A2‘(;—J‘;)2+A3.<;_ ) i (A12)

In the vicinity of any arbitrarily chosen 3, for instance for y = 0 or for p = 0.04, the inverse
relation is

. X— 4, 4y X~ 4y, ( AE Ay (X — A
3 B o B e

v = ..o (A
y=r+—y 4, 4, A1)+}(13)
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REsuME — On traite de fagon mathématique exacte et directe I’éguation cinétique qui décrit
de nombreuses réactions électroniques, atomiques ou chimiques dans les conditions d’un
accroissement permanent et linéaire de la température. C’est pourquoi on a transformé 1’équa-
tion sous une forme sans dimensions, en mettant & profit les conditions donnant le pic d’in-
tensité maximale. On a trouvé que les deux températures 7; et 7, correspondant 3 la moitié

de la hauteur du pic, sont des polyndmes uniques du petit argument y = k7/E sculement
(T = température du maximum du pic). Des combinaisons ultérieures ont fourni la demi-
largeur 8, 'asymétrie du pic 4 = 8,/0, ou 4 = C/(l — C) et le maximum de I'intensité du pic
J, ceux-ci aussi dépendent seulement d’y. Dans quelques cas cette dépendance est faible, ainsi
par exemple, on a déduit que le produit de la demi-largeur par I’énergie, divisé par 72, est
invariant et différent pour chaque ordre cinétique y:

1/4998 K pour les processus monomoléculaires
§ EeV]

TZ

1/3542 K pour les processus bimoléculaires
1/2872 K pour les processus trimoléculaires

A T'aide de ces corrélations, les valeurs E [eV] de I’énergie d’activation peuvent &tre calculées
avec une exactitude de 0.5 %;; pour la plupart des expériences, ¢’est I'inexactitude des valeurs
de J qui devient le facteur dominant et limitatif. On présente un monogramme spécial pour

Iestimation rapide des valeurs d’E & partir de valeurs 8 et T observées par voie d’expériences.

ZUSAMMENFASSUNG — Die kinetische Gleichung, welche viele elektronische sowie atomare
oder chemische Reaktionen unter der Bedingung einer gleichméiBigen linearen Erhéhung der
Temperatur beschreibt, wird in einer mathematisch exakten und direkten Weise behandelt.
Deshalb wurde die Gleichung in eine dimensionslose Form iiberfiihrt, wobei die Maximums-
bedingung fiir die Intensitdtsspitze vorteilhaft angewandt wurde. Die beiden Temperaturen
7Ty und T,, welche der halben Héhe des Intensitdtspeaks entsprechen, wurden als eindeu-
tige Polynome des kleinen Arguments y = kT/E gefunden (7 = Temperatur des Peak-
maximums). Weitere Kombinationen ergaben die Halbwertsbreite J, die Peak-Asymmetrie
A = 6,/6, oder 4 = C/(l — ©) und das Maximum des Inten51tatspeaks J, diese GroBen sind
ebenfalls nur von y abhiingig. In einigen Fillen ist diese Abhingigkeit schwach, so daB z. B.
abgeleitet wurde, daB das Produkt der Halbwertsbreite und der Energie durch T2 dividiert
invariant ist und fiir jede kinetische Ordnung y verschieden:

1/4998 K fir monomolekulare Prozesse
1/3542 K fiir bimolekulare Prozesse
T 1/2872 K fiir trimolekulare Prozesse

§ - EleV] _

Anhand dieser Korrelationen kdnnen die Werte der Aktivierungsenergie E[eV] mit einer
Genauigkeit innerhalb von 0.5% bestimmt werden, so daB fiir die meisten Versuche die
Ungenauigkeit der 5-Werte vorherrschend und begrenzend wird. Ein spezielles Nomogramm
fiir die Schnellbestimmung von E aus experimentell beobachteten Werten von & und 7T wird
aufgefiihrt.

Pestome — KuHeTHYECKOE yPaBHEHHE, OIMICHIBAIOLIEE KAK MHOTHE STIEKTPOHHBIE, TaK B ATOMHLIE
WK XMMHUYECKHS Peaxiuy OPA YCIOBUM IOCTOSHHOTO JHHEHHOIO IOBHIIEHHS TEMUEPATYDEL,
permaercs MaTeMaTHYeCKd TOYHBIM K IPAMBIM IyTeM. [[Td 3TOTO ypaeHeHHe OBLIO Hpeobpa-
30BaHO B Oe3pasMepHYIO (OPMY BBITOXHO WCHOMNB3Ys YCJHOBHE MAKCHMyMA WHTCHCHBHOCTH
muka. Hafineno, 9to nse Temmeparypbl Ty B 7y, COOTBETCBYIONIHE TIOAYBLICOTE MHTEHCHBHOCTI
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IvKa, SBIISFOTCS TONTHHOMAMM TONBKO Manoro aprymenta y = k7JE, rne T —TteMmepartypa
MakcMMyMa Imka. Janbueiiie KOMOWHAUWHM 40T TOJIYIOMPHHEY J, acCuMeTpHio Imka A =

= 0,/6, wm A = C/(1—C) 1 MaKCHMyM HHTEHCHBHOCTH IIHKa J, KOTOPHIE OMATE TAKY BCE 3ABHCAT
0T y. B HEKOTOPHBIX CIIy¥asX 3Ta 3aBHCHMOCTH ciadasi, Tak 4YTO, HAPUMED, YCTAHOBIICHO, YTO

MIPOU3BECACHUE IIOJIYINHPHUHEL M 9JHCPIUH Pa3HCIICHHOC HA T? sBnsieTcs HMHBAPHAHTHBIM W pa3jidn4-
HBIM IJI51 KaXXOOr0 KHHCTHYCCKOTO IIOpsAaaxa 2

1/4998 K ons MOHOMOJIEKYJISAPHOTO IpOolecca
5.E[eV] _ / i yIAp pon

TZ

1/3542 K amsi GUMOJIEKYJISIpHOTO HpoLecca
1/2872 K 11 TPUMOJIEKYIIPHOTO IIPOLIECCa

C DOMOIIBIO 3THX KOPPEJISLHA 3HAYeHUs IHePTruK akThBaudi E[eV] MoryT OBITh OIpeeeHb!
¢ TounOCTBIO 0.5, TaK 9TO AUiA GOJBIIMECTBA SKCIEPUMEHTOB HETOUYHOCTh 3HAYEHMIT O CTaHO-
BRTCS AOMEHKPYIOLIEA 1 ompeaenstomeil. TToxasana cenpanbHasi HoMorpaMMa st OBICTPOTo

ycraHoBneHns F w3 mabmromaeMbix Ha skcmepumente 0 u 7.
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