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The kinetics of the heterogeneous, condensed-phase systems studied in thermal analytical 
techniques are often complex and usually affected by many experimental factors such as 
specimen geometry, thermal history, gaseous environment, etc. These complications impose 
many problems in experimental design, data analysis, and especially in interpretation of results. 
This paper concerns itself with practical applications of thermal analysis kinetics. Ways of 
overcoming, or at least ameliorating, some of the above problems are suggested, and caveats 
concerning overly simple and "canned" techniques of analysis of kinetics data are given. The 
limitations of one's reasonable expectations for the theoretical significance and empirical 
application of derived kinetics parameters are discussed. 

It is impossible to discuss kinetics without recourse to any equations, however 
this paper is not concerned with the derivations of  all or even some of  the many 
equations and methods for treating thermal analysis kinetics which overburden the 
journals, but rather I will attempt to present a review of  what thermal analysis 
kinetics is, what theoretically or empirically useful results one might hope to obtain 
from an analysis of kinetics data and finally explain the reasons why one often can 
not obtain these useful results. 

First we will review to which systems thermal analytical techniques may be 
applied. 

Thermal analysis kinetics techniques 

One may use thermogravimetric analysis, TG, and evolved gas analysis, EGA 
(combination mass spectrometry-gas chromatography is an example of  the latter) 
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to look at degradation, decomposition, oxidation, evaporation, diffusion, sorption, 
etc., reactions--that is, any reaction in which 'weight is gained or lost. EGA 
methods have the advantage of measuring the kinetics for the change of each 
volatile species separately. 

Differential scanning calorimetry (DSC) is even more versatile since most 
chemical and physical changes involve enthalpy changes. It is particularly useful in 
studying the kinetics of cure of resins and other reactions in liquids, such as 
biological reactions. DSC is widely used to study the kinetics of the reactions of 
polymers whose reactions take place very sluggishly, so much so that even the 
kinetics of physical transitions such as crystallization or glass transition may be 
investigated. However, in some cases, interpretation of DSC results is complicated 
by several changes occurring concurrently, e.g., loss of mass will cause the heat 
capacity or base line to change, while at the same time both endothermic and 
exothermic reactions may be taking place simultaneously. 

Thermal mechanical analysis, TMA, which measures volume change or viscogity 
change is similar to DSC in its wide applicability, but mechanical property changes 
are not as directly or as often linearly related to the chemical and physical processes 
as enthalpy changes are. 

The measurement of any property of a specimen undergoing a programmed 
temperature change is, by definition, thermal analysis. However, the above 
methods and dynamic mechanical analysis, DMA, the measurement of loss moduli 
or logarithmic decrement, are the main methods for which commercial equipment 
is available. 

Problems in the collection of kinetics data 

There are two classes of problems in the treatment of the kinetics of thermal 
analysis data. The first kind of problems deals with the collection of the data. "I]ae 
second type of problems involves the mathematical curve fitting of the kinetics data 
to rate equations. 

Experimental problems 

Experimental problems are the simplest to deal with so they will be discussed first. 
In a thermal analysis experiment, three variables are measured--time, temperature 
and some property of the system, for example, mass change in TG, enthalpy change 
in DSC, or dimension or viscosity change in TMA. Measurement of time has never 
been a problem. One can hope that the instrument is measuring its physical 
property properly. However, temperature measurement has always been and still is 
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Fig. 1 Thermocouple placement in furnace tube 

a serious problem. A recently published example [1], which was first presented at the 
NATAS Petersborough meeting in 1974, is shown in Figure 1. 

Two thermocouples, one at the axis and the other 8 mm offcenter were placed in 
a 25.4 mm diameter glass tube heated by a 10 cm exterior furnace. At an axial 
temperature of  400 ~ and a 25 ml/min flow of  nitrogen through the tube, the two 
thermocouples registered a temperature difference of  40 ~ ! This is an extreme case, 
and the calculated Reynold's number for these conditions indicates that laminar 
flow is to be expected here. However, this difference points up the importance of  
exactly matching conditions for temperature calibration and temperature measure- 
ment. l f the  geometry of  the system, the flow rate or the composition or pressure of  
the atmosphere differ between the calibration and the measurement, then large 
temperature measurement errors can be expected. (It is, of  course, impossible to 
completely match atmospheres if autogeneous vapors are emitted by the 
specimen.) The begt system is one in which the temperature sensor is in contact with 
the specimen. It was encouraging to see that the three commercial instruments 
exhibited at the 1986 NATAS Conference which measure TG  and DSC 
simultaneously did actually have the temperature sensor in good contact with the 
specimen. Otherwise, the best compromise for T G  is probably the Curie point 
standards or melting wires [2]. In any event, great care should be taken in exactly 
matching between calibration and experiment factors affecting temperature 
measurement such as positions of  specimen and sensor and flow rate, composition 
and pressure of  purge gases. 

Material fluxes in a system whose kinetics are being measured are often sizable 
and for cases where they affect the rate terms for material diffusion should be 
included in the molecular modelling of  kinetics even if this means including 
mathematically complex expressions based upon Fick's laws. However, thermal 
diffusion is seldom, if ever, included in a kinetics model. Actually thermal diffusion 
time constants are not that hard to measure. Figure 2 shows how this can be done 
for a DSC experiment by measuring the thermal resistance from the slope of  a 
melting peak [3]. 

If, at constant heating rate, a material such as indium goes through a "sharp"  
endothermic or exothermic transition where the temperature over which the 
transition occurs is much smaller than the temperature change of  the heating 
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calorimeter during the interval in which heat must flow to the indium to match the 
transition enthalpy, then, according to Newton's law, the heat flux will increase 
linearly as the temperature of the substance remains constant and the calorimeter 
temperature increases linearly. The steady slope of the leading edge of the transition 
peak will be equal to B/R where B is the heating rate and R is the thermal resistance 
between the the heater and the indium. If a sheet of the material of interest is placed 
between the indium specimen and the calorimeter cup, then the resistance to heat 
flow increases and the leading edge of the transition peak will have a slope B/R'. The 
thermal resistance of the material can be calculated from R ' -  R. 

Gray [4] has shown how the thermal resistance can be determined for a TG 
system in a similar manner from the boiling peak of an evaporating liquid. For this 
case, the thermal resistance between the specimen and the furnace is inversely 
proportional to the leading slope of the boiling peak at constant heating rate. 

In either case, the thermal resistance time constant is equal to the thermal 
resistance of the specimen multiplied by the heat capacity of the specimen and its 
container. If the thermal time constant for the material which you are investigating 
is the same order of magnitude as the time constant for the reaction of interest, then 
you are in trouble as you may be studying heat flow kinetics rather than reaction 
kinetics. 

As a general rule as far as thermal and material gradients go, the best general 
advice is that one should try to get along with the smallest weight of specimen that 
can be measured accurately and use the slowest range of heating rates which time 
constraints will allow. 

There are other mainly experimental "problems" in the treatment of kinetics 
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data. Some of  these are specific to the method. For  example, in TG, bumping and 
boiling in vacuum often cause vibrations that affect measurement. About all you 
can do in this case is to use milder conditions as suggested above. On the other hand, 
the release of  volatile material at the beginning of  a run which may obscure the 
initial kinetics of  the reaction of interest can often be avoided by preheating the 
specimen in vacuum at a somewhat lower temperature for a while before beginning 
the run. Each of  all the other thermal analysis techniques has its own specific 
problems, but these will not be discussed here. 

Before we go on to the curve fitting part, there is one last thing to mention about 
measurement errors. Activation energy is the most important parameter in thermal 
analysis kinetics, especially if one wishes to make predictions such as time to failure 
and so on. Because of  the exponential form of  the Arrhenius equation, a relatively 
small error in activation energy may translate into a very large error in an 
extrapolated rate at another temperature [5]. For  example, a one half kilocalorie per 
mole error in E will cause a 50% uncertainty at the 90% confidence level for an 
extrapolation of  the rate from 400 to 25 degrees Celsius. On the other hand, if there 
is a systematic error in the temperature, it will have very little effect on the 
calculation of  activation energy or extrapolations from it. 

For the remainder of  this paper, we will discuss problems in curve fitting and 
molecular modelling of  thermal analysis data. 

Problems in fitting kinetics data to rate equations 

There are two fundamentally different reasons for which one may wish to 
investigate the kinetics of  thermoanalytical reactions. One may be interested in the 
theoretical aspects of  molecular modelling reactions and determining their 
mechanism. On the other hand one's interests may be more practical--the empirical 
use of  thermal analysis kinetics parameters to apply these results to problems such 
as failure and service life prediction, oxidative stability, thermal breakdown, quality 
assurance and control, and optimization of  conditions during industrial synthesis 
and fabrication. If  the latter is the case, then much less rigorous and exhaustive 
studies are necessary. In mechan,_'sm studies, each procedural factor such as 
specimen weight, heating rate, purge gas conditions, etc., should be looked at 
systematically. In more practical applications, even methods which produce 
theoretically incorrect kinetic parameters may be sufficient if great care is taken not 
to allow any of the above procedural factors to change from experiment to 
experiment. These aspects will be discussed a little more later on. 

Equation (1) is almost universally applied to the kinetics of  these heterogeneous 
condensed phase systems. The rate of  change dx/dt of  the measured variable x is 
assumed to be equal to separable functions of  the variable f ( x )  and temperature 
k(T).  
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dx/dt = f(x)k(T) (1) 

There is no real theoretical justification for the application of this linear differential 
equation for these systems, but we have to start somewhere. In fact, we know that 
often the kinetics is too complex to separate f(x) and k(T) like this, and in many 
cases other factors--physical, geometric, atmospheric and so on--affect the rate in 
ways that make kinetics modelling quite difficult if not impossible. However, this 
equation is a good place to start. 

There is a tremenduous temptation to fit functions for parameters for f(x) and 
k(T) to a single experimental run in which xand  T are both changing, such as at 
constant heating rate. This can be done successfully in only a very few cases. Often 
these are ones in which we know the simple kinetics beforehand. Many methods 
which try to do this often end up obtaining incorrect parameters for both the 
measured variable and the temperature functions as errors in the form of f(x) will 
be compensated for by the parameters of k(T). So a good general rule for kinetic 
analysis of thermal analysis data is: 

To determine parameters for f(x),  tit data from 
an isothermal experiment! 

If parameters are found for a f(x) which seems to fit the data at one temperature 
well, then one can go on and obtain these parameters frornexperiments at various 
temperatures and from them determine the parameters for k(T). k(T) is almost 
always assumed to be described by the Arrhenius equation, equation (2) 

k(T) = A exp ( -  E/RT) (2) 

A is called the preexponential factor, E, the energy of activation, and R is the gas 
constant. The Arrhenius equation is indeed quite successful in describing the 
temperature dependence of the rate for many thermal analysis systems, however 
there are, of course, many other cases where the kinetics are too complex to obtain a 
single global activation energy. 

Even if one can not obtain a good fit to an equation for f(x) from isothermal 
experiments, it is often still possible to obtain the Arrhenius equation parameters by 
applying the second good general rule for thermal analysis kinetics: 
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To determine parameters for k(T), compare data 
(from several experiments at differing temperatures) 
at the same degree of conversion, ct 

The reason for the "from several experiments" bit is because it is difficult to 
obtain values for the rate at different temperatures at the same degree of conversion 
from a single experiment. One way it can be done is by the temperature jump 
technique which was suggested about twenty years ago [6] but has never really 
become a popular method. 

Lack of knowledge of the analytical form of f (~)  can be gotten around quite 
easily. Combining the Arrhenius equation with our previous equation for the rate in 
terms of ~, the fraction conversion, we obtain 

d~/dt = f(~)A exp ( -  E/RT) (3) 

and if we take the logarithms we obtain for a particular degree of conversion, ~,  

In (d~/dt)i = In A f ( ~ , ) -  (E/R)(1/TI) (4) 

(~i = const.) 

where (d~/dt)i and Ti are the rate and temperature at which degree of conversion ~ 
was reached. 

Therefore, if one plots logarithm of the rate against reciprocal temperature at a 
particular conversion for a number of experiments with differing temperature 
programs, then the slope will be E/R and the intercept will be In Af(~i). This can be 
done for various degrees of conversion to see i fE/R is constant with changes in both 
temperature and conversion. Thus we have a method for determining the activation 
energy which does not depend on a knowledge of the form of f(~).  This method was 
first suggested by Henry Friedman in 1965 [7]. A short time later, Ozawa [8] and 
Flynn [9, 10] independently suggested doing the same sort of thing with constant 
heating rate experiments by plotting the logarithm of the heating rate against 
reciprocal absolute temperature to obtain equation (5). Again at constant 
conversion the slope of a plot of the logarithm of the heating rate B against the 
reciprocal of the temperature Ti to reach degree of conversion ~ is proportional to 
E/R. 

E/R ~- 1.05(A In B/A T - a) 

(~i=const.) (5) 

The nice thing about these methods is that f (~)  which is always controversial and 
whose form is very difficult to pin down with any certainty can be ignored 
completely. The parameter E/R is the only one needed for many practical 
applications of thermal analysis kinetics for if E/R and the rate at one temperature 
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T 1 is known, then the rate at any other higher or lower temperature T 2 can be 
predicted by 

ln(d~/dt)z = ln(d~/dt)a + (E/R )( T 2 -  T1)/( Tt Tz) . (6) 

This is as good time as any to discuss problems in activation energy 
determination before we discuss problems in determining ~ and f (~ ) .  The problem 
isn't that great---either the temperature dependence follows the Arrhenius equation 
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or it doesn't. If one follows the precepts which I outlined previously and doesn't try 
to take short cuts by determining E / R  and f(~) at the same time, then one should be 
able to test whether E / R  is constant over the whole range of alpha and changing 
temperature. Some examples are shown in Figure 3. 

Polystyrene is a case where all of the isoconversional lines in a plot of logarithm 
heating rate against the reciprocal absolute temperature at which degree of 
conversion (~)i was reached are all parallel straight lines yielding the same 
activation energy. Another situation is seen for poly(vinyl chloride) where the early 
isoconversional lines are parallel, giving the same activation energy when HC1 is 
splittingoff, while the later isoconversionals give a lower activation energy for the 
polyene degradation. In the polyurethane example shown here, only for the first 
part of the reaction where the diisocyanate moiety is coming off do you get a 
constant slope and activation energy. In the final example, which is all too often the 
case, with poly(methylmethacrylate), all of the isoconversional slopes change with 
both temperature and degree of conversion. For this latter case, the simple kinetics 
equations which we assumed here are inadequate. However, with these differential 
and integral isoconversional methods, we are able to test our activation energy 
values and see whether they do stay constant over the range of temperature and 
conversion of our experiments. 

Problems related to defining alpha and in determining f(~) are discussed in the 
remainder of this paper. Often in a thermal analysis experiment the reaction of 
interest will take place over only part of the range of the measured variable. For 
example, weight change experiments may be composed of several reactions or 
stages. For TG experiments at constant heating rate, the start and end of a reaction 
can be defined by two successive weight change plateaus. (Things are different for 
DSC experiments where the measured variable is proportional to the reaction rate, 
and reactions are defined by peaks so that the reaction variable must be obtained by 
integration of partial areas.) In any event, it is convenient to define a degree or 
fraction of conversion variable defined by 

cr = ( x i -  x ) / ( x i -  x f )  (7) 
o r  

(1 - ~) = (x  - x f ) / ( x i -  x f )  (8) 

where xi  is the initial value of the reaction variable at an arbitrary zero time and x f i s  

its final value at the completion of the reaction. It is often found convenient to use 
the reduced reaction variable ~, particularly when only a part of the experimental 
data is being analyzed or several different experiments are being compared. 
Substitulion of a for the reaction variable is not without some complicating factors. 
To take an example, fit of the conversion function is often attempted (and 
occasionally successfully) by assuming 
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f ( x )  = ( x - x f ) "  (9) 

so that for an isothermal reaction the rate is given by 

dx/dt  = k ( x -  xf)"  (10) 

where n is called, in analogy to homogeneous systems, the reaction order and k is the 
nth order rate constant. If  we translate this equation into terms of  e (degree of  
conversion) we obtain: 

d(a)/dt = k'(1 - a)" (11) 
so, therefore, 

k' = k ( x i -  x f )  ~"- x). (12) 

This points up an often overlooked fact: that only in the case of  a first order 
reaction are the rate constants of  the dx/dt  and the d(a)/dt equations equal. In all 
other cases k is a function of  the reaction variable range which usually depends on 
specimen weight. As a result of the complex nature of  these systems, either k, k', or 
neither may represent the true rate constant. It is good practice to: 

Keep the initial specimen weight constant 
when one intends to compare kinetic parameters from separate experiments. 

This rule is especially true when these parameters are intended to be used for 
applied purposes. When a thorough investigation of  the kinetics is being 
undertaken, then it is essential to determine the dependence of  rate on not only the 
initial sample weight but also all the other procedural factors which may affect it 
such as surface to volume ratio, composition, pressure and flow rate of purge gas, 
heating rate, and so on. Testing the effect of  sample dimensions is particularly 
important in T G  experiments but can also affect DSC results where differing 
geometry will affect heat conduction or other experimental factors. 

When only part of  the experimental range of  the measured variable is being used 
in calculating u, matching ranges of  the variable should be used when values from 
several experiments are being compared. Even so, the range over which the reaction 
takes place may change when the thermal treatment is changed. For  example, if 
poly(acrylonitrile) is heated slowly, then a ring closure reaction occurs and a large 
amount  of carbonaceous residue is produced at higher temperatures. On the other 
hand, if it is heated rapidly enough, the temperature will quickly pass through the 
first stage and reach temperatures at which much more primary degradation 
reactions occur. This latter case results in chain scission so that more volatiles and 
less residue will result. Therefore it is impossible to define consistent ranges for ~ for 
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the above reactions when experiments at differring heating rates are compared. 
Another example of changing ~t with temperature programming is the isothermal 
cure of resins. Since the cure reaction practically ceases when the glass transition 
temperature is reached and the glass transition temperature increases with 
increasing degree of cure, the reaction will stop when the glass transition 
temperature reaches the experimental temperature. Therefore, the higher the 
isothermal temperature, the greater the amount of cure reaction which will take 
place. Thus, for this system, the range over which ct is measured will increase with 
increasing isothermal experimental temperature. 

Fortunately there is a fool proof way for testing for thermal history dependence 
of reaction kinetics [11] although this simple test is but rarely intentionally 
performed. This method is illustrated in Figure 4a where reaction temperature is 
plotted against degree of conversion for three experiments with identical specimens, 
procedural factors and experimental variables other than temperature. (That is, 
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only the temperature programs were different.) Thus the three lines, A, B and C, 
represent the paths in temperature---vonversion space of three experiments using 
identical specimens and procedural conditions but differing temperature 
programs. The three experiments are brought to the same temperature when at the 
same degree of conversion. If their rates at this point are equal, then there is no 
thermal history dependence at this point of concurrence. If their rates differ 
significantly at this point, then the reaction is path dependent and you are in trouble 
because kinetics parameters determined from the comparison of  two or more 
experiments with differing temperature programs are probably in error. Figure 4b 
shows a simple way for producing a point of intersection from a constant heating 
rate and an isothermal experiment. In this "case, one always has a point of  
intersection when the temperature of  the constant heating rate experiment reaches 
the temperature of the isothermal experiment and the agreement of the rates can be 
observed at this point. 

The methods for fitting the form o f f ( x )  to an analytical expression have been left 
to the end of this paper and for good reason. One must face it, it is practically 
impossible to devise satisfactory models for many cases. As a beginning, one may 
test to see if the kinetics follow a simple nth order reaction. Data  from an isothermal 
experiment can be treated by the method of  van't  Hoff  [12], as modified by Letort 
[13]. Thus, from the equation for an nth order reaction, 

d~/dt = k(1 - ~)" (13) 

upon taking logarithms, one obtains 

In d~/dt = In k+n In (1 - ~). (14) 

Therefore one may plot In d~/dt against In (1 - ~) and obtain n from the slope and 
Ink from the intercept as in Figure 5a. The advantage of this method is that n and 
Ink  are determined nonsubjectively whereas in integral techniques of kinetics 
analysis, a fit is forced to some nth order or other type equation. In these fits of  
integrated equations, significant inconsistencies may be ignored or assumed to be 
only minor and rationalized away. 

Occassionly equation (13) will fit the data but, more often, it will not. Some other 
cases are given in Figure 5b. In Case A, the break in slope suggests that the reaction 
order n changes during the experiment. In case B, the curve has a constant slope 
only for part  of  the reaction. An example of this situation is a reaction system for 
which the kinetics eventually become diffusion-limited and follow negative first 
order kinetics. In case C, it appears the order remains the same, but the value of the 
rate constant changes during the reaction. In case D, which is unfortunately the 
most common, none of the reaction kinetics appear to follow nth order. In any 
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event, with this method, significant inconsistencies can not be ignored or 
rationalized away as often happens during integral curve fitting. 

If the simple equation used in the Letort method is not sufficient, then more 
complex kinetic expressions must be tested. These may be selected for many 
reasons--1, from analogy to comparable systems, 2. from the chemistry and 
physics of the reaction, 3. fr6m the energies of involved bonds, 4. from the 
geometry of the system, 5. from the overall shape of the experimental curves, and so 
on. Many large lists of specific equations to test--two or three dimensional 
diffusion, various Avrami type equations, contracting sphere or contracting 
cylinder geometry, Prout-Tomkins equation, autocatalytic (cure) reactions, free 
radical chain polymer degradations, etc., are found in journal articles and text 
books for both differential and integral forms and for both isothermal and constant 
heating rate cases. There are also, of course, computer programs for testing data to 
these equations. I prefer to fit the differential form of the rate equation as it is often 
simpler and can be done with less subjectivity. However, many other scientists 
prefer to test various integrated formulae individually. 

The question, "How do know that you have the correct form fo r f (x ) ? "  still has 
not been answered, and there is no simple answer. One has to test each proposed 
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equation under many differing conditions and see how its parameters change with 
temperature, heating rate, and all of the other procedural variables which I have 
mentioned before. 

Many of the suggestions presented in this review are summarized in the list of 
general rules given below. 

Some general rules for the kinetics analysis of thermal data: 

I Match experimental conditions between calibration and experiment. 
II Use the smallest specimen which can be measured accurately. 

III Use the slowest heating rate (or lowest temperature) which time constraints allow. 
IV Vary each procedural factor (one by one) for theoretical studies. 
V Keep all procedural factors constant for practical applications of kinetics. 

VI Fit data from isothermal experiments to determine parameters for f(ez). 
VII Fit data at the same degree of conversion to determine parameters for k(T). 

VIII Keep initial specimen weights constant when comparing kinetic parameters from separate 
experiments. 

IX Test for thermal history dependence of the rate (at a point of concurrence). 

(Note: Like all general "rules", the above list contains many oversimplifications. For example, rules 
II and III should be applied only in setting up empirical kinetics methods for characterization or quality 
control. In serious kinetics studies, wide ranges of heating rates, isothermal temperatures, specimen size, 
and other procedural variables should be investigated to more fully elucidate the kinetics behaviour of 
the system.) 
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Zusammenfassung - -  Die Kinetik der mittels thermoanalytischer Techniken untersuchten heterogenen 

kondensierten Phasensysteme ist h~iufig komplex und gew6hnlich durch viele experimentelle Faktoren 

beeinfluBt, wie Probengeometrie, thermische Vorgeschichte, Gasatmosph~ire usw. Diese Komplika- 
tionen bringen viele Probleme hinsichtlich der Versuchausfiihrung, der Datenanalyse und besonders der 
Interpretation der Ergebnisse mit sich. Die vorliegende Arbeit befaSt sich mit den praktischen 
Anwendungen der thermoanalytischen Kinetik. Wege zur (dberwindung oder zumindest  Vereinfachung 

der obigen Probleme werden vorgeschlagen und Einsprfiche gegen fibersimplifizierte Techniken 

erhoben. Die Grenzen verfinftiger Erwartungen hinsichtlich der theoretischen Bedeutung und der 
empirischen Anwendung der abgeleiteten kinetischen Parameter  werden diskutiert. 

Pe31OMe - -  KI4HeTHKa reTepOreHHblX, qba30-KOHIIeHcHpOBaH H blX CI'ICTeM, t'13yqeH Ha~ 

TepMoaHa:TrlTHqecKI4Mri MeTo22aMH, ~OBO3bHO cJqo~Haa I4 O6blqHO 3aTpar/4BaeTca MHOFHMH 3Kcrleprl- 

MeHTaYlbHblMH qbaKTOpaMr~: reoMeTpHe.~ o6pa3ua, ero TepMHqecK/4M nporicxo~)leHrleM Fa3OBOH 
aTMocqbepo~ rf ~Ib. ~)TH OCJIO~KHeHtIfl Bbl3blBal-OT MHOFO npo6neM np• Bbl6ope 3rcneprlMeHTa3briblx 
yC,rlOBHH, ariaJm3e IlaHHblX H, oco6enrio, npn rlHTepnpeTattHrl pe3yYlbTaTOB. CTaTb~ KacaeTc~ 

llpaKTltqeCKOrO t'ICnOJlb3OBaHH~I TepMoaHaJ1HTI4qeCKOI~ KI4HeTHKH. Flpe~2:Jo~eHbi nyTH npeollo~eHHa 
Hnrh no rpafiHefi Mepe, yJIy,~mertHa neroTopb~x H3 BbltneynoManya-E,ix npo6.~eM n npHBe~lem,l 

npejlocTepe~eHHa, Kaca~ottLHeca qpe3Mepno FIpOCTblX I4 <<3aKOHCepBHpOBaHHblX>~ MeTO~IOB aHa.~H3a 

K~IHeTI4qecKrlX ~aHHblX. O6cy~;lem,t oFpaltHtleHH~t IIe~qecoo6pa3HOCTH MeTO21OB ;IJDI TeopeTnqecKoFo 
3HaqeHH~ 14 3Ml~rlpHqeCKOrO Hcno~b3OBaHH~I BblBe~eHHblX KI4HeTI4qeCKHX napaMeTpoB. 
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