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A highly simplified method for calculating heat of phase transitions from DTA data 
is presented. Two DTA curves are needed to calculate the heat of transition and the 
specific heat of the sample: one is for the original sample and one is for a sample pre- 
pared by mixing the original sample with some unreactive diluent the specific heat of 
which is known. The data of the DTA curves used in the calculations are the peak area, 
the rate of heating and the deviation of the DTA curve from the base line. 

The quantitative determination of thermal effects by differential thermal ana 
ysis (DTA) using normal apparatus is based on the well-known relation between 
the peak areas (S) and the heat (Q) absorbed or liberated by the substance in- 
vestigated [1 - 5]. This relation is usually expressed mathematically by the equa- 
tion 

S = KQ (1) 

Owing to the extremely high number of  factors determining the value of the 
coefficient K, it is practically impossible - at least at present - to give a full 
mathematical interpretation of  K [6, 7]. Attempts to take these factors into 
consideration empirically have led to much valuable experimental material in 
respect to the dependence of the peak area on various experimental conditions 
and on the characteristics of  the substance investigated, i.e. heat conductivity [8], 
heat capacity [9, 10], shape [11] and degree of  dispersion [12] of  the sample, 
rate of  heating [13], rate of  heat exchange between the sample and the medium 
[14], position of  the junction of  the thermocouple in the sample [4, 9], etc. It  
seems reasonable to assume that all mentioned and unmentioned factors are 
reflected in the geometry of the thermal curves. The aim of  the present paper  is 
to find a method for their simplified mathematical  analysis. 

Before passing to the mathematical treatment of  thermal curves, it is necessary 
to discuss the effect of  the thermophysical properties of  the sample on the geo- 
metrical elements of  the thermal curves. 

A number of  limitations assumed by various authors attempting the mathematic 
interpretation of  thermal curves [7, 15] reflects that they accept the dependence 
of  the geometry of  thermal curves on the thermophysical properties of  the sample. 
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Such a limitation is, e.g. the assumption that "the beginning and the end of the 
thermal effect are placed at the same level" [15]. 

Experimental data on the dependence of the geometrical elements on the ther- 
mophysical properties of the sample are very scarce [8, 10]. They show that the 
geometrical elements of thermal cur~es (viz. the deviation of the differential curve 
from the zero line as well as the peak area) depend on the thermal conductivity 
of the sample. A consequent mathematical analysis of these facts is found in the 
work of Piloyan [15] which is one of the most valuable contributions to the subject, 
both theoretically and practically. 
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Fig. 1. Heating and cooling DTA curves of pure ammonium chloride 

However, at the moment of transition, two phases of the sample are present, 
the starting phase and the final phase. No definite answer is given in the literature 
to the question whether it is the thermophysical characteristics of the starting 
phase or of  the final phase which actually determine the shape and the parameters 
of  the thermal curve. This is all the more important to decide since these charac- 
teristics often differ sharply (e.g. in the case of  melting). 

The effect of thermophysical characteristics is particularly impressive in thermo- 
grams of substances with reversible phase transitions. In this case all other factors 
can be easily kept constant: heating and cooling thermograms can be taken repeat- 
edly in any required order of sequence withom changing anything in the apparatus 
and the system can be strictly isolated from all external effects. 

Fig. 1 shows thermal curves for heating and cooling ammonium chloride in the 
temperature range of  its reversible polymorphous transition. Although the peaks 
on the curves correspond strictly to the same value of the phase transition heat, 
the peak areas on the curves for heating and cooling are not the same. The peak 
area in the cooling diagram is almost 36% greater than that in the heating diagram. 
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In the literature dealing with the influence of various factors on the value of the 
peak area, two possible reasons are found which may cause the difference between 
the experimentally obtained area values: 1. a difference in the transition tempera- 
ture, 2. a difference in the conditions of  heat propagation in the directions towards 
the sample and away from the sample. 

Differences in the transition temperature m a y -  as shown earlier [ 8 ] -  cause 
a sensible difference in the peak areas if they reach a substantial value. The higher 
the transition temperature, the less this difference is reflected in Lhe peak area. I t  
is easy to show [8] that these factors are able to change the ratio of  the peak areas 
by approximately 2j~ 
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Fig. 2. Heating and cooling DTA curves of a mixture of ammonium chloride and sodium 
chloride (1 : 1 weight parts) 

The effect of  the second assumed reason is also small, although no quantitative 
evaluation of  this effect could be found in the literature. 

Finally, even if it were assumed that the above-mentioned reasons are respon- 
sible for the difference in the peak areas, they are absolutely unsatisfactory for 
explaining the experimental facts illustrated in Fig. 2. In this figure, heating and 
cooling curves of  ammonium chloride diluted with an unreactive substance 
(sodium chloride) in a weight ratio of  1 : 1 are shown. As a result of the dilution, 
the transition temperature remains practically unchanged but the difference between 
the peak areas is sharply reduced from 36~  to 2 0 ~ .  

In our opinion, the difference between the areas is due to the difference in the 
thermophysical characteristics of  the starting and final phases. 

Let us consider the position of the differential curve relative to the zero position 
(line ALE1) in the quasi-steady state (AB and DE, Fig. 1). It  becomes obvious 
that the starting phase and the end phase are characterized by substantial differ- 
ences in their thermophysical properties (thermal condtmtivity). (It should be men- 
tioned that in these experiments air was used as a standard and not aluminium 
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oxide as is often applied. Thus, this method, in its physical sense, is related closely 
to the "standardless thermography method" [17]). 

The higher the thermal conductivity, the less the deviation from the zero line 
and the less the peak area. 

The first of these statements is expressed mathematically by the well-known 
equation 

V R  2 
A t -  

Fa 

where V = rate of heating, 
R = radius of the cylindrical or spherical sample, 
F = shape coefficient, 
a = thermal conductivity of the sample. 

The second statement can be considered as confirmed experimentally in [8] and 
[10]. 

By comparing these statements with the data in Fig. 1 i: can be concluded that 
the peak area depends on the thermophysical properties of the final phase. 

The effect of the unreactive diluent consists in reducing the difference between 
the thermophysical properties of the sample before and after the transition and 
thereby reducing the difference between the peak areas (Fig. 2). 

The above statements are confirmed by the analysis of the heat supply necessary 
for phase transformation. In fact, the peripheral layer of the sample in which the 
phase transition starts first receives heat only from the outside. The heat supply 
to this first layer is determined by the thermal resistance of the medium which 
separates the heating element and the surface of the sample. The second layer 
of the sample which lies deeper receives heat also only from the outside but the 
thermal resistance opposed to the supply of this and all following heat portions 
is composed of the thermal resistance of the separating medium and the thermal 
resistance of the transformed layer which has the thermal characteristics of the 
new, final phase, for temperatures near the transition temperature. 

Thus, it may be concluded that the peak area in the differential diagram is 
determined, apart from other factors, by the thermophysical properties of the 
substance in the final phase, near the transition temperature. 

Passing now to the question of the mathematical relation between the geometrical 
elements of the thermal curves and the thermal effect, let us first examine the ther- 
mal curves in the case where no sample and no standard is present, i.e., when both 
junctions of the differential thermocouple are placed in empty test tubes. For the 
case of an "ideal" apparatus, the differential curve will give a straight line coincid- 
ing with the zero line AtE1 (Fig. 3). The temperature curve will give an inclined 
straight line passing through the points T1 and T4. These curves show that the 
heat supply to both junctions of the thermocouple is identical and no temperature 
gradient occurs between the junctions. 
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In the next experiment all thermal conditions are left unchanged and one of the 
test tubes is filled with the sample. In this case the thermal curves change and will 
take the form of  ABCDE and T1T2T3T w 

The change of the differential curve in the quasi-steady range is interpreted 
physically in the following way: that junction of the thermocouple which is 
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Fig. 3. Quantitative elements of the DTA curves 

placed in the sample will always be colder since part of the heat flow is absorbed 
by the mass of  the sample. The area limited by the line A1Et and the curve ABCDE 
will depend on the quantity of heat absorbed by the sample [15, 16]. This can 
be expressed in a generalized form for the interval AB by 

$1 = K1Q1 (2) 

where S 1 = area A1B1BA , degree �9 minute 
Q1 = heat absorbed by the sample when heated from T 1 to T2, kcal 
/<1 = proportionality factor, degree �9 minute/kcal. 

The factor K 1 is a highly complex function of  a great number of  variables in- 
cluding the thermophysical properties of the sample. 

Since in the investigated interval AB no phase transition occurs in the substance 
and, therefore, heat is used up only for increasing the temperature of the sample 
by d T =  T 2 -  T1, Q1 can be expressed by 

01 = MCI dT (3) 
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where M -- mass of the sample, g, 
C i = specific heat of the sample, kcal/g �9 degree. 

The area S 1 is equal to the product of A t  1 and (% - zl), i.e. for low values of  
T 2 - -  "~i ---= d T  

S 1 = A t l d Z  (4) 

d T  
From Eqs (2), (3) and (4), s u b s d t u t i n g ~ -  = V 1 the following expression is 

obtained: 

A tl = K I M C ,  V~ (5) 

Eq. (5) is valid for any interval of the differential curve where no transition 
occurs, provided that the values used are related to this interval. Thus, at the 
moment %, presuming that in this moment the system is in a quasi-steady state 
and the differential curve passes along CE, Eq. (5) takes the form of 

A t  = K M C V  (6) 

The coefficients K in Eqs (1) and (6) expressing the thermal proportion of the 
area under the same conditions (both are related to heat transfer conditions 
through the final phase at temperatures near the transition temperature and to 
identical experimental conditions) can be taken as equal. 

By solving Eqs (1) and (6) and substituting Q = m q ,  where q = specific thermal 
effect in kcal/g and m = mass of the thermoactive component in g, or the total 
mass of the investigated sample (for the case M = m), the following equation is 
obtained : 

V 
q = Sz~ t C (7) 

The specific thermal effect of the transition is equal to the peak area multiplied 
by the heating rate and the specific heat of the sample and divided by the deviation 
of the differential curve from the zero position. 

On the basis of Eq. (7), thermal effects can be determined even without compar- 
ison with thermal effects of standard materials if the specific heat of the investigat- 
ed substance is known. However, this value is unknown in many cases [6]. 

In such cases, since the physical interpretation of A t and C have been given by the 
analysis of the heating and cooling curves, viz. that these values correspond to the 
final phase of the sample for temperatures near the phase transition temperature, 
it is possible to derive equations for calculating the specific heat of the substance 
investigated. 

The equation for the specific heat is derived on the basis of Eq. (7) which is 
written in a more generalized form (without the condition M = m): 
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V M 
q = S - - -  C kcal/g thermoactive substance (8) 

At m 

For the case when the initial sample is diluted with some indifferent diluent, 
Eq. (8) takes the following form: 

q = $2 V2 M2C,e kcal/g thermoactive substance (9) 
At2 m2 

where all symbols with the subscript 2 correspond to the mixture of the initial 
sample and the diluent, and m and m2, are the masses of the thermoactive compo- 
nent in the samples M and 342, respectively. 

Starting from the rule of additivity for the heat capacity of physical mixtures, C2 
can be exptessed by the heat capacity of the initial sample C and the heat capacity 
of the diluent C~/if the weight ratio of the initial substance in the mixture (n) is 
known: 

c~ = n c  + (1 - n )cd  (lO) 

By substituting Eq. (10) into Eq. (9), solving Eqs (9) and (8) and carrying out 
some simple algebraic transformations in which M, M2, m and m~, are eliminated 
by introducing n, an equation is obtained for calculating the specific heat of the 
original sample: 

c = S2V,~At (1 - n) Cd ( l l )  

S V A t  2 -  S2V 2At  n 

Eq. (11) shows that the values for the thermal effect of the phase transition and 
the percentage of the thermoactive component are not indispensable to determine 
the specific heat of the original sample. On the contrary, by introducing the value 
of C calculated by means of Eq. (11) into Eq. (7), the specific thermal effect is 
obtained in kilocalories per gram of the original sample. 

It is interesting to note that this procedure allows not only the specific heat of 
the substance undergoing a phase transition to be calculated but also that of the 
unreactive diluent. In this case the diluent and the substance investigated change 
places and C d is the unknown in Eq. (11). The specific heat of the unreactive sub- 
stance at the phase transition temperature of the thermoactive "diluent" can be 
determined : 

i) by means of a single thermogram if the thermal effect of the phase trans- 
formation and the specific heat of the "diluent" are known: 

At2 n 
Cd - qC - -  (12) 

&~ (1  - n )  

ii) by means of two thermograms, namely that of the pure diluent and that 
of the mixture if a) the thermal effect of only the thermoactive diluent is known, 
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or b) only the specific heat of the final phase of the thermoactive "diluent" at the 
transition temperature is known. For case a), 

At.,. At) n 
Ca = S2V 2 ~ (1 - n) q' (13) 

for case b), 

SVAt 2 ) n 
Ca = SzV2At 1 (1 - n) C (14) 

In these equations S, V, A t, q and C, as in all previous equations, correspond to 
the thermoactive sample; $2, V2 and Atz correspond to the mixture, and n is the 
weight ratio of the thermoactive substance in the initial sample. 

Eqs (12) - (14) are obtained simply by writing the result of solving Eqs (8) - (10) 
in various forms. 

Thus, the thermal effect of the phase transition can be calculated by using the 
data of  two thermograms: the thermogram of the original sample and the ther- 
mogram of a sample obtained by diluting the original sample in a known ratio 
with an unreactive diluent the specific heat of which is known. For the calcu- 
lations, three data of the thermal curves are needed: the peak area, the rate of 
heating and the deviation from the zero line. 

When deriving the equations, an "ideal" apparatus has been assumed. Under 
practical conditions, this would be a very cumbersome task which in many cases 
could not be approximated satisfactorily. It can be shown that neither an "ideal" 
apparatus nor  the use of air as a standard are indispensable conditions but can 
be dealt with by means of a single "adjustment" thermogram. 

It should be remarked that the equations obtained need further improvement 
in some respects, particularly with regard to a more argued choice of the measuring 
points for the divergence of the differential curve from the zero line, for the rate 
of  heating (if this rate is not constant) and possibly also with regard to the limiting 
of the areas. For  this reason, the present paper should be regarded only as an 
attempt at a highly simplified mathematical treatment of the determination of 
thermal effects by differential thermal analysis, needing further improvement and 
development. 
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R/~SUM~ --  On ddcrit une mdthode simple pour  calculer les chaleurs des transit ions de phase 
/t l 'aide des donndes d'analyse thermique diff6rentielle. II est ndcessaire de connaltre la chaleur 
spdcifique et les thermogrammes de l 'dchanti l lon pur  et en mdlange avec une substance indif- 
f6rente, de chaleur sp6cific connue. Pour  les calculs, on se sert des donndes suivantes : surface 
des pics d'A. T. D., vitesse de chauffage et d6viation de la courbe d'A. T. D. par  r appor t / t  la 
ligne de base. 

Z U S A M M E N F A S S U N G  - -  Eine einfache Methode zur Errechnung der Werte der Phasenfiber- 
gangsw~irme aus den D T A  Daten  wird besprochen. Die Kenntnis  der spezifischen W~irme der 
betreffenden Substanz und zwei Thermogramme sind hierzu n6tig, jenes der Originalprobe und 
jenes einer Mischung der zu prfifenden Substanz mit einem indifferenten Stoff yon bekannter  
spezifischer W~irtne. Die notwendigen DTA Daten  sind die Spitzenfl/ichen, die Erhitzungs- 
geschwindigkeit und die Abweichung der D T A  Kurve yon der Nullinie. 

Pe3toMe. - -  ~[aH MaKCrIMaJ]BHO ylIpouleuHbl~ MaTeMaT~IHeCKHf~ MeTO~I ~:Ifl pac~IeTa 3rla~eHHf, i 
TenJIOBblX 3qbqbeKTOB qba3oBoro npeBpattIeuH~ no j/aHHt,IM ~rlqbqbepesiiHaaI~noro TepMHqecKoro 
ananri3a (~TA). TenJioTa qba3oaoro npeBpamenrm ri TennoeMKOCTb rlccne~yeMoro o6pa3ua 
MOryT 6blTt, paccn~iTarn, i no /IaHHblM IIHqbqbepenlmanbHoro TepMrt~ecroro anann3a 02TA) 
't~ICTOrO rlCXO/Irtoro BelIIeCTBa rI o6pa3t~a, pa36aBIIeHHoro JIrO6l, iM HH]IH~qbepeHTHblM pa36a- 
BrITeJIeM C rI3BeCTIIO~ TeriJIOeMKOCTblO. ,~JIIt pac~eTOB /IOCTaTOqHO rlMeTb cne~yIOmrle ~aHHl, m: 
nJIoma2a, nrlKa, cKopocT~, HarpeBa rI OTrJIoHen~te ~IrlqbqbepenImam, no~ i~prmo~ 0ITA) OX HyJIe- 
BO~ JIHHHH. 
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