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On the central limit theorem for lacunary
trigonometric series

I. BERKES
1. Introduction

It is a well known fact that lacunary subsequences of the trigonometric system
exhibit certain properties of independent random variables, e.g. the central limit
theorem holds for them. A sharp result in this direction is due to ErpGs [7],
who proved that ‘

a) If the sequence {m} of integers satisfies

1.n R N A
then the sequence cos 2nn, x obeys the central limit theorem.

b) For any constant c>0 there is a sequence {n.} of integers such that

(1.2) Resd/m = 1+c/V ik

and the sequence cos 2nn,x does not satisfy the central limit theorem.*

In other words, (1.1) is the optimal growth condition for the validity of the
central limit theorem.

It is natural to ask what causes this sudden change in the behaviour of cos 27nn, x
when we replace (1.1) by (1.2), what is the property it has under (1.1) but not neces-
sarily under (1.2) which causes it to satisfy the central limit theorem. Of course,
one can expect information on this question from Erd8s’ proof. This proof really
gives an explanation but it depends on a fairly complicated number-theoretic fact,
namely on the asymptotic enumeration of the number of solutions of a certain
diophantic equation. In fact, Erdds showed that cos 2nn,x obeys the central limit
theorem if, for any p=1, the number of solutions of the equation

(1.3) Engtng ko tn, =0 (1=ky, ke, ..., kyy = N)
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1 Erd&s gave the counterexample without proof. Years later, TARAHASHI [14] gave another co-
unterexample with a proof. i
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i (2p)!
18 ~

NP as N—<.2 And he proved that under (1.1) (but not necessarily

under (1.2)) this asymptotic formula for the number of solutions of (1.3) really
holds. The proof of this result, however, is tedious and gives little insight into the
finer details of the behaviour of cos 2am, x around the critical gap condition (1.1).
One purpose of the present paper is to give a different proof of (the positive half of)
Erdd8s’ theorem which really shows what the real role of (1.1) is. This proof depends
on the easily verifiable martingale property of block sums X, of the sequence cos 2zn, x.
Once this martingale property is established, one has to find the order of magnitude

N
of 3 E(XZ|Xy, ..., Xx_,) (Which is very easy even under a growth condition much
k=1

weaker than (1.1)) and to verify Lindeberg’s (or Ljapunov’s) condition. And it will
turn out that (1.1) is a sufficient condition (one out of many possible ones) for the
Lindeberg condition.

The above martingale approach enables us to extend the study of the behaviour
of cos 2an,x also for cases when (1.1) is not satisfied. ErdGs’ theorem does not
state that in the abscence of (1.1) the central limit theorem never holds. In fact, we
shall see that even if {n,} grows much more slowly than the order dictated by (1.1),3
the sequence cos 2nm,x obeys the central limit theorem if {n} satisfies a simple
condition of arithmetic nature. Using this fact, we can easily construct a large class
of sequences {n,} growing more slowly than ¢*° for any >0 (or even sequences
n,=0(e"***") such that cos 2nn, x satisfies the central limit theorem. (In our forth-
coming paper [5] we shall exactly determine what is the “slowest” growth order
of {n,} which still permits the validity of the central limit theorem for cos 2nn, x.)

An interesting conjecture of Erdds (see [7]) concerns the particular sequence
m=[¢*"] with B=0. It is easy to see that this sequence satisfies (1.1) for f=>1/2
but not for f=1/2. Erds, however, conjectured that with the above #,, cos 2nn, x
obeys the central limit theorem even for O<pf=1/2. Whether this is true or not
we are unable to decide. An attack on this problem would be to show that the above
mentioned arithmetical type condition holds for this sequence. This, however, seems
to be very difficult to show; in fact, this leads to a complicated number-theoretic
problem related to the *““degree of transcendence” of e. In view of recent results of
Baker [1] and MAHLER [10] this is not hopeless to show but one would need
some improvement of their results. On the contrary, it is very easy to show that
for any B=0, “almost all” sequences n,~e* have the central limit property.

2 Under the number of solutions of (1.3) we mean the number of 4p-tuples (k,, ks, ..., kop,
€1, 82, ..., E,) Such that 1=k,, ks, ..., ke, =N, &, &, ...,8,=%1 and e,nk,+...+52,nk2p=0. A
similar definition applies for equations appearing later.

3 (1.1) implies that n,/eV% .
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A further advantage of the martingale approach is that it is not confined to
the central limit theorem but it yields, at no extra cost, a large class of limit theo-
rems including almost sure invariance principles, iterated logarithm type results
etc. Considering the large difficulties in the known proofs of the law of the iterated
logarithm under growth conditions like (1.1) (see {15}, {16]), the methodological
gain is even larger here than in the case of the central limit theorem.

We mention, in conclusion, one more result which is a consequence of the
connection between (1.1) and the Lindenberg condition. In fact, we shall show that
though, by Erdgs’ theorem, under (1.2) the central limit theorem generally does not
hold, it is “almost” satisfied if (1.2) is valid with a large c¢. More exactly, if {n,}
satisfies (1.2) then we have

N —
lim sup P(Z’ cos 2zan, X < tVN/Z)—dﬁ(t) = C ¢
N-oo ¢ k=1

with an absolute constant C;. In other words, when we replace (1.1) by (1.2), the
central limit theorem breaks down “continuosly”.*

The idea of using martingale properties of block sums to prove limit theorems
for certain classes of random variables is adapted from our previous papers [2],
[3], [4]; the same idea was discovered independently by PhiLIPP and Stour [11].
The method seems to have a few more interesting applications to which we shall

return elsewhere.
2. Results

All the theorems below are probabilistic statements concerning lacunary tri-
gonometric series cos 2an, x. The underlying probability space in all of them is the
interval [0, 1] with the Borel o-field and the Lebesgue measure. The symbols P(...)
and E(..) will denote Lebesgue measure and integral of the set or function in
brackets.

We say that a sequence {n,} of integers satisfies condition B, if there is a con-
stant C such that the number of solutions of the equation

mtn=v
does not exceed C for any v=0..

Theorem 1. If the sequence {n,} of integers satisfies condition B, and

(2_-1) na/my = 1+ (log k)/k, ¢ — o,

¢ An analogous phenomenon was investigated in [4] for general lacunary series f(m x).
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then cos 2nn,x obeys the central limit theorem, i.e.

N .
P(Z’ cos2nn,x < t VN/2] - ®(t) for allt.
k=1
It is possible that condition (2.1) is superfluous in Theorem 1 and the theorem
is valid under the mere assumption that {n,} satisfies condition B,.

Theorem 2. Suppose that {n} satisfies
2.2) gy, = L+c/k* (c > 0)
with O<a<1 and furthermore, for any v=0, the number of solutions of
mtm=v (I=%k I=N)

is at most C; NY with constants C;>0, y<(1--2)/2. Then cos 2nn, x obeys the central
limit theorem.

The case y=0 in the above theorem means that the sequence {n} satisfies
condition B,; in this special case Theorem 2 follows from Theorem 1. Let us also
remark that, by Erdgs’ theorem, (2.2) alone implies the central limit theorem if
a-=<1/2, hence our theorem gives new result only if 1/2=a<].

Given a concrete scquence {n,}, the second condition of Theorem 2 is generally
not easy to verify (even in the case y=0 i.e. condition B,). This is quite apparent
in the case of Erd8s’ conjecture i.e. n,=[e*’], 0<B=1/2. Let us restrict our atten-
tion to the simplest case f=1/2. To show that the sequence n,=[e'*] satisfies
the second condition of Theorem 2 it would be sufficient to prove that every interval
of length 2 contains at most C; N’ numbers of the forme'*+el! (1=l<k=N).
This, in turn, would follow if we could show that the difference of any two such sums
(differences) is at least C, N 77, or equivalently,

(2.3) leVk £ efT teVm yoVn| = C,N-7 (1 =k,I,m n = N)

except the trivial case when the left side of (2.3) is zero because its terms are pairwise
equal with opposite signs. By Lindemann’s classical transcendence theorem (see e.g.
(12, pp. 119—120]) the sum

2.9 ket ke

is never zero if ky, ..., k, are nonzero integers and «,, ..., a, are different algebraic
numbers.® Also, there are lower estimates (see [12, p. 124]) for (2.4) if we make the

restriction that the polynomials defining «,, ..., 2, are of degree =L, their coeffi-
cients are =M in absolute value, and %,,...,k, are =P in absolute value.

5 This trivially implies the transcendence of e as well as that of x.
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Evidently, (2.3) requires a specific estimate of this sort which does not seem be
known. (The best known estimate concerns the case L=1 and is due to MAHLER
[10]. We would need an analogous result for L=2 with a little better lower bound.)

On the contrary, it is quite easy to construct sequences n,~¢** for any given
B=0 which satisfy both conditions of Theorem 2 (in fact, they are B, sequences).
Indeed, an easy calculation shows that if n,=€*+0(k") with a constant r=0
then {n,} satisfies (2.2) (with a=1-—p). It is sufficient, therefore, to construct a
B, sequence with n,=¢*" + O (k%). Now, such a sequence can be obtained by induc-
tion in the following way (see [8, p. 97]). Let n,=1. Suppose that n,, ..., n,_, are
already constructed, they satisfy |n; —e’|=5% (j=1,...,k—1) and all the num-
bers *n; tn; tn; +n; (1_11,12,13,14§k—1) are dlﬁ'erent from zero (except in
the trmal case) Smce the interval [*’ —5k3, e*” +5k3] contains at least 10k integers
and the number of different sums +tn; +n; +n; (1=j1, /2, 3=k—1) is at most
8k3, we can choose n, in the above mterval such that it differs from all the numbers
tn; £n; £n; (1), j2,Js=k—1). Hence In,—e”’|=5j* and tn; tn; tn; t+
+n; #0 will continue to hold also for j=k and 1=j,,/,,Js,/s=k. The obtained
sequence {n,} is therefore a B, sequence (in fact, all the numbers n,tn, are dif-
ferent) and n, =€+ O (k3).

The above argument shows that if in the induction step we choose n, from the
interval [e*” —5k3, ¢’ +5k°] “at random”, choosing each number of the interval
with equal probability, then the probability of a “wrong” choice (i.e. a choice
which makes n, equal to one of the sums tn; tn,tn; (1=j;,Js,Js=k—1) is
=8k3/10k>=1/k2. Hence, by the Borel—Cantelli lemma, there are only finitely many
wrong choices with probability one. Consequently, “almost all” sequences n,=
=" + O(Kk%) satisfy condition B,.

It is also easy to see that if m,=e*«"8%* L O(k") with a constant r>0 and
ctee then {n,} satisfies (2.1). The induction argument above shows that there is a
B, sequence {n} such that n,=e*%8%* 1 O(k%). Hence, by Theorem 1, for any
citeo there is a sequence n~ex°8%" sych that cos 2mm, x satisfies the central
limit theorem. It is interesting to compare this growth order with condition (1.1}
of Erdds’ theorem which implies that n, grows faster than eVx.

Theorem 3. Ler us suppose that {n,} satisfies either the conditions of Theorem 2
or relation (2.2) with a<1/2. Then the sequence cos 2nn,x obeys the almost sure
invariance principle, i.e. on a suitable new probability space we can find a sequence
X, of random variables having the same joint distributions as cos 2an,x and

Xi+ ...+ Xy = L(N/2)+0o(N?-%) gq.s.

with a constant A>0 where { is a Wiener process on the new space.
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Theorem 3 is much stronger than Theorem 2, in fact, it implies not only the
central limit theorem but also the law of the iterated logarithm, its functional form,
the so-called Lévy—ErdGs—Feller upper-lower class test etc. for cos 2nn, x. We
formulated (and will prove) Theorem 2 separately to show the general pattern in
the proof of the central limit theorem (the proofs of Theorems 1, 2 and also of Theo-
rem 4 below differ only in the choice of certain parameters). It is also instructive
to see that after proving the martingale property of the block sums, the proof of
an a.s. invariance principle does not require much more effort than the proof of the
central limit theorem.

Theorem 4. Suppose that
(2.5) Mesi/m = 1+c/Vk

Jor sufficiently large k where ¢=>0 is a constant. Then

N —_—
[im sup P(Zcos 2nn, x < t}/N/Z)—tb(t) = C,c~1/5
Neo K=1

where C, is an absolute constant.

Theorem 4 shows that if {n,} satisfies (2.5) with a large ¢ then cos 27n, x “almost”
satisfies the central limit theorem.®

3. Martingale tools

In this section we formulate two well-known martingale results which we shall
use in the proof of our theorems.

Theorem A (HeYyDE—BROWN [9]). Let Y,, Y,, ... be a martingale difference

sequence with finite fourth moments, let V,= Z",' E(Y}|Y,, ..., Y;_) and let a, be
i=1

any sequence of positive numbers. Then
1/5

— Zn'EY?_{-E((Vn—an)Z)
@.1)  sup|P((Yy+...+Y)/Va, < 1)-o()| = C| =

an

with an absolute constant C.

¢ Of course this implies that if {n,} satisfies (1.1) then cos 2zn, x obeys the central limit theorem
(Erdés’ theorem).
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In [9] this theorem is stated only for a,=EV,= Zn' EY}?; the proof, however,
i=1

is valid for general a, without any change. (Of course, it is customary to choose
a,=EV, to make the right-hand side of (3.1) small. But the above general version
of the theorem will be useful for us because in our proofs we shall choose a, not
equal, only to be close to EV,.)

Theorem B (STRASSEN [13]). Let Y7, Y3, ... be a martingale difference sequence
with finite fourth moments, let V,= > E(Y}|Y;, ..., Yi_,) and suppose V,~a, a.s.”
i=1

with some positive sequence a, and

s EY,
(3.2 2w <

n=1 4y

with 0<8<1. Then the sequence Y,,Y,, ... can be redefined on a new probability
space such that its finite dimensional distributions remain the same and on the new
space there is a Wiener process {(t) such that

Yi+...4+Y, =L(V)+o(Vi+ 4 logV,) a.s. ‘
Observe that (3.2) and the Beppo Levi theorem imply the a.s. convergence of
S’ a;®E(YYY,,...,Y,_,) and hence by V,~a, the series S’ VB E(YHYy..., Yo
:s= 1also a.s. convergent. Now =
° ] te

Z;-%g f xzdP(Y,,<x]Y1,...,Y,,_1)§Z'Vz‘9 f x*dP(Y, < x|Yy, ..., Y,o1)=
n= n n

x3=y3 n=1 o

= 1
= ZWE(Y:’YH veey Y,,_l) < oo Q.8.

n=1 )
and thus Theorem B follows from Theorem (4.4) of [13].
The conditions of the two theorems above are very similar. To prove asymptotic

normality of (Y1+...+Y,,)/l/a—,. via Theorem A, we have to verify the Ljapunov
condition

(33) az? 3 EY} 0.
i=1

On the other hand, the applicability of Theorem B requires proving the slightly
stronger condition (3.2).® (In applications there will be no problem with verifying
E((V,~a)%/a:~0 or V,~a, as.) This explains why the proof of a central limit
theorem and an a.s. invariance principle for cos 2zn, x are very similar.

? For two sequences ¢,,d, the symbol c¢,~d, means lim ¢,/d,=1.
B0
$(3.2) implies (3.3) by the Kronecker lemma (if a, is increasing).
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4. The martingale property of the block sums

To handle conditional expectations, it will be convenient to work not directly
with the trigonometric functions cos 2nn, x but first to approximate them by step-
functions ¢@,(x) as follows. Let 2'=n,<2'*1, put m=[/+8logk] and let ¢, (x)
denote the function in [0, 1) which is constant in the intervals [i27", (i+1)2™™)
(0=i=2"—1) and these constant values coincide with the respective values of
cos 2ntn, x at the points i2™™ (0=i=2"—1). Evidently |p,(x)|=1,

4.1) lcos 2nn, x — @, (x)] = 2an, 2~™ = 8n2~8losk = 30k-4

and thus
2”' lcos 2rn, x — @ (x)| < o= x€[0, 1).
k=1

Hence the sequence cos 2nm, x obeys the central limit theorem (or the a.s. invariance
principle) if ¢, (x) does and conversely.

Let us divide the set of positive integers into consecutive blocks 4,, 47, 4,, 43, ....
The length of these blocks will be specified later (in different ways in the proofs of
different theorems). In all cases, however, the lengths of A4,, 4,, 4,, ... will tend to
infinity, the same holds for 4], 4;, ... and 4; will be shorter than 4, (k=1,2, ...).
For these reasons, we call the 4, “long blocks” and the 4; “short blocks”. Let
p=p(k) be the largest integer of 4,_,, let further r=r(k) and t=1(k) be the
smallest and the largest integer of 4,, respectively. Put

T,= 2 cos2an,x, T, = 2 cos2mn,x, D,= 3 ¢,(x), Dy= 2 ¢,(x).

vEd; vEd; vE dy vE 4y,
Now we formulate our basic

Lemma (4.1). Let us assume that for some increasing function f(k)=k we have

4.2) Meaalm = 141G k=1,2, ..
and also

4.3) 2P < -2

(4.4) =

Then we have

4.5) E(D\F ) =0k O0=x<1),
46 ED}Fi-y) =5 14J+0() (0 =x<1),

where %, _, denotes the a-field generated by D,, ..., Dy_, and |4,| is the number of
integers contained in A4,. The constants in O are absolute.
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Proof. Let / be an integer such that 2'=pn,<2'*' and put w=[/+8 logp].
From the definition of ¢, it is evident that every ¢,, 1=v=p, takes a constant
value on each interval A4 of the form

4.7 A=[i27*(+D2"™) O=i=2"-1)

and thus every set {D,=a,,...,D,_,=a,_,} where a,...,aq,_, are constants,
can be obtained as a union of intervals of the form (4.7). In other words, the o-field
&, _, is purely atomic and each of its atoms is a union of intervals of the form (4.7).
Hence to prove (4.5), (4.6) it is sufficient to show that

(4.8) 4|71 [ D, dx = Ok,
(4.9 i|"* [Didx = %IA,‘HO(k‘?)
A4

hold (with absolute constants in O) for any 4 in (4.7) (J4]| denotes the length of A4).
By (4.1), |oil=1, |4,|=t, r=k, and (4.4) we have ®

(4.10) D~T,| =32 3 v4=32 v-i=Cr?= Ck-?

vEd, v=p
(4.11) \D}—T¢| = |D,—T[(ID | +|T)| = Cr-32|4,| = Cr~32t = Cr~* = Ck~2.

Hence it suffices to show (4.8), (4.9) with T, in place of D,.
Observe that for the set 4 in (4.7) we have

(i+1)2-w i+1
|4]-1 fT,fdx =2 f (> cos2mn,x)dx = f (2 cosm,s)ds
A i2~w ved, ¥ ved,

for any integer g=1; here m,=2""2zn,. Also, by (4.2)

1 2" 2'p° n
= = < _P 8 - .
m,~ 2mm,  m, _n?’ m,a/m, = 14+1/f(v)

Hence, using the relations

i+1 2
‘f cosysds| = m

1
(4.12) cos p;5COS 7o5 = 5 [cos (y1+72) s+ cos(y, —72) 5],

® In the sequel, C will denote positive constants, not always the same.
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and [4,|=t we get

|4]~ 1fT,‘dx—|f 2 cosm sds| =2 Z
védk

IU\

vEa,
=23 —=i|Ak|§2ﬂpst§2ﬂt°
ved, m, m, n, n,
l i+1
\IA]"AfT,?dx—?M,J f ( 2 cos m s)zds——ldkl
i i1 i+1
== f cos2m,sds+ 2 f [cos (m,+m,)s+cos(m,—m,)slds| =
2 vEd, | mvEy
p<v
1 2 1 1 l 1
== +2 [ + J —
2 vEd, 2mv “vé‘dk mv+m” m,—m” yedk mv
u<v
a3 1 Loy Lo
uw,vEdq, My,—m, 2 vea, M, ved, Myyy—m,
H<v
fo _1
.| —+4A = - =
l il I elvezk m =73 2.

5 7l o+ 41414 - = Sldyrt o = St pt =Sl P s s,

’ r r

In other terms, we have
|47 [Tydx=0() and || [Tidx= % |4 +0(4)
A A
where

A = tll
k= n

r

and the constants in the O are absolute. To conclude the proof, it is sufficient now
to remark that by (4.2) we have

O RS (8 g g

and thus (4.3) implies A, =k~2.
Let
Bk = Dy— E(D, %)
Then D, is a martingale difference sequence and
4.13) |D,—D,| = O(k~%)
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provided that the conditions of Lemma (4.1) are satisfied. Furthermore, Lemma
(4.1) trivially implies the following

Lemma (4.2). Under the conditions of Lemma (4.1) we have
I |

4.14) E(D{|#-) = ‘2‘|At|+0(k_2) O=x<1),
where #,_, denotes the o-field generated by D,, ..., D,_, and the constant in O is
absolute.

PrOOf. Put Uk—_‘E(Dk“%—l)’ then

E(D}|Fi_y) = E(Di— U Fi-r) = E(D}iF ) —2UE(DF 1)+ Ui =

= E(D}|# )~ Ui,

since U, 1s %, _, measurable. Hence, using Lemma (4.1) we get
1
EDYFi-) =5 |4l +0G).

Taking expected values with respect to %,_, and noting that #,_,C%,_,, we
get (4.14).

Remark. Lemma (4.1) expresses the almost martingale property of the long
block sums D, under the assumptions (4.2)—(4.4). The completely analogous state-
ment holds for the short block sums D;. In other words, if p” denotes the largest
integer of A;_,, r’ and ¢’ denote the smallest and the largest integer of 4;, respec-
tively, furthermore #,_, denotes the o-field generated by D, D;, ..., D;_,, then
Lemma (4.1) remains formally valid if we replace p, r, 1, D, F;_,, |4,| by their
“primed” versions p’, r’, t’, Dy, #,_,, |4;]. The same holds for Lemma (4.2).

5. Estimates for fourth moments

Let m<n,<... be a sequence of integers and put
M4N
.1 Sv.m = O ¢€Os2mn;x.
J=M+1
The purpose of the present section is to prove Lemmas (5.2) and (5.3) below whicn
1
give estimates for f Sk, wdx under different assumptions on the sequence {n}.

0
The first lemma is almost trivial.
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Lemma (5.1). We have (without any assumption on {n})
: ]
(5.2) Of Shudx = > N°.

4
Proof. Writing Sy ,, as a sum of four-term products JJ cos 2nn;x  (but
I=1

not collecting the terms of equal type), rewriting these products by successive applica-
1
tions of the identity in (4.12) and using the fact that f cos 2ninxdx=0 or 1 accord-

9
ing as n#0 or n=0 (nis integer) we see that the left-hand side of (5.2) is equal
to 1/8 times the number of solutions of the equation
(5.3) nptn,tn, tn;, =0 (M+1=j,js,js,Js = M+ N).

Evidently there are 4N3 possibilities to choose n j,» N> 1y, together with the signs
of n; , n; . After this choice is made, there is at most one possibility for » ;, and
its sign. Hence the number of solutions of (5.3) is at most 4N3 and thus (5.2) is
valid.

Lemma (5.2). Suppose that for some c=1

(5.4 Meam z1+cfYk k=12, ...
Then if M+ N=z=c? then we have
1
(5.5) [ St wdx = 4 (N2+&ML_3L—N—))
0

with an absolute constant A.

Proof. We begin by remarking the simple fact that if {,} satisfies (5.4) then,

for any O<a<b, the interval [a, b] contains at most

b
log—+1 members
a

of the sequence n,,...,n, (provided that L=c?*. Indeed, if n, and n, are the
smallest and the largest among n,,...,n. in the interval [a, b] then n,/n,=b/a;
on the other hand, by (5.4),

s ) 03 = 0= ol

using the fact that 1+x=e*? for O=x=1. The two estimates for n,/n, imply
2VL

c

b b
exp [L (q_p)]§ —,le g—p+1= log—+1, as stated.
2VL a a

We can now easily prove (5.5). By the proof of Lemma (5.1) the left-hand side
of (5.5) is equal to 1/8 times the number of solutions of (5.3). Therefore, it suffices
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to show that the number of those solutions of (5.3) where j, =j,=j,=j,, is at most
A,(N*+N(M+N)/c) with an absolute constant 4, (the same being valid for any
prescribed order of j,, ja, js, ja)- Now, if j,=j, then necessarily j,=j,; the number
of such solutions is evidently =8N2. It remains to enumerate those solutions whee
Ji1>j2=J:=j,; we show that the number of such solutions is at most 4, N(M + N)/c
with an absolute constant 4,.

Let k=0 be a fixed integer and enumerate those among the solutions above
where 2=n; fn; <2**'. Evidently there are N possibilities to choose n j,- The
assumption made on n; [n;, implies that n; , 1t =(1+2- 2"‘)n and thus
(5.3) can be valid only if n; (1+27 "+1)>n in other words n;, has to lie in the
interval [(1+27**Y)71n; , n; ] Since j,= =M +N, by the remark at the beginning
of the proof there are at most iﬂf—-{-—l—v— g(1+27% ) +1= ZVAi_'-N 27k

possibilities to choose nj, from the mentioned interval. In particular, if
2VM+N
¢

——27%*1<1 then there is at most one possibility for n; i.e. n; =n; which

2VYM+N

case is excluded. Hence — 27F1=1 je. k=2log(4/M+ N/c)=

c
=log 16(M + N). Using again 2*=n iz/”j3<2k+1 we see that n; lies in the interval
[27% j,» Mi,}» hence applying the remark at the beginning of the proof once more

2VM+N
we get that after choosing n;, there are at most ——log 2**1+1 =
c
2YM+N 6VM .
é—— (k+1)+1_—-——k possibilities to choose n; . Finally, if »; ,

nj,, n;, are already chosen, there are at most four possibilities for n;,. Hence the
number of those solutions of (5.3) where j,>j,=j,=j, and 2* =n,, /n <2"+1 is
at most

(5.6)

N(2VA§+‘N 2_k+1+1) 6 V]li-i—N Ak — 96N(ICIZ+N) K2k 4 24NV£W+N L.
As we noticed, k=log16(M+N) so summing the numbers (5.6) for O=k=
=log 16(M +N) and using the convergence of 2 k27% c¢=1, and log 16(M+N)=
=8(M+N)"* we get that the number of solutlons of (5.3) where j,>j,=j,=j, is
really =A, N(M+N)/c with an absolute constant A,.

Lemma (5.3). Suppose that, for any integer v, the number of solutions of the

equation
mtn,=v (M+1=k, Il=M+N)
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is at most B. Then
1
" [ Sk wdx = BN,
[
Proof. By (4.12) ¥e have

1 | M+N
Sim=5N+=5 2 cosdnn;x+ > cos 2n(n,+n)) x+cos 2n(n,—n) x.
2 2 ;=% M4+1sI<ksM+N

Collecting the terms with equal frequencies and using the assumption of the lemma
we get that

1
5.7 Sim= 5 N+ 3 ¢, cos2nvx
where the sum contains at most N2 terms and |c¢,|=B for all v. Squaring (5.7) and
integrating we get

1
[ Sk udx = -1—N2+l2c§ L L e Y-
J o gty 4 2

which was to be proved.
6. Conclusion of the proofs

Using the preparatory remarks of paragraphs 3—25, it is easy to carry out the
proofs of our central limit theorems. All we have to do is to choose the length of
the blocks 4, and 4; properly and to apply a martingale central limit theorem (e.g.
Theorem A of §3) for the centered block sums D,. This gives immediately the
central limit theorem for the sequence cos 2nm,x along the certain subsequence of
indices; to get the result for all the indices requires only an application of the Che-
bisev inequality.

To begin with the last point, let us remark the obvious fact that if for the dis-
tribution function F(x) of a random variable ¢ we have |F(x)—®(x)|=¢ for all x
and 7 is a random variable such that P(Jy|=d)=4, then for the distribution func-
tion G(x) of {+n we have |G(x)—®(x)|=c+26 for all x (we use here the fact
|@(x) — (p)|=|x—y|). A special case is the following

i
Lemma (6.1). Let S,= 3 cos Znnjx,o=l/l/§, and M =N integers, M/N=A.
Jj=1
Suppose A=2. Then

|P(SN/0VN < x)—¢(x)| =¢ forall x
implies

4
IP(SM/a VM < x)—(D(x)I =e+4Vi—1 Jor all x.
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Proof. The  decomposition N V2Sy—M 125, =N-12(Sy—8,)+
+ Sy (N~V2—M~12) the orthogonality of the trigonometric system and Min-
kowski’s inequality show that the L, norm of |Sy/cVN —Sy/cVM| is at most

—_— [ J—
2YA—1. Hence, by Chebyshev’s inequality, this random variable is =2}21—1

4
except on a set of probability =2}A—1 and thus our lemma follows from the
preceding remark.

An immediate consequence of Lemma (6.1) is that if the distribution of Sy/c YN
converges to the normal distribution as N runs through the index sequence N=N;
where N,,3/N,—~1 then the same holds for the whole sequence. Also, if Sy/o VN
“almost” converges to the normal distribution along the index sequence N=MN;
where N, 4,/N, “‘almost” tends to 1, then the same holds for the whole sequence.

Proof of Theorem 2. As we mentioned after Theorem 2, in the case a<1/2
condition (2.2) alone implies the central limit theorem, no matter what the arithmetic
structure of {m} is. This is a consequence of Erd8s’ theorem but we shall prove
this statement too because it requires no extra effort and it will show clearly why
the value a=1/2 is critical. So in what follows let us assume that one of the follow-
ing two conditions is satisfied:

a) {m} satisfies the conditions of Theorem 2,
b) {n} satisfies (2.2) with a<1/2.

Let us choose
|4, = [k*] and |4;] = [k*?-9),

where s is larger than but close to a/(1—«) and ¢=>0 is small enough. Then in
Lemma (4.1) we have f(k)=k%c, p~r~t~Ck**! (C=1/(s+1)), r—p~k**~2 and
thus the left-hand side of (4.3) is at most

(61) C12—C2kl(1—l:)—(s+l)u k115+11

with positive constants C,, C,. By s=>a/(1—-a«) we have s—(s+1)a=>0, hence
the exponent s(1—g)—(s+1)a in (6.1) is positive for small ¢ and thus (4.3) is sat-
isfied for large k. Also, r~¢ shows that (4.4) is valid for large k. Thus Lemmas
(4.1), (4.2) apply and consequently (4.5), (4.6), (4.14) are valid. Let us now apply

— 1 » :
Theorem A of § 3 for the martingale difference sequence D, with h== 2 ([K)+
k=1

+[k*®~9]); this requires an estimate for the Ljapunov quantity

6.2) a* 3 EDY
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and also for
(63) an-2E(an__a"|2)’

where V,= > E(D{|D,, ..., D,_,). If we assume condition a) above, then Lemma
k=1

(5.3) gives E(TH=Ck*(k*Y)» (since t=2k**'); if condition b) (i.e. a<1/2) is
assumed then we simply apply the trivial Lemma (5.1) to get E(T})=Ck®. Since
|Dy—T|=|Dy—Di| +|D—T,|=0(k~2)=0(1) by (4.13), (4.10) the same esti-
mates are valid (by Minkowski’s inequality) for E(D}). Hence in the two cases we
get, respectively, that the sum in (6.2) is =Cn**¢+tV%*1 or =Cn**!; on the
other hand, a;~Cn**?% In case a) the assumption y<(1—a)/2 shows that if s is
close enough to «/(1 —a) then (s+1)2y<1 holds and thus in this case (6.2) tends
to 0. If a<1/2 then a/(1—a)<1 so if s is close enough to /(1 —a) then s<1.
In this case 3s+1<2s+2 so the expression (6.2) tends to zero again. Note also

1 =n
that V,,=3 Dk1+o)=a,+0n** ') by Lemma (4.2), thus the expression
k=1

(6.3) also tends to 0. Hence, Theorem A of § 3 implies that the distribution of the
first of the following three expressions

D,+..4+4D, T+..+T, T\+T{+. . +T,+T,
— H — + —

6.4
( ) ' a, V a, Van

tends to the normal distribution if n—c. Evidently the difference of the first two
and also of the last two expressions in (6.4) tend to 0 in probability (this follows
from |D,—T,|=0(k~? and the fact that, by the orthogonality of the trigonometric

— 1 n
system, the square integral of (7] +...+ T,)/Va, is > 2 [k*~9)/a,=0(1)). Hence
k=1

the asymptotic normality of the first expression in (6.4) implies that of the third
one. (See the remark before Lemma (6.1).) By the definition of 7, T, the asymptotic
normality of the third expression in (6.4) simply means that the distribution of

N —
Sy/cVN (SN= > cos 2nn;x, o=1/y 2) converges to the normal distribution as N
=
k
runs through the index sequence N=N, where N,= > [i*]+[i **~9]. But Ny 4+1/N,—~1
i=1 :

and thus the remark after the proof of Lemma (6.1) shows that Sy/o VN
is asymptotically normal as N —o<.

Proof of Theorem 4. We may assume, without loss of generality, that in
(2.5) we have c=1. Let us choose

|4, = k* and 4;! = [k®2+9],
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- 1
where 0<d&<1/2. Then, in Lemma (4.1), we have f(k)=Vk/c, p~r~t~§k3,

r—p~k¥*% and thus the left-hand side of (4.3) is at most C;2~“:*’k3 showing

that (4.3) is valid for large k. Also, by r~t, (4.4) is satisfied for k=k,. By Lemma

(5.2) we have E(TH)=AKk*+c k%) for k=k, and since |D,—T,|=0(1) by

(4.10), (4.13) the same estimate holds for E(D}) (by Minkowski’s inequality). Putting

1 = 1
ay == > (k2 +[K%2 %) ~g n® we see that the Ljapunov quantity (6.2) is less than
k=1

A;/c for large n with an absolute constant A4,. Observe also that V,=
n o 1 =

= > E(D}|D,, ...,D,‘_,)=E D k*+0(1)=a,+0(n***%*") by Lemma (4.2) and
k=1 ' k=1

thus the expression in (6.3) tends to 0. Applying Theorem A of § 3 for the sequence
D, with the a, above we get that the distribution function F,(x) of the first expression
in (6.4) satisfies

6.5) |Fi(x)—®(x)| = Cyc™¥5 for all x

if n=ny; C; is an absolute constant. As in the proof of Theorem 2, the difference
of the first and the last expression in (6.4) tends to 0 in probability, so if F;3(x) denotes
the distribution function of the last expression in (6.4) then (6.5) and the remark
preceding Lemma (6.1) imply

(6.6) [F3(x)— P (x)| = 2C3¢~%  for all x,
for n=n,. (6.6) says that
6.7) |P(Sy, /oY N, < x)—®(x)| = 2C¢=*5  for all x,
for k=k,, where N,= Zk'(i2+[i3""+°]), oc=1/y2. Now N, y/N,~1, (6.7) and
Lemma (6.1) imply =
|P(SN/O' VN < x)—(b(x)| = 3C,c™'® for all x,
for N=N,, and thus Theorem 4 is proved.

Proof of Theorem 1. We can evidently assume, without loss of generality,
that k/c, log k is monotone increasing. (Indeed, since ¢, —~<> we can find a sequence
cp—~oo, ¢, =¢, such that k/c,logk is monotone increasing.) Let us choose

[4,] =[60*] and [4;] = (66",
where 1<6<2 is a fixed number and ¢, —0 sufficiently slowly. In this case for
k=1
the quantities appearing in Lemma (4.1) we have f(k)=k/c,logk, p= 2 [0’]+
j=1

k-2 1 1 1 1
+ 2 [g;0]1~ 1 6%, similarly r~ e t~ 6+, r—péze,‘_lok“l
Jj=1 -

0—1 0—1
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and thus the left-hand side of (4.3) is at most

1
(6 8) C42 3 k- 10%-Yc logr/r
for sufficiently large k, where C,, C;, Cq4, C; are constants depending on . Here
Cr=CpkyZCpg-1y—>°, thus if g—~0 slowly enough then ¢,_,c,~. Hence the
last expression in (6.8) is O(2~s%), showing that (4.3) is satisfied for k=k,. Also,
t/r-~0<2 and hence (4.4) is valid for k=k,. Since {n} satisfies condition B,,
Lemma (5.3) gives E(T})=C,0* (C, is a constant depending only on {n,}) and
since |5 —~T,|=0(1) by (4.10), (4.13) the same estimate holds for E(Dy). Putting

BUk+11 5 €, 2= Cotire kGUlk+11 < C 2= Cstiyc,k+Cok

1
a, == 2’([0"]+[£k0"]) ~ 26T 6"*! we see that the L_]apunov quantity in (6.2)
does not exceed !
2"' 02’(
< (02—1)-192+2
5C, = kl)l sgeT = = 5C, @—1)-2g7 72 = 5C,(0-1)

for nz=ny(6). Also, V,,=k§; E(D,fID,,...,E,‘_l)=%k§; 01+ 0(1) = a,(1 +0(1))

uniformly by Lemma (4.2) and thus the expression in (6.3) tends to 0. Applying
Theorem A of § 3 for the sequence D, we get that the distribution function F,(x)
of the first expression in (6.4) satisfies

6.9) |F(0)—@(x)] = C*(@O—-1)'5 for all x,

for nz=n,(f); C* depends only on {n.}. As in the previous proofs, the first and
third expressions in (6.4) differ only by a random variable tending to 0 in probability,
so for the distribution function F;(x) of the third expression in (6.4) we get, using
(6.9) and the remark before Lemma (6.1),

(6.10) |F3(x)— D (x)| = 2C*(0—1)¥5 for all x,
for nzn,(#). (6.10) says that
(6.11) |P(Sy, /0 VN, < x)—®(x)| = 2C*(6—1)** for all x,

k —
for k=k,, where Nk=121([61]+[810’]), o=1/y2. Evidently N,,,/N,~6, thus
Ny 41/Ny<0+¢ for k=k,, and hence (6.11) and Lemma (6.1) imply

|P(Sy/o VN < x)— ()| = 2C*(0—1)"5 +4(@+e—1)' for all x,

for N=Ny(0,¢). Since 8—1 and ¢ can be chosen arbitrary small, the last relation
shows that the distribution of Sy/cYN tends to the normal distribution.
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7. Proof of the a.s. invariance principle

The only difference in proving a central limit theorem and an almost sure
invariance principle for cos 2an, x is that after choosing the length of 4, and 4,
properly, we use Theorem B of § 3 instead of Theorem A and we have to be a little
more careful in comparing the second and third expressions in (6.4) because instead
of the convergence in probability to 0 of their difference we need a.s. convergence.

Proof of Theorem 3. Let us choose |4, |4;] in the same way as in the
proof of Theorem 2. The estimates showing the convergence to 0 of the expression
(6.2) in the proof of Theorem 2 show actually that .

% EDY

2=
k=1 bk 2

(1.1)

is convergent if J is small enough (the general term being O(k~"**) with a small
1 & n =
2>0). Here bn=3 D[]~ Cks*'.  Also, if V,= > E(D2D,,...,D,_,), then
i=1 k=1

V,=b,+0(1) by Lemma (4.2) (the conditions of Lemma (4.2) were shown to be
satisfied in the proof of Theorem 2). Hence Theorem B of § 3 implies that there is a
Wiener process {(t) such that

(7.2) 51+ ves +Dk = C(Vk)+o(Vk‘/2"’) a.s.

with a constant 7=>0.1° Replacing D,+...+D, by T +...+T, on the left-hand
side of (7.1) we commit an error O(1) (since |Dy—T;|=0(k"?); also, V,=b,+
+0(1), b~Ck**', and well known properties of the Wiener process (see e.g.
Lemma (3.6) of [3]) show that {(V,)={(b,) + O kY3 ={(b)+0(b}®) a.s. Hence (7.2)
implies

1.3) Ti+...+ T, = {(b)+o(b}/*~") ash

We also remark that replacing the left-hand side of (7.3) by T\ + T, +...+ T, + T}
we only add a term which is o(b}*™") so it does not bother the right side of (7.3).
[Indeed, (7.3} has the exact analogue

(1.4) T +...+T, = {(d)+o(d*") as.

10 Strictly speaking, we have to redefine the whole sequence D, on a new probability space
to have representation (7.2). But since the formulas are the same on the new and the old space,
we shall speak (with a little inaccuracy) as if { were defined on the original space.

! In what follows, n will denote positive constants, not necessarily the same

2
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1 &
for the short block sums (the proof is the same);!2 here dk=3 D [is"¥]. Now
i=1

it is sufficient to use the estimate {(r)=o(t}2logt) a.s. on the right side of (7.4)
and remark that d,=5b}"% with a constant §>0.] Hence (7.3) implies

7.5 T +T) + ...+ T+ T, = {(b)+o(b}? ™) as.

If ¢,=by+d, then ¢, —b,=0(b;~% with a constant >0 and thus {(b,)={(c,)+
+o(ci* ") a.s. by Lemma (3.6) of [3]. Hence (7.5) implies

T +T +.. . + T +T, ={(c)+o(ck* ™ as.
This latter relation simply says that
(7.6) Sy = L(N/2)+o(NV2"")  ass.
is valid if N=N,, where N,‘:'z':' (%) +[i*"9]). To get (7.6) for all N we only

have to show that

.7 ngrzr\}g’z(v,m [Sy— Sy, | =o(N{*"m)  as,
(7.8) N 3% l|C(1V/2)—C(1Vk/2)! =o(N/*") as.

For any N,=M<N=N,,, we have, with a constant C,

CNZ (N—M)?,
— N <

(7.9) E(ISy—Sul") = %(N—M)’*,
according as we assume the conditions of Theorem 2 or (2.2) with a<1/2 (see
Lemmas (5.3) and (5.1)). Using the Markov inequality and Theorem 12.2 of [6] we
get that in the two cases, respectively, the probability
(7.10) P(ngrgg§'k,l.|SN_SN“, = t)
(¢ is an arbitrary positive number) is at most Cyt *NZ (N4 —N)? or
Cyt ~*(N,+1—N,)® with an other constant C,. Since Ny 41~ Cok*tY, Nyyy—Ny~k*,
the expressions standing after C,¢~* above are exactly of the same order of mag-
nitude as were the upper estimates for E(D}) in the proof of Theorem 2 (which upper
estimates were used to show the convergence of (7.1)). Hence choosing ¢=5Z~%*
with a small §=0, the proof of the convergence of (7.1) yields automatically that
the expression (7.10) (with the ¢ above) is the general term of a convergent series.
By the Borel—Cantelli lemma this implies that, with probability one, the left side

12 See the remark at the end of § 4.
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1
of (1.7) is OBE~I)=0(NE~9")=0 (N}~ [since bk~3Nk) and thus (7.7)
is valid. Relation (7.8) can be proved in the same way, using

E(]L(N/2)—{(M[2)]*) = C(N—M)?
instead of (7.9).
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O ueHTpaabHOIi npee/bHOH TeopeMe IS JIAKYHAPHEIX
TPHIOHOMETPHYECKHX PHI0B

W. BEPKEII

XOpouIo HM3BECTHO, YTO BEPOATHOCTHOE IIOBEJEHHE JIAKYHAPHOIO TPHTOHOMETPUYECKOTO
pana {cos 27mn,x} TECHO CBN3aHO C KPUTHYECKAM» YCIIOBHEM NAaKyHapHOCTH

Ny Ci
(*) — =+, >
Ny

Hanpumep, ecil BBITIONHEHO YCI0BHE (% ), TO MOCIENOBATENHHOCTL {COS 27n, X} YIOBNETBOPAET
HEHTPATLHOR NpelenbHON TeopeMe, M HPH 3TOM ycaosme (% ) He Moxer 6bITh ocnabnexo. Jns
MOCIeAOBATENBHOCTEN, YOOBIETBOPAIOMHX ( %), U3BECTHBI M JPyrue pe3yibTarbl nomobHoro
poZa, B TO BPeMs KaK ANs GoJee MEUIEHHO PacTYLMX MOCNEAOBATENLHOCTEH {m} HE M3BECTHO,
MO-BHOMMOMY, HHYEro. B cTaThe pa3BuT METOO, KOTOPHIA NMPH NOMOLIKM MAPTHHTATBLHON TEXHUKH
NO3BOJIAET OPOBOMUTH MCCHENOBAHHE CHCTEM {COS 27m, X} Ul NOC/IENOBATELHOCTEN, He YIOB IeT-
BopsifolMXx ycrnosuio (% ). [TonydeHo mpocroe OOBACHEHHE ycirosds (* ), H3yYeHO, KaK «mporna-
IaeT» NEHTPabHAs MPEAeibHAA TeopeMa NpH MOoCTeneHHOM ocnabnexun ycnoBus (%) M moka-
3aHBI HEKOTOPBIE LEHTPATLHBIE MPEAEIbHbIE TEOPEMBI B OTCYTCTBHE 3TOro ycnoBus. Tlomyuenst
Opyrae npeieibHble TeOopeMbl A {COs 277, X}, HANPUMEP, 3aKOH MOBTOPHOro norapudma M
NPUHUANB MABAPUAHTHOCTH.
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