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On the central limit theorem for lacunary 
trigonometric series 

I. BERKES 

1. Introduction 

It is a well known fact that lacunary subsequences of the trigonometric system 
exhibit certain properties of  independent random variables, e.g. the central limit 
theorem holds for them. A sharp result in this direction is due to ERD6S [7], 
who proved that 

a) I f  the sequence {nk} of  integers satisfies 

(1.1) n k + l / n  k >-- 1 +ck/f-k, Cg ~ o% 

then the sequence cos 2rrnkx obeys the central limit theorem. 

b) For any constant c>O there is a sequence {nk} of  integers such that 

(1.2) nk+l/n k ~= 1 +c/1/-k 

and the sequence cos 2rmkX does not satisfy the central limit theorem. 1 

In other words, (1.1) is the optimal growth condition for the validity of  the 
central limit theorem. 

It is natural to ask what causes this sudden change in the behaviour of cos 2nnkx 
when we replace (1.1) by (1.2), what is the property it has under (1.1) but  not neces- 
sarily under (1.2) which causes it to satisfy the central limit theorem. Of  course, 
one can expect information on this question from Erd6s' proof. This proof  really 
gives an explanation but it depends on a fairly complicated number-theoretic fact, 
namely on the asymptotic enumeration of  the number of  solutions of a certain 
diophantic equation. In fact, Erdbs showed that cos 2nnkx obeys the central limit 
theorem if, for any p=>l, the number of  solutions of  the equation 

(1.3) • = 0 (1 ~_ kl, k2 . . . .  , k2p ~- N) 

Received December 17, 1977. 
1 Erd6s gave the counterexample without proof. Years later, TAKAHASHI [14] gave another co- 

unterexample with a proof. 
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(2p)~ 
is ~ N p as N--co. ~ And he proved that under (1.1) (but not necessarily 

p! 
under (1.2)) this asymptotic formula for the number of solutions of  (1.3) really 
holds. The proof of  this result, however, is tedious and gives little insight into the 
finer details of the behaviour of cos 21tnkx around the critical gap condition (1.1). 
One purpose of the present paper is to give a different proof  of (the positive half of) 
Erd6s' theorem which really shows what the real role of (I.1) is. This proof depends 
on the easily verifiable martingale property of block sums X k of  the sequence cos 27tnkx. 
Once this martingale property is established, one has to find the order of magnitude 

N 
of z~ E(X~]X1 . . . . .  Xk-l)  (which is very easy even under a growth condition much 

k = l  

weaker than (1.1)) and to verify Lindeberg's (or Ljapunov's) condition. And it will 
turn out that (1.1) is a sufficient condition (one out of many possible ones) for the 
Lindeberg condition. 

The above martingale approach enables us to extend the study of the behaviour 
of  cos 2nnkx also for cases when (1.1) is not satisfied. Erd6s' theorem does not 
state that in the abscence of ( l . l )  the central limit theorem never holds. In fact, we 
shall see that even if {nk} grows much more slowly than the order dictated by (l.1), a 
the sequence c o s  27rnkX obeys the central limit theorem if {n~} satisfies a simple 
condition of  arithmetic nature. Using this fact, we can easily construct a large class 
of sequences {nk} growing more slowly than e k` for any e > 0  (or even sequences 
n~,= O(e ~176 such that cos 2nnkx satisfies the central limit theorem. (In our forth- 
coming paper [5] we shall exactly determine what is the "slowest" growth order 
of {nk) which still permits the validity of the central limit theorem for cos 2nn~,x.) 

An interesting conjecture of Erd6s (see [7]) concerns the particular sequence 
nk=[e k~] with f l>0.  It is easy to see that this sequence satisfies (1.1) for / />1/2 
but not for f l~ 1/2. Erd6s, however, conjectured that with the above nk, COS 2nnkx 
obeys the central limit theorem even for 0-~fl~I/2.  Whether this is true or not 
we are unable to decide. An attack on this problem would be to show that the above 
mentioned arithmetical type condition holds for this sequence. This, however, seems 
to be very difficult to show; in fact, this leads to a complicated number-theoretic 
problem related to the "degree of transcendence" of e. In view of recent results of 
BAKER [1] and MAI-ILER [10] this is not hopeless to show but one would need 
some improvement of their results. On the contrary, it is very easy to show that 
for any f l>0,  "almost all" sequences nk~e ka have the central limit property. 

2 U n d e r  the  n u m b e r  o f  s o l u t i o n s  of  (1.3) we m e a n  the n u m b e r  o f  4p- tup les  ( k l ,  k2 . . . . .  k~p, 

e l ,  e2, . . . ,  e~p) such  t h a t  1 _ k ] ,  k2 . . . .  , k~p -~ N, e l ,  es, . . . ,  e~p = .+_ 1 a n d  el nk] +. . .  + e2p nkzp = O. A 
similar definition applies for equations appearing later. 

8 (I.1) implies that nk/el/k--,**. 
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A further advantage of the martingale approach is that it is not confined to 
the central limit theorem but it yields, at no extra cost, a large class of limit theo- 
rems including almost sure invariance principles, iterated logarithm type results 
etc. Considering the large difficulties in the known proofs of the law of the iterated 
logarithm under growth conditions like (1.1) (see [15], [16]), the methodological 
gain is even larger here than in the case of  the central limit theorem. 

We mention, in conclusion, one more result which is a consequence of  the 
connection between (1.1) and the Lindenberg condition. In fact, we shall show that 
though, by Erd6s' theorem, under (1.2) the central limit theorem generally does not 
hold, it is "almost" satisfied if (1.2) is valid with a large c. More exactly, if {nk} 
satisfies (1.2) then we have 

s p P  c o s 2 n n k x < t l  / - ~ ( t  <C1 

with an absolute constant C1. In other words, when we replace (1.1) by (1.2), the 
central limit theorem breaks down "continuosly". 4 

The idea of using martingale properties of block sums to prove limit theorems 
for certain classes of random variables is adapted from our previous papers [2], 
[3], [4]; the same idea was discovered independently by PHILIPP and STOUT [11]. 
The method seems to have a few more interesting applications to which we shall 
return elsewhere. 

2. Results 

All the theorems below are probabilistic statements concerning lacunary tri- 
gonometric series cos 2nnkx. The underlying probability space in all of them is the 
interval [0, 1] with the Borel a-field and the Lebesgue measure. The symbols P(. . . )  
and E(...) will denote Lebesgue measure and integral of the set or function in 
brackets. 

We say that a sequence {nk} of integers satisfies condition B~ if there is a con- 
stant C such that the number of solutions of the equation 

nk  ~__n I ~ v 

does not exceed C for any v > 0 .  

T h e o r e m  1. I f  the sequence {nk} of  integers satisfies condition B~ and 
i 

(2.1) n~+l/n~ -> 1 +Ck(IOg k)/k, c~ -, ~, 

4 An analogous phenomenon was investigated in [4] for general lacunary series /(nkx). 
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then cos 2rtnk x obeys the central limit theorem, i.e. 

P cos 2rtnkx < t I / ~ ~( t )  for  all t. 
" ~ k = l  

It is possible that condition (2.1) is superfluous in Theorem 1 and the theorem 
is valid under the mere assumption that {nk} satisfies condition B2. 

T h e o r e m  2. Suppose that {nk} satisfies 

(2.2) nk+t/n k >= 1 +c/k ~ (c > O) 

with 0-<~t<l and furthermore, for an), v>0,  the number of  solutions of  

nk-bn ~ : v (1 ----- k, 1 --~ N) 

is at most C1N r with constants (71>0, ~<(1 --:0/2. Then cos 2rtnkx obeys the central 
limit theorem. 

The case ~ = 0  in the above theorem means that the sequence {nk} satisfies 
condition B2; in this special case Theorem 2 follows from Theorem 1. Let us also 
remark that, by ErdSs' theorem, (2.2) alone implies the central limit theorem if 
~ <  1/2, hence our theorem gives new result only if 1/2<=Qt<l. 

Given a concrete sequence {nk}, the second condition of Theorem 2 is generally 
not easy to verify (even in the case ~;=0 i.e. condition B2). This is quite apparent 
in the case of  Erd6s' conjecture i.e. nk=[e~], 0 < f l ~  I/2. Let us restrict our atten- 

tion to the simplest case /~=1/2. To show that the sequence nk=[er satisfies 
the second condition of  Theorem 2 it would be sufficient to prove that every interval 

of  length 2 contains at most C~N ~ numbers of  the form eC~+e 15 (1 ~_l<k~N) .  
This, in turn, would follow if we could show that the difference of any two such sums 
(differences) is at least C2N -~, or equivalently, 

(2.3) l eCk+eCr•162177  >= C2N -~ (1 <_- k, l, m, n ~- N) 

except the trivial case when the left side of  (2.3) is zero because its terms are pairwise 
equal with opposite signs. By Lindemann's classical transcendence theorem (see e.g. 
[12, pp. 119--120]) the sum 

(2.4) ',k~ e', + ... + k, e'-i 

is never zero if k~ . . . . .  k, are nonzero integers and ~ . . . . .  ~, are different algebraic 
numbers. 5 Also, there are lower estimates (see [12, p. 124]) for (2.4) if we make the 
restriction that the polynomials defining ~ ,  .. . ,  a, are of  degree ~ L ,  their coeffi- 
cients are ___M in absolute value, and k, . . . . .  k, are ~ P  in absolute value. 

5 This trivially implies the transcendence of e as well as that of n. 
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Evidently, (2.3) requires a specific estimate of this sort which does not seem be 
known. (The best known estimate concerns the case L =  1 and is due to MAHLER 
[10]. We would need an analogous result for L = 2  with a little better lower bound.) 

On the contrary, it is quite easy to construct sequences nk,,,e kp for any given 
f l>0  which satisfy both conditions of Theorem 2 (in fact, they are B2 sequences). 
Indeed, an easy calculation shows that if nk=ekB+o(k ") with a constant r > 0  
then {nk} satisfies (2.2) (with ~ = l - f l ) .  It is sufficient, therefore, to construct a 
B2 sequence with nk=ekP+O(ka). Now, such a sequence can be obtained by induc- 
tion in the following way (see [8, p. 97]). Let n l =  1. Suppose that n~ . . . . .  nk-~ are 
already constructed, they satisfy I n ~ - e ~ P l ~ _ 5 j  s ( j = l  . . . .  , k - l )  and all the num- 
bers +nj+n~2• (1 <-j~,j2,js,j4~_k-1) are different from zero (except in 
the trivial case). Since the interval [e kB- 5k s, eke+ 5k s] contains at least 10k s integers 
and the number of different sums •177  (1 <=j~,j2,j3~k-1) is at most 
8k a, we can choose n~ in the above interval such that it differs from all the numbers 

<"  " " <  1). Hence and n j l  -~- n j s  --1- nja (1 - - J l ,  J2, J s  = k - -  [nj - -  eJ#l ~_ 5j s + nj~ • nj~ • njs q- 
+__nj~O will continue to hold also for j = k  and 1 <-jl, j . , , ja,j4~k. The obtained 
sequence {nk} is therefore a B2 sequence (in fact, all the numbers nk+nt are dif- 
ferent) and nk = e ke + 0 (kS). 

The above argument shows that if in the induction step we choose n k from the 
interval [e k~-5k 5, ekP+5k 5] "at random", choosing each number of the interval 
with equal probability, then the probability of a "wrong" choice (i.e. a choice 
which makes n k equal to one of the sums + n s • 1 7 7  ( l<=j l , j z , j s~k- - l )  is 
~_8ka/lOk 5<- l/kL Hence, by the Borel--Cantelli lemma, there are only finitely many 
wrong choices with probability one. Consequently, "almost all" sequences nk= 
=e ke + O(k 5) satisfy condition B 2. 

It is also easy to see that if nk=e~~  with a constant r > 0  and 
Ckt~o then {n~} satisfies (2.1). The induction argument above shows that there is a 
B2 sequence {nk} such that nk=e~O~ Hence, by Theorem 1, for any 
ckt~o there is a sequence nk,,~e ~~176 such that cos2nnkx satisfies the central 
limit theorem. It is interesting to compare this growth order with condition (1.1) 

of Erd6s' theorem which implies that nk grows faster than e I~. 

T h e o r e m  3. Let us suppose that {nk} satisfies either the conditions of Theorem 2 
or relation (2.2) with ~t< 1/2, Then the sequence cos 2rrnkx obeys the almost sure 
invariance principle, i.e. on a suitable new probability space we can find a sequence 
X~ of random t,ariables hat, ing the same joint distributions as cos 2nnkx and 

X I + . . . +  X~ = ~(N/2)+o(N 1/2-~) a.s. 

with a constant 2 > 0  where ~ is a Wiener process on the new space, 
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Theorem 3 is much stronger than Theorem 2, in fact, it implies not only the 
central limit theorem but also the law of the iterated logarithm, its functional form, 
the so-called L6vy--Erd6s---Feller upper-lower class test etc. for cos 2nnkx. We 
formulated (and will prove) Theorem 2 separately to show the general pattern in 
the proof  of  the central limit theorem (the proofs of  Theorems 1, 2 and also of  Theo- 
rem 4 below differ only in the choice of certain parameters). It is also instructive 
to see that after proving the martingale property of the block sums, the proof of 
an a.s. invariance principle does not require much more effort than the proof  of  the 
central limit theorem. 

T h e o r e m 4. Suppose that 

(2.5) n~+l/nk ~ l +c/}/'k 

for sufficiently large k where c > 0  is a constant. Then 

sup P cos2rrnkx < t -g~(t  <= Clc -I/5 
N ' ~ , ~  t X k = l  

where C1 is an absolute constant. 

Theorem 4 shows that if {nk} satisfies (2.5) with a large c then cos 2nnkx "almost" 
satisfies the central limit theorem? 

3. Martingale tools 

In this section we formulate two well-known martingale results which we shall 
use in the proof of  our theorems. 

T h e o r e m  A (H~YDE--BRowN [9]). Let Y~, I:2 . . . .  be a martingale difference 

sequence with finite fourth moments, let Vn= ~ E(Y~I 1:1 . . . . .  Yl-x) and let an be 
I = l  

any sequence of  positive numbers. Then 

I } e r :  + e( (V,  - a,)') 
(3.1) < t ) - e ( t ) l  C ' " '  

with an absolute constant C. 

6 Of course this implies that if {n~} satisfies (i. I) then cos 2nnk x obeys the central limit theorem 
(Erdfs' theorem). 
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In [9] this theorem is stated only for a . = E V . =  ~ EYe; the proof, however, 
t = l  

is valid for general a. without any change. (Of course, it is customary to choose 
a , = E V  n to make the right-hand side of (3.1)small. But the above general version 
of the theorem will be useful for us because in our proofs we shall choose an not 
equal, only to be close to EV..)  

T h e o r e m  B (STRASSEN [13]). Let Y1, Y~ . . . .  be a martingale difference sequence 
n 

with finite fourth moments, let II. = ~ E(Y~t Y1 . . . . .  Yi-O and suppose Vn ~,,a. a.s. 7 
i = 1  

with some positive sequence an and 
o o  4 EY~ 

(3.2) n--z:'1 a 2a < oo 

with 0 < ~ < 1 .  Then the sequence Y1, Y~ . . . .  can be redefined on a new probability 
space such that its finite dimensional distributions remain the same and on the new 
space there is a Wiener process ~(t) such that 

YI + ... + Y.  = ~ (Vn) + ~ x +a)/4 log 1I,) a.s. 

Observe that (3.2) and the Beppo Levi theorem imply the a.s. convergence of 

a~2a E(Y~[ Y1 . . . . .  Yn-O and hence by V,~',,an the series ,~  V~Sa E( Y4. [ Yx ... . .  Yn-O 
n = l  nffi l  

is also a.s. convergent. Now 

j x dP(Yn < xlY1 . . . . .  Y.-1) ~- ~ ~ j x '  dP(Yn < xlYl . . . . .  Y.-x) = 
n ~ l  n 2 a n ~ l  " n - - a o  

X > ' V  n 

and thus Theorem B follows from Theorem (4.4) of [13]. 
The conditions of the two theorems above are very similar. To prove asymptotic 

normality of (I'+1+-..+ Y n ) / ~  via Theorem A, we have to verify the Ljapunov 
condition 

(3.3) 0;  3 ~ EY~ -: O. 

On the other hand, the applicability of Theorem B requires proving the slightly 
stronger condition (3.2). 8 (In applications there will be  no problem with verifying 
E((Vn-an)2)/a~,+O or V,.~,a. a.s.) This explains why the proof of  a central limit 
theorem and an a.s. invariance principle for cos 2nnkx are very similar. 

For two sequences c., d. the symbol c.,,-at, means lira c./d.= 1. 
n..~ or 

s (3.2) implies (3.3) by the Kronecker lemma (if a,, is increasing). 
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4. The martingale property of the block sums 

To handle conditional expectations, it will be convenient to work not directly 
with the trigonometric functions cos 2nnkx but first to approximate them by step- 
functions ~Ok(X) as follows. Let 2Z~nk<21+1, put m-~[l+8 logk] and let q~k(X) 
denote the function in [0, 1) which is constant in the intervals [i2 -m, ( i+ 1)2 -m) 
(0<-i~_2m-1) and these constant values coincide with the respective values of  
cos 21tnk x at the points i2-  m (0 ~_ i~  2 m -  1). Evidently Iq~k (x) l -~ 1, 

ICOS 27mkX--tPk(X)I <--_ 2nnk 2-m ~_ 8/r2-Slog k ~ 32k -4, (4.1) 

and thus 

ICOS2nnkx--tPk(X)[ < oo XE[0, 1). 
k=l 

Hence the sequence cos 2nnkx obeys the central limit theorem (or the a.s. invariance 
principle) if (Pk(x) does and conversely. 

Let us divide the set ofpositive integers into consecutive blocks A a , zJ~, A2, A~ . . . . .  
The length of these blocks will be specified later (in different ways in the proofs of  
different theorems). In all cases, however, the lengths of A1, As, Az . . . .  will tend to 
infinity, the same holds for AI, A s . . . .  and A k will be shorter than A k (k = 1, 2 . . . .  ). 
For  these reasons, we call the A k "long blocks" and the A k "short blocks". Let 
p = p ( k )  be the largest integer of Ah_ 1, let further r=r (k )  and t - - t (k)  be the 
smallest and the largest integer of A~, respectively. Put 

Tk = z~ cos2nnvx, T~ = ~ cos2nn,x ,  O k = ~ q~(x), O'k = z~ q~v(X). 
vE ~k vEa~ vE A~ vEA~ 

Now we formulate our basic 

L e m m a  (4.1). Let us assume that for  some increasing function f (k)~_k we have 

(4.2) 

and also 

(4.3) 

(4.4) 

Then we have 

(4.5) 

nk+ffn k _~ 1 + l/f(k) k = 1, 2 . . . .  

2-(r-P)/f(r)t11 ~ k -2, 

t ~ 2 r .  

E ( D k l ~ - l ) = O ( k  -~) ( 0 < = x < l ) ,  

I 
(4.6) E(Dk2l~'k-1) = 7  IAkl+~ (0 _~ x < 1), 

where ~rh_l denotes the a-field generated by D 1 . . . . .  Dk-i  and Iztd is the number o f  
integers contained in A~. The constants in 0 are absolute. 
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P r o o f .  Let 1 be an integer such that 2~_np<2  ~+1 and put w = [ / + 8  logp]. 
From the definition of  r it is evident that every ~0,, l~_v~_p, takes a constant 
value on each interval A of  the form 

(4.7) A = [i2-`*, ( i+1)2-`*)  (0 -< i ~_ 2 ' * -1 )  

and thus every s e t  { D 1 - - - a  I . . . . .  Dk_l=ak_l} where a I . . . . .  ak_ x are constants, 
can be obtained as a union of  intervals of  the form (4.7). In other words, the a-field 
"~'k-~ is purely atomic and each of its atoms is a union of intervals of  the form (4.7). 
Hence to prove (4.5), (4.6) it is sufficient to show that 

(4.8) IA1-1 f D, dx = o ( k -  z), 
A 

1 
(4.9) !AI -~ f dx  =- -~ IAk l+O(k  -~) 

A 

hold (with absolute constants in O) for any A in (4.7) (IAi denotes the length of  A). 
By (4.1), ]q~kl_~l, IAkl~_t, r ~ k ,  and (4.4) we have 9 

(4.10) 

(4.11) 

IDk-Tk!  =< 32 ~ '  v -4 <= 32 ~ v -4 ~_ Cr -3 <_ Ck -~-, 
y E A  k v m r  

,n~,~_,~2, ~_ IOk-Tkl(IO~l+lT~l)] <- Cr-a21A,l <- C r - 3 2 t  -< C r  - 2  <= Ck -~. 

Hence it suffices to show (4.8), (4.9) with T k in place of  Dk. 
Observe that for the set A in (4.7) we have 

( 1 + 1 ) 2  - w  i + 1  !Al-1AfTtclx=2`*,2-w f ( 2 c ~  . (~c'~ n c ~  

for any integer Q_~I; he re  mv=2-`*2nnv.  Also, by (4.2) 

1 2`* 2 z pS _ _ _  ~ ~_ n.._e_PpS, 
m, 2nn, n, n, 

rn,+l/rn , =~" 1 + l / f  (v). 

Hence, using the relations 

(4.12) 
1 1+1 2 

cos 71 s cos Y2 s = -~- [COS (Yx + 7~) s + cos (Tx-- Yz) s], f cos 7s ds 

In the sequel, C will denote positive constants, not always the same. 
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and [d~l~_t we get 
t + l  

Ia1-1 f T~dx= f Z cosm,sds <2 Z 1 
A i V(LIk v E d k  my 

_ 2 Z - - = l  2 la~l <=2~unP --s t~_ 2 ~ nt' t ~ 
vEdk m r  nr  fir 

,A,_ I 9 1 ,Ak ' ] i / l  ,Ak[ 
= = 

A 

1 ~ .  ,+z ,/, mu, s]ds = f cos2m,sds+ ~ [cos(m,+mu)s+cos(m,-  
v i ~, vE zlk " 

1 2 ( 1 
-<_ ~ ~ '  - ~ - - + 2  Z.  m , +  

Z VEdk Z/ 'nv  p, vEAk 
p'<v 

+ 4  Z - - ~ 1  I Z 
p, VEAk mv--m . 2 yEA k 

p<v 

I l f(v) 
~_ ~-[zl~l--~-+ 4lzl d ~' ~_ 

yEA k m y  

l ) 1 1 - - ~ -  < - -  z ~ . - - +  
m~ m , - m ,  - 2 ,Eg~ m, 

1 1 
+4IA~] Z 

m y  v~zl k /Tlv+ 1 - -  m v 

1 Tidal +4 [A~lf(t) Z 
vE.4~ Yn v 

1 - - ~ r  m,1 ~ n,np p8 < 5ts np pa < 5 n~ n, < - I d o l  +4[ztklt[A~]--7- ~ 5ld~l~t < 5ld~12t--  
- 2 - - - - -  = - -  " 

In other terms, we have 

I Idol +o(&) IAI -x fTkdx = O(ID and [A]- '  fT~dx = 
A A 

where 

~ r  

and the constants in the O are absolute. To conclude the proof, it is sufficient now 
to remark that by (4.2) we have 

t lp  v = p  

and thus (4.3) implies 2~_k-~.  
Let 

D, = D, - E(D, [,~_ t). 

Then 1)6 is a martingale difference sequence and 

(4.13) l/)k--D~l = O(k-') 
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provided that the conditions of Lemma (4.l) are satisfied. Furthermore, Lemma 
(4.1) trivially implies the following 

Lemma (4.2). Under the conditions of  Lemma (4.1) we have 

(4.14) E(B[I~-I) = ~l~l  + 0 ( k - 2 )  (0 ~ x < 1), 

where ~ _ ~  denotes the a-field generated by D~ . . . . .  Dk-t and the constant in 0 is 
absolute. 

Proof.  Put U k = E ( D k t ~ - O ,  then 

E(13~,l~k-,) = E ( ( D k -  Uk)Zi~-~) = E(D~,i37k-O-- 2 UkE(Dk!.~rk-~) + U~ = 

= e ( t ) ~ l ~ _ 0 -  uL 

since Uk is ~rt_ ~ measurable. Hence, using Lemma (4.1) we get 

1 
E(b~'i~'k-O == T lad +O(k-~)  �9 

Taking expected values with respect to ~ _ ~  and noting that ,~_lc,~r ,v~ 
get (4.14). 

Remark .  Lemma (4.1) expresses the almost martingale property of the long 
block sums Dk under the assumptions (4.2)--(4.4). The completely analogous state- 
ment holds for the short block sums D~. In other words, if p" denotes the largest 
integer of A'~-I, r" and t '  denote the smallest and the largest integer of d/,, respec- 
tively, furthermore ,~'k'-t denotes the a-field generated by D~, D~" . . . . .  D~-t, then 
l.,emma (4.1) remains formally valid if we replace p, r, t, Dk, ~rk_~, IA~[ by their 
"primed" versions p', r', t', D" k, ~r a, I~1- The same holds for Lemma (4.2). 

5. Estimates for fourth moments 

Let nx<nz<. . ,  be a sequence of integers and put 

M.+ N 

(5.1) SM.M= ~ '  cos2rcn~x. 
j=M+]  

The purpose of the present section is to prove Lemmas (5.2) and (5.3) below which 
t 

give estimates for f s'•, ~dx  under different assumptions on the sequence {n~}. 
0 

The first lemma is almost trivial. 
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L e m m a  (5.1). We have (without any assumption on {nk}) 

l 1 Na" (5.2) f s',M dx -i 
0 

4 

Proof .  Writing S~, u as a sum of four-term products / / c o s  2 n n j x  (but 
I=1 

not collecting the terms of equal type), rewriting these products by successive applica- 
1 

tions of the identity in (4.12) and using the fact that f cos 2rcnxdx=O or 1 accord- 
o 

ing as n ~ 0  or n = 0  (n is integer) we see that the left-hand side of (5.2) is equal 
to 1/8 times the number of solutions of the equation 

(5.3) njaq-nj, q-nj3q-n/, = 0 ( M +  1 ~_ J l ,J2 ,Ja ,J4  ~-- M + N ) .  

Evidently there are 4N a possibilities to choose nil,  hi2 , n j3 together with the signs 
of n j2, n j .  After this choice is made, there is at most one possibility for n j4 and 
its sign. Hence the number of solutions of (5.3) is at most 4N 3 and thus (5.2) is 
valid. 

L e m m a  (5.2). Suppose that f o r  some c>=l 

(5.4) n~+l/nk ~-- 1 +c/r  k = 1, 2 . . . . .  

Then i f  M + N ~_ c 2, then we have 

(5.5) f S ,Mdx <= A No+ 
0 C 

with an absolute constant A. 

Proof .  We begin by remarking the simple fact that if {nk} satisfies (5.4) then, 

for any O < a < b ,  the interval [a,b] contains at most 2 l / L I o g ~ + l  members 
C a 

of the sequence nl . . . .  ,nL (provided that L~_c2). Indeed, if n o and nq are the 
smallest and the largest among nl . . . . .  nz in the interval [a, b] then nq/no<-b/a; 
on the other hand, by (5.4), 

- - _ ~  1+ _>- 1 + - -  > 1+ ->exp ( q - p )  
n o J = o  

using the fact that l + x ~ _ e  ~/2 for O_-__x_~l. The two estimates for nq/np imply 

exp ( q - -p )  ~_ - - ,  i.e. q - p +  l ~ - - l o g - - +  l, as stated. 
a c a 

We can now easily prove (5.5). By the proof of Lemma (5.1) the left-hand side 
of  (5.5) is equal to 1/8 times the number of solutions of (5.3). Therefore, it suffices 
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to show that the number of  those solutions of  (5.3) where j~>=j2~j3>--ja, is at most 
AI(NZ+N(M+N)/c) with an absolute constant A1 (the same being valid for any 
prescribed order of  Jl, Ja, J3, J4). Now, if Jl =Jz then necessarily j3=j4; the number 
of such solutions is evidently _~8N 2. It remains to enumerate those solutions wh ee 
Jl Jz =J3 ~J4, we show that the number of  such solutions is at most A2 N(M+ N)/c 
with an absolute constant As. 

Let k->0 be a fixed integer and enumerate those among the solutions above 
where 2k<=nj~/ni,<2 TM. Evidently there are N POssibilities to choose n~l. The 
assumption made on nje/nj3 implies that nj+nj3+nj<=(l+2.2-k)nj~ and thus 
(5.3) can be valid only if nj2(1 +2-k+t~->n.,_ j~," in other words, n& has to lie in the 
interval [(1 +2-k+~)-~njl , nit ]. Since j2<=M+N, by the remark at the beginning 

2 2 
of the proof  there are at most log ( 1 + 2 -  T M )  + 1 _<- 2 - k + l + l  

C C 

possibilities to choose nj~ from the mentioned interval. In particular, "if 
2 ( M + N  

2 - k + t < l  then there is at most one possibility for ny~ i.e. n&=nj~ which 
C �9 

2 I / M + / 2 - k + 1 > 1  i.e. k<-21og(41/M-+--N/c)<= case is excluded. Hence = 
C 

_-<log 16(M+N) .  Using again 2k<=njJnj3<2 k+~ we see that nj3 lies in the interval 
[2-k-lnj~, nj~], hence applying the remark at the beginning of the proof  once more 

2 
we get that after choosing nj~, there are at most I o g 2 k + l + l ~  

C 

2 ]/M--+ N 6 ]/M+ N 
--_< ( k + l ) + l ~ _  k possibilities to choose nj.  Finally, if n~,  

C C 

n j,, ni~ are already chosen, there are at most four possibilities for n i .  Hence the 
number of those solutions of (5.3) where j~>j2>=j3>=j~ and 2~_n&/n~<2 ~+~ is 
at most 

(5.6) 

N(.2I#-~ ~-N 2 - k + t +  1 ) 6  M1/-M-+Nc 

As we noticed, k~_log 1 6 ( M + N )  

- -  4k - 96N(M+N) k2_k~ 24NI/--M-+--N k. 
C 2 C 

so summing the numbers (5.6) for 0~k___ 

_~log 1 6 ( M + N )  and using the convergence of  2 k2-k, c>-- 1, and log 1 6 ( M + N )  
k = 0  

<=8(M+N) 1/4 we get that the number of  solutions of  (5.3) where jl>j~>=ja>=j~ is 
really ~_AzN(M+N)/c with an absolute constant A.,. 

L e m m a  (5.3). Suppose that, for any integer v, the number of solutions of the 
equation 

nk• ( M + I  <-k, l<-M+N)  
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is at most B. Then 
1 

�9 f s l ,  ,, dx B2N 2. 
o 

P r o o f. By (4.12) ~e have 

M + N  

1 N + I  z~ cos4nnjx+ Y~ cos2n(n~+nt)x+cos2n(n~--nt)x. SLM = 5 
j = M +  I M + I ~ I < k ~ _ M  + N 

Collecting the terms with equal frequencies and using the assumption of the lemma 
we get that 

1 
(5.7) S~, M = "~" N +  ,,~ c, cos 2nvx 

where the sum contains at most N a terms and Ic, l~B for all v. Squaring (5.7) and 
integrating we get 

1 1 2 1 <=IN2+2NZBZ N2B2 ' f S ~ , M d x = - ~ N  + ~ , c ~  
o 

which was to be proved�9 

6. Conclusion of  the proofs 

Using the preparatory remarks of paragraphs 3--5, it is easy to carry out the 
proofs of our central limit theorems. All we have to do is to choose the length of 
the blocks A k and A~ properly and to apply a martingale central limit theorem (e.g. 
Theorem A of  w 3) for the centered block sums 1~ k. This gives immediately the 
central limit theorem for the sequence cos 2nnkx along the certain subsequence of 
indices; to get the result for all the indices requires only an application of the Che- 
bisev inequality. 

To begin with the last point, let us remark the obvious fact that if for the dis- 
tribution function F(x) of a random variable ~ we have IF(x)-~(x)l~_e for all x 
and r/is a random variable such that P(I,/l_~6)~, then for the distribution func- 
tion G(x) of ~+v/ we have IG(x)-r for all x (we use here the fact 
14~(x)- r  [x-yl). A special case is the following 

k 
L e m m a  (6.1). Let Sk= ~ cos 2nnix, tr=l/I/2, and M > N  integers, M/N=2. 

j = l  

Suppose 2 <= 2. Then 

IP(SN/~I/N < x)--~(X)I ~ e for all x 
implies 

4 

[P(SM/a I/M < x ) - * ( x ) ]  -<_ e+41 /~- - I  for all x. 
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Proof .  The decomposition N-1/2Sr~--M-1/~SM=N-al2(SN--SIa)+ 
d-SM(N-Xl2-M-11~), the orthogonality of the trigonometric system and Min- 

kowski's inequality show that the L2 norm of is at most 

2 1/rL-]. Hence, by Chebyshev's inequality, this random variable is _~2 ~/2-  

except on a set of probability <-2t/2 1 and thus our lemma follows from the 
preceding remark. 

An immediate consequence of Lemma (6.1) is that if the distribution of SN/tr ~/'N 
converges to the normal distribution as N runs through the index sequence N = N  k 
where Nk+I/N~I then the same holds for the whole sequence. Also, if  SN/al/'N 
"almost" converges to the normal distribution along the index sequence N=N~ 
where Nk+I/N~ "'almost" tends to 1, then the same holds for the whole sequence. 

P r o o f  o f  T h e o r e m  2. As we mentioned after Theorem 2, in the case ~t< 1/2 
condition (2.2) alone implies the central limit theorem, no matter what the arithmetic 
structure of {n~} is. This is a consequence of Erdrs '  theorem but we shall prove 
this statement too because it requires no extra effort and it will show clearly why 
the value ~=  1/2 is critical. So in what follows let us assume that one of the follow- 
ing two conditions is satisfied: 

a) {n~} satisfies the conditions of Theorem 2, 
b) {nk} satisfies (2.2) with ~<  1/2. 

Let us choose 
lakl = [k ~] and la~l = [k~r 

where s is larger than but close to ~/(1-~)  and ~>0 is small enough. Then in 
Lemma (4.1) we have f(k)=k'/c, p..~r~t...Ck s+l (C=l/(s+ l)), r - p ~ k  s(l-~) and 
thus the left-hand side of (4.3) is at most 

(6.1) (712-c'~'"-~'-~'+1'" k m+11 

with positive constants (71, C~. By s>0t / (1-~)  we have s - ( s + l ) ~ t > 0 ,  hence 
the exponent s ( l - e ) - ( s + l ) ~  in (6.1) is positive for small e and thus (4.3) is sat- 
isfied for large k. Also, r...t shows that (4.4) is val id for large k. Thus Lemmas 
(4.1), (4.2) apply and consequently (4.5), (4.6), (4.14) are valid. Let us now apply 

Theorem A of w 3 for the martingale difference sequence b k with a~=-~k~= 1 ([kq+ 

+[kSO-'q); this requires an estimate for the Ljapunov quantity 

(6.2) ag -2 ~ E(b~,) 
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and also for 

(6.3) a~ 2 E([Vn- a~[~), 

2 - -  where V. = ~ E(13kID 1 . . . . .  Dk_ 0. If  we assume condition a) above, then Lemma 
k = l  

(5.3) gives E(T~)<-CkZ~(~+~) 2~ (since t~_2~+~); if condition b)( i .e .  ~ < 1 / 2 ) i s  
assumed then we simply apply the trivial Lemma (5.1) to get E(T~)<=Ck ~. Since 
[Dk--Tkl<-[D~-Dkl+lDk--Td=O(k-2)=O(l) by (4.13), (4.10) the same esti- 
mates are valid (by Minkowski's inequality) for E(/3~). Hence in the two cases we 
get, respectively, that the sum in (6.2) is ~_Cn z~+r or <=Cn~+~; on the 
other hand, 2 ,-, 2~+2 a ,~ tm  . In case a) the assumption V<(1-~) /2  shows that if s is 
close enough to ~ / (1-~)  then ( s + l ) 2 v <  1 holds and thus in this case (6.2) tends 
to 0. If ~<1 /2  then ~ / ( 1 - ~ ) < 1  so i f s  is close enough to ~ / (1-~)  then s < l .  
In this case 3s+ 1 < 2 s + 2  so the expression (6.2) tends to zero again. Note also 

1 n 

k~_x[kq+O(l)=a,+O(n~-~+~) by Lemma (4.2), thus the expression that V,=-~ = 

(6.3) also tends to 0. Hence, Theorem A of w 3 implies that the distribution of the 
first of the following three expressions 

(6.4) 
D~+...+D, TI+...+T, ~ + ri +... + T~+ r~ 

I a~ t;a, 1/Y, 

tends to the normal distribution if n ~ oo. Evidently the difference of the first two 
and also of  the last two expressions in (6.4) tend to 0 in probability (this follows 
from [D k -  Tk[ = O(k -2) and the fact that, by the orthogonality of the trigonometric 

, , l --  1 , 
system, the square integral of  (T~ + ... + T~)II' a, is ~ k  Z [kStl-')]/a,=o(l)). Hence 

the asymptotic normality of the first expression in (6.4) implies that of the third 
one. (See the remark before Lemma (6.1).) By the definition of  Tk, T~, the asymptotic 
normality of  the third expression in (6.4) simply means that the distribution of  ( N / 
SN/ag'-N SN = ~ '  COS 2~njx, a =  t/ | /2 converges to the normal distribution as N 

j = l  
k 

runs through the index sequence N=Nk where Nk = z~ [ iq  +[i  ~n-~)]. But Nk+~/Nk~ 1 
i = l  

and thus the remark after the proof  of Lemma (6.1) shows that SN/~/-N 
is asymptotically normal as N ~ .  

P r o o f  o f  T h e o r e m  4. We may assume, without loss of  generality, that in 
(2.5) we have c->l. Let us choose 

[Akl = k z and IA:: ~, = [k3/2+a], 
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1 
where 0<6<1/2 .  Then, in Lemma(4.1), we have f(k)=l/lc/c, p~,r,,~t~-~k 3, 

r - p ~ k  sl2+6 and thus the left-hand side of (4.3) is at most C12-C2k'kaa showing 
that (4.3) is valid for large k. Also, by r,,~t, (4.4) is satisfied for k>-ko . By Lemma 
(5.2) we have E(T~)~_A(k4+c-lk s) for k>-kl and since [Dk--Tk[=O(1) by 
(4.10), (4.13) the same estimate holds for E(~k 4) (by Minkowski's inequality). Putting 

-rt,~ j ) ~ n  a we see that the Ljapunov quantity (6.2) is less than 

A1/c for large n with an absolute constant Ax. Observe also that Vn= 

= . . . .  k2+O(l)=an+O(n s/2+"+~) by Lemma (4.2) and 
k = l  = 

thus the expression in (6.3) tends to 0. Applying Theorem A of  w 3 for the sequence 
D k with the a. above we get that the distribution function F~ (x) of the first expression 
in (6.4) satisfies 

(6.5) I F ~ ( x ) - ~ ( x ) l  -~ Cac -~/5 for all x 

if n~_no; C3 is an absolute constant. As in the proof of Theorem 2, the difference 
of the first and the last expression in (6.4) tends to 0 in probability, so if F~(x) denotes 
the distribution function of the last expression in (6.4) then (6.5) and the remark 
preceding Lemma (6.1) imply 

(6.6) IF3(x)-~(x)l ~_ 2Cac -1/5 for all x, 

for n>=n~. (6.6) says that 

(6.7) [P(SN~/at/-~k < x)--4~(x)[ _~ 2Cac -x/5 for all x, 

k 

for k>-ko, where Nk=z~(i2+[is/2+a]), a = l / t / 2 .  Now Nk+l/Nk--l, (6.7) and 
I = 1  

Lemma (6.1) imply 

IP(S /  < 3c c-1   rot all 

for N~_No, and thus Theorem 4 is proved. 

P r o o f  o f  T h e o r e m  1. We can evidently assume, without loss of generality, 
that kiCk log k is monotone increasing. (Indeed, since c k - ~  we can find a sequence 
c~--oo, ck~_c k such that k/c~ logk is monotone increasing.) Let us choose 

IzJkl = [ok] and Izlgl = [8~ok], 

where 1 < 0 < 2  is a fixed number and eke0 sut~ciently slowly. In this case for 
k - J .  

the quantities appearing in Lemma (4.1) we have f(k)=k/c~ log k, p =  ,~  [0 ~] + 
j = l  

~-2  1 1 1 1 
+ j=x ~ [eJ01]"~ 0 -  1 O k, similarly r-~ 0 - 1  Ok, t~--~---_ 1 Ok+l, r_p~._.~ek_tok-x 
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and thus the left-hand side of (4.3) is at most 

1 
(6.8) C42-T~k-lok-lc'l~ ~ C42-Cs~k-lcr~O tlk+ll ~ Ce2-cs~-*c,~+c, k 

for sufficiently large k, where 6"4, C~, Ce, C7 are constants depending on 0. Here 
Cr=Cr(k)>..~C[ok_ll -~oo, thus if eke0 slowly enough then ek_lc,~-o. Hence the 
last expression in (6.8) is O(2-c,k), showing that (4.3) is satisfied for k~_k o. Also, 
t/r--,O<2 and hence (4.4) is valid for k~_kl. Since {nk} satisfies condition B2, 
Lemma (5.3) gives E(T~)<-_CoO ~k (Co is a constant depending only on {nk}) and 
since I/~k--T~l=O(l) by (4.10), (4.13) the same estimate holds for E(D~). Putting 

1 , 1 0,+1 
a"=~k=~l ([0k]+[e~']) 2(0-I'------~ we see that the Ljapunov quantity in (6.2) 

does not exceed 

02k 
k=l (02-1)-10z"+2 

5c0 (0_1)_~0~.+~ ~ 5c0 (0_1)_~0~.+~ ~ 5Co(O-l) 

" B 1 for n~_no(O). Also, V ,=_~  E(g~lb~ .. . . .  ~-~)=y~=~2~ [0'1+0(1)=a.(1+o(1)) 

uniformly by Lemma (4.2) and thus the expression in (6.3) tends to 0. Applying 
Theorem A of w 3 for the sequence D~ we get that the distribution function F~(x) 
of the first expression in (6.4) satisfies 

(6.9) IF~(x)-~(x)[ ~ C*(O-1) ~/5 for all x, 

for n~_n~(O); C* depends only on {nk}. As in the previous proofs, the first and 
third expressions in (6.4) differ only by a random variable tending to 0 in probability, 
so for the distribution function Fa(x) of the third expression in (6.4) we get, using 
(6.9) and the remark before Lemma (6.1), 

(6.10) IF~(x)-~(x)l ~- 2C*(0-1)  ~/5 for all x, 

for n~_n2(O). (6.10) says that 

(6.11) ]P(SNJa 1/-~k< x)-- ~(x)[ ~ 2C* ( 0 -  1) ~/5 for all x, 

k 
for k~_k o, where Nk= ~ ([01]+[ejO~]), a=l/1/2. Ev!dently Nk+l/Nk-+O , thus 

j = l  

Nk+~/Nk-<O+e for k~k~, and hence (6.11) and Lemma (6.1) imply 

[P(SN/a I/N < x)-q~(x)[ ~_ 2C*(0-1)~/5+4(0+e-1)  ~/4 for all x, 

for N~_No(O, e). Since 0 - 1  and e can be chosen arbitrary small, the last relation 
shows that the distribution of SN/ai/N tends to the normal distribution. 
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7. Proof  of  the a.s. invariance principle 

The only difference in proving a central limit theorem and an almost sure 
invariance principle for cos 2rtnkX is that after choosing the length of A k and A k 
properly, we use Theorem B of w 3 instead of Theorem A and we have to be a little 
more careful in comparing the second and third expressions in (6.4) because instead 
of the convergence in probability to 0 of their difference we need a.s. convergence. 

P r o o f  o f  T h e o r e m  3. Let us choose Izl~l, [A~,I in the same way as in the 
proof of Theorem 2. The estimates showing the convergence to 0 of the expression 
(6.2) in the proof of Theorem 2 show actually that 

E(/)~,) 
(7.1) k ">'-x b~, - ~  

is convergent if 6 is small enough (the general term being O(k -~ with a small 
1 k 

E(Dk~Dt Dk_l), then ;.>0). here b~=~,~tiSl-Ck ~+1. Also, if V,=~k=, - 2 j - ,  . . . .  

Vn=b,,+O(1) by Lemma(4.2) (the conditions of Lemma (4.2) were shown to be 
satisfied in the proof of Theorem 2). Hence Theorem B of w 3 implies that there is a 
Wiener process ((t)  such that 

(7.2) Da+.. .  +Dk = r a.s. 

with a constant q>0.1~ Replacing D t + . . . + b  k by TI+ . . .+Tk  on the left-hand 
side of (7.1) we commit an error O(1) (since ID~-Tkl=O(k-2)); also, Vk=bk+ 
+O(1), bk~Ck  ~+~, and well known properties of the Wiener process (see e.g. 
Lemma (3.6) of [3]) show that { (Vk) = ~, (bk) + 0 (k 113) = { (bk) + o (b~/s) a.s. Hence (7.2) 
implies 

(7.3) 71+.. .  +Tk = r a.s. 11 

We also remark that replacing the left-hand side of (7.3) by 1"1 + T;+  ... + Tk+ T k 
we only add a term which is o(b~k/2-'~) so it does not bother the right side of (7.3). 
[Indeed, (7.3) has the exact analogue 

(7.4) T ~ + . . . + T ;  = ((ak)+o(a[/*-'9 a.s. 

10 Strictly speaking,  we have  to redefine the whole  sequence /)k on  a new probabi l i ty  space 
to have representa t ion  (7.2). But since the fo rmulas  are  the same  on the new and  the old space, 
we shall speak  (with a little inaccuracy) as if ~ were defined on  the  original space. 

H In what  follows, r/ will denote positive cons tan ts ,  not  necessarily the same  

2* 
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1 k [ i ~ t - , ~ ]  for the short block sums (the proof is the same); 12 here dk=-~__~ . Now 

it is sufficient to use the estimate ~(t)=o(t 112 log t) a.s. on the right side of (7.4) 
and remark that dk~_b~ -~ with a constant 0>0.]  Hence (7.3) implies 

(7.5) TI + T; +... + Tk + T~, = ~(bk)+O(b~,/2-") a.s. 

If  ck=bk+d k then ck--bk=O(b 1-~ with a constant 0 > 0  and thus ~(bk)=~(Ck)+ 
+O(C~ 12-~) a.s. by Lemma (3.6) of [3]. Hence (7.5) implies 

TI + T; +... + Tk + T~, = ~(ck)+o(c~/2-") a.s. 

This latter relation simply says.that 

(7.6) SN = ~(N/2)+o(N 1/2-") a.s. 

k 

is valid if N=-N k, where N~= ~([i~]+[i~1-~)]).  To get (7.6) for all N we only 
i = 1  

have to show that 

(7.7) max ISu--SN~I = o(N~/2-") a.s., 
N k ~ N ~ - N k +  1 

(7.8) max I~(N/2)-~(Nk/2)[ = o(N],/2-") a.s. 
Nu ~-N'~-Nu + 1 

For any Nk~_M<N~Nk+~ we have, with a constant C, 

[ C N ~ x ( N - M ) e '  

(7.9) E(ISN-SMI4) <= I I (N_M)Z ' 

according as we assume the conditions of  Theorem 2 or (2.2) with 0~<1/2 (see 
Lemmas (5.3) and (5.1)). Using the Markov inequality and Theorem 12.2 of  [6] we 
get that in the two cases, respectively, the probability 

(7.10) P(  max ISN--SN~I >= t) 
Nk ~ N ~ - N k  + 1 

/-n t - -4  R]-2~, (t is an arbitrary positive number) is at most -~ ,  ,,k+~(Nk+~--Nk) 2 or 
Clt-4(Nk+x-Nk) s with an other constant Ct. Since Nk+~C2k ~+~, Nk+~-Nk~k ~, 
the expressions standing after Ca t -4  above are exactly of  the same order of  mag- 
nitude as were the upper estimates for E(D~) in the proof  of  Theorem 2 (which upper 
estimates were used to show the convergence of  (7.1)). Hence choosing t=b~ 2-~ 
with a small 6>0 ,  the proof  of  the convergence of  (7.1) yields automatically that 
the expression (7.10) (with the t above) is the general term of  a convergent series. 
By the Borel~Cantelli  lemma this implies that, with probability one, the left side 

la See the remark at the end of w 4. 
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of (7 .7)  is O(btk2-6'l ')=O(Ntk2-~'la)=O(N~/2-~l') (since b k ~ l N k )  

is valid. Relat ion (7.8) can be proved in the same way, using 

E(I ( (N/2)  - ((g/2)14) -~ Ca ( N -  M )  ~ 

instead of  (7.9). 

and thus 

179 

(7.7) 
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O UeuTpaabnofi npe~eabnofi TeopeMe ~aa aagynapn~x  
TplWOHOMeTpHqecKHX p~OB 

H. BEPKE~ 

XopoIlIO H3BeCTHO, qTO BepoflTHOCTHOe IIOBe]IeHHe naKyHapHoro TOHFOHOMeTpHxIeCKOFO 

p s a a  {cos2nnkx} TeCHO CBII3aHo C <<KpHTHtieCKHM)) yCJ'IOBHeM nagyHapHocTa 

( . )  nk+l ~ 1+ ck 
- -  ~ C k  o o  

HanpHMep, ec.art BbmO.aHeHO yc.aoarte ( * ) ,  TO nocaeaoBare.~bHoc'rb {cos 2nn~,x} y~toBaeraopaeT 

ueH'rpa.rmnotrt npe~tenm~o~ reopeMe, a npi~ 3TOM yc.qoaHe ( * )  He MOmeT 6brrb ocna6aeao .  ,/Inn 

nocJ~e~oBareabHocreg, yAoBaeraop~uom14x ( * ) ,  it3BeCTtlbl 1f ,apyrHe pe3yabTarbl noa:o6Horo 

po~,a, a TO BpeM~[ r a t  aJ1a 6onee  Me,aaenno p a c r y t m ~  nocneAoBarenbHocreit  {nk} He rI3aecrao, 
HO-BH~IHMOMy, HRqero. B craTbe pa3BHT MeTO,/~, XOTOpbll~ npH HOMOI/~I4 MapraHraabrtol~ TexliHKH 

rIO3BO.rLcleT HpOBO/IHTb HCCJ'IO]~OBaHHO CHC'I~M {COS 27rnkx } ~lYIa Hoc~eRoaaTeyi~uocre~, He y~os,'~er- 

B O p f l [ O ~  yC/IOBHIO ("~"). l-[o~y~eHo npoc roc  o6T~scrteHne yc~oa~t~ ( ~ ) ,  H3y~e~o, r a g  ~npona- 

~aer>> uer~rpaabHafl npeaeamtaa  TeOpeMa nprt HOCTeHeHHOM ocaa6aeaHn  ycnonHa ( * )  n ~oxa-  

3alibi neKOTOptae lleHTpaJlbHble npe~e.rtbar~e TeOpeMbl B OTCyTCTBHe 3Tore yC~'lOBifll. ['IoJlyqeHbI 

~pyrne  npeaeJ~bHbte TeOpeMb~ ~na  {cos 2nnk x}, Hanpt4Mep, 3aKOH noaTopHoro norapaqbMa H 

npHHltHrtl, I arraapHaaTROCTn. 
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