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O n  t h e  d i v e r g e n c e  o f  s p h e r i c a l  s u m s  
o f  d o u b l e  F o u r i e r - H a a r  s e r i e s  

G. E. TKEBUCHAVA 

Let f C L(I2), I = [0, 1] and let am,,~(f) be the Fourier coefficient of 
the function f with respect to the double naar  system {Xm(X)Xn(Y))~,n=l. 
Furthermore, for R > 0 let 

S R ( f , x , y )  = ~ am,n(f)xrn(X)Xn(y) 
m 2 + n 2  r 2 

be the spherical partial sums of the double Fourier-Haar series of the func- 
tion f .  We denote by [A I the 2-dimensional Lebesgue measure of the set 
A. As usually, L(ln + L)~(I2), 7 ~ 0, is the class of all measurable functions 
defined on 12 and satisfying the condition 

fi2 I f (z '  Y)I ( ln+ If( z, Y)I) ~ dxdy < c~ 

where in + lul equals to in lul for lul _> 1 and 0 in the other cases. 
In this work we prove 

T h e o r e m  1. Let r : [0, c~) ~ [0, oo) be a function satisfying the 
conditions ~(u) Too as u ~ c~ and 

(1) O(u) -- o(uln u). 

Then there exists a function f on 12 such that ~ o Ifl E L( I  2) and 

lim SR(f, x, y) = +oc 
R--+ c~ 

almost everywhere on 12. 

By replacing o with O this statement is no longer valid, since it is weU- 
known (see [3]) that f e Lln + L( I  2) implies the convergence of S R ( f , x , y )  
almost everywhere on 12 as R --* c~. 

A consequence of Theorem 1 is 

T h e o r e m  2. Let 0 < ~? <_ 1. Then there exists a function f E 
L(ln + L ) l - v ( I  2) whose spherical Fourier-Haar partial sums diverge almost 
everywhere on 12. 
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Notice that,  in the case ~? = 1, in [4] one established for sufficiently 
small E > 0 the existence of a function f E L( I  2) and a set E C 12 such 
that  IEI > 1 - ~ and SR(f, x, y) is divergent on E as R --+ c~. 

For definitions and results concerning the above mentioned topics, see 
the surveys [2], [6], [7], [8]. 

P r o o f  of  T h e o r e m  1. In the sequel we shall use constructions similar 
to those applied in [4], [5]. 

Let 

(2) k(j) . ~  2 2j, j = 1 ,2 , . . . ,  

(3) b (1) = [0,2 r-k(1)] x [0 ,2 - r ] ,  for r = 1, .  , k ( 1 ) -  1, r,1 " �9 

k(1)-1 
(4) B~ 1) U b(1) 

r--1 

k(1)-I 
(5) d~i) N b(1) 

= r,1, 
r= l  

(6) 

(7) 

(8) 
Then 

(9) 

(lO) 

(11) 

(12) 

F~ 1) _--12 \B~ 1), 

)~(k)=(2k+l-k)2 -k-l, 

7 1 : 1 .  

b(1) I r,1 = 2  -k( ') ,  r = l , . . . , k ( 1 ) - l ,  

IBm1)[ _-- 2-(k(1)+1)k(1)  ' 

idol) I = 22(1-k(1)), 

jel l)  I -- A(k(1)). 

Now we can represent F~ 1) in the form 

(13) U 
I----'71 "{- 1 

where the Q~I), ~ = 71 + 1 , . . . ,  72, are equal squares congruent to d~ 1) and 
have pairwise disjoint inners. 
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Similar considerations apphed to each of the squares Q~I) 
�9 . . ,  7~ taking into account (2)-(13) give 

(14 / IBm1) I = 2-k(1)-lk(1)lQ~l)l, e =  "'/1 "{- 1, . . . , ' ) '2 ,  

"/2 
(15) g--U+1B~I) ---- 2-~(1)-ik(1)lF~')l '  

Id~l)l = 2~('-k(1))lO~l)l, s = "/1 + 1 , . . . ,  ")'2, 

0 d~l) ---- 22(1-k(1))lFl(1)[ = 22(1-a('))A(k(1))lO~1)l �9 
~=")'1-'}- 1 

(16) 

(17) 

Set 

(18) F2(1) -- t ~ l )  \ U B~ 11. 
l=  -../1 +1 

From (14), (15) and (18)it follows 

(19) IF~I)I = A(k(1))IF} ')I  = A2(k(1))IQ~')I. 
Continuing this procedure we obtain the sequence {.F/(1)}~_ 1. 

n i~ l  r~ 11. Then (see (1911 

(20) [ F l l  = 0. 
Let us denote by D1 the collection of all inner squares, i.e. 

(21) 7::), = {d~l) : .~ = 1 , 2 , . . . } ,  

and by B1 the family of all rectangles ~,(1) i.e. ~'r,l 

(22) B1 lh(1) i vr,l 
and let their unions be 

: r =  1 , . . . , k ( 1 ) - l ;  ~ = 1 , 2 , . . . } ,  

(23) D1 = U d~ 11' 
t = l  
oo 

(24) B1 = U B~ 1)' 

Then we get (see (161, (171, (23)) 

(25) [DI[ = 22('-k(D)(1 + A(k(1)) + A2(k(1))+-..)[Q~DI = 

72(I-k(1)) #Q(1) 
- 1 -  A(k(1)) '~1 l- 

149 

, ~ = 7 1 + 1 ,  

Let F1 = 
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Furthermore, for every rectangle b E B1 we have (see (21), (22), (23)) 

(26) D1 N b E/)1 

and 

(27) IO1 M b I = 22-k(1)ib ]. 

If b is the symmetric image of the rectangle b E B1 with respect to its right 
or top side then 

(28) ID~ n bl < 23-k(1)(k(n))-llbl �9 

This completes the first step of the construction. 
In the second step we divide each set B~ 1), ~ = 1,2, . . . ,  into squares 

being equal to its corresponding inner squares d~ 1) (while the partitioning 
squares have no common inner points). For each of these squares we can 
repeat all the considerations of the first step only by replacing the terms k(1) 
by k(2). In particular, in this manner we obtain the families 7)2 and B2 of 
inner squares and rectangles, respectively, and the corresponding unions D2 
and B2 of these squares and rectangles (cf. (21)-(24)). 

In the n-th step (with corresponding k(n)), with the notations 7)n, 
Bn and Dn, Bn for the families of inner squares and rectangles and their 
respective unions and by setting Fn = 12 \ Bn we get 

(29) [On[ <_ 23-k(n)(k(n))-lIQ~l) I = 2a-k(n)(k(n)) -1. 

For an arbitrary b E Bn (see (20), (25)-(28)) we obtain 

Dn N b E 7)n, (30) 

(31) 

(32) 

(33) 
whence it follows 

(34) 

IDn n bl -- 22-k(n)151, 

]Dn N -b] <_ 23-k(n)(k(n))-lib], 

IFnl = 0, 

IBnl = 1. 

Let a natural number q >_ 1 be given. By condition (1) we have 

~(2k(n)q) = o(2a(n)qln(2k(n)q)) as n --* cr 

Therefore there exists a natural number n(q) > q such that 

~(2k(n(q)) q) < 2k(n(q)) q -2 ln(2k(n(q)) q), 

and consequently, 

(35) ~(2k(n(q))q)2-k(n(q))(n(q))-i < 
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<: 21--k(n(q))(ln(2k(n(q))q))--l(~(2k(n(q))q) <~ 2q -2. 

In view of the conditions of the theorem we can choose the sequence n( t ) ,  
n(2), . . .  to be strictly increasing. 

Now we proceed to the construction of the required function f .  For 
every q = 1, 2 , . . .  consider the functions 

{ 2k(n(q))-lq for (x,y) �9 Dn(q), 
(36) fq(x,y) = 0 for (x,y) • nn(q). 

For an arbitrary rectangle b �9 Bn(q) we have (see (29)-(33)) 

1 / f b  [Dn(q) .N bl2k(n(q))_lq = 2q 
(37) ~-[ h - Ibl 

and furthermore~ 

1 / j f  IDn(q) N b[ 2k(n(q))_l 4q 
(38) ~ f~ - Ibl q < k(n(q))" 
By (37) and (38), for every rectangle b �9 Bn(q) the following estimate is 
fulfilled: 

(39) 

Let 

(40) 
o o  

f(x,y)= F_,fq(x,y). 
q=l 

Then �9 o Ill �9 L(I2) �9 Indeed, by setting 
OO c o  

T = [.J D,~(q), Uq = D,~(q) \ [.J On(j), V = U uq, 
q----1 j>q  q----1 

we obtain ITI = IUI in view of the estimate (see (29)) 
OO OO OO 

l U  V,~</) < ~ l D n ( i ) l  < 8~_,2-k<n<i))[k(n(j))1-1 -->0, q -+ oc, 
3=q j----q j=q  

o o  o o  since T = U U (Nq=l [.Jj=q D,)(j)). 
Taking this into account we have (see (36), (40), (35)) 

oo q 

f o ,:, : f o ,,, <- F_, f o lE ,,l <- 
q=l q 

O o  O 0  

< ~_, +(2k('~(q))q)lD,,(q)[ = 8 ~_, 2-k(n(q))[k(n(q))]-l+(2k(n(q))q) < oo. 
q = l  q = l  
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To the proof of the divergence of the spherical partial sums of the 
Fourier-Haar series of the function f we shall use some considerations from 
[4, pp. 46-47] according to which (with our above notations) for almost 
all (x,y) �9 NqC~=l Bn(q)) there exist sequences b~(q), R(q), Lq (in general 
depending on (x, y)) such that 

(41) �9 �9 

(42) lim R(q)= +~, 

(43) lim Lq = f(x,y), 
q-----r oo 

1 (ffb fq--/f~.(~)f~)" (44)  S R ( q ) ( f , x , y )  = Lq + 2]bn(q)------T .(q) 

Now, since [[.Jq~__~ B~(q))] = 1 (see (34)), taking into account (39), (41)-(44) 
we get the statement of Theorem 1. 

R e m a r k .  For a comparison of the obtained results with the case of 
the multiple trigonometric system, we refer to [1] where, in particular, it is 
proved that for every p �9 [1, 2) there exists a function in the class LP(T 2) 
such that the spherical sums of its Fourier series diverge in measure on the 
square T 2 = [0, 27r] 2. 
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O pacxo ,z I~IMOCTH c~bep~qec~cMx C y M M  

,ZI~BO~HI~IX p~ ,~OB @ y p ~ , e - X a a p a  

F . E .  T K E B Y Y A B A  

] ] O K a 3 & H &  C.TIe~v'IOIR&H TeopeMa. 
IIycTL �9 : [0, +c~)  ~ [0, +oo) - -  qbyH~H~, y~RoBJIeTBOp~IoIRa, a upH U ----* -FOO 

y c ~ o ~ . ~ ,  r  ~ ~ r  o(~ln ~). 
T o r ~ a  cyIReCTByeT HHTerpHpyeMa~I Ha. [0, 1] 2 qbyHI<KH$1 f T&I<adt, q T O  (I) 0 If[ E 

L([0,112), a cqbep~qecKze CyMMH ee JIBOfiHoro p ~ I a  ~ y p b e - X a a p a  p a c x o ~ T C ~  nOqTZ 
BCIO~J~ Ha [0, 1] 2. 

C A K Y ~ B T E T  H P H K ~ A ~ H O ~  M A T E M A T H K H  H K H B E P H E T H K H  
T B H ~ H C C K H ~  F O C Y ~ A P C T B E H H B I ~  Y H H B E P C H T E T  
u  
TBH~HCH 380086 

F P Y 3 H ~  


