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Coefficients 
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Abstract: Several desirable order properties for dissimilarity coefficients based on 
presence/absence of attributes are given and several popular dissimilarity 
coefficients are examined with respect to these properties. A characterization for 
rational functions with linear numerator and linear denominator satisfying all of 
the desirable properties is given. 
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1. Introduction 

Considerable literature is available concerning dissimilarity measures 
based on presence/absence of attributes. The majority of these works develop 
their dissimilarity coefficients heuristically. Unfortunately, there is great 
disagreement over the heuristics employed. In this paper we try to limit the 
choices for construction of dissimilarity coefficients by characterizing those 
which satisfy a short list of axioms. Before beginning, we make severn 
assumptions and defnitions. 

We are given a finite set, S, of objects, and a finite set, A, of n binary 
attributes, n > 0. Every object, x, is associated with a mapping vx s {0,1}a. 
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Thus vx may be thought of as a binary vector with one "s lo t"  for each attri- 
bute in A. Indeed, vx is defined by 

f 
I t  i fx  exhibits attribute a 

vx(a) to ifx lacks attribute a. 

Thus, given any attribute, if vx contains a 1 in the "s lo t"  belonging to 
that attribute, then object x possesses (or exhibits) that attribute. Similarly, a 
0 indicates that x lacks the corresponding attribute. 

Definition. A dissimilarity coeffzcient (DC) is a mapping, 

D:S x S  --~ R + 

such that D(x,x)  = 0 V x ~ S, and D(x,y)  = D(y,x)  V x, y ~ S. 

(3iven any two binary n-vectors, v~ and vy, it is usual to define four 
dependent variables as follows: 

a = the number of attributes which x and y share 
b = the number of attributes exhibited by x but lacked by y 
c = the number of attributes exhibited by y but lacked by x 
d = the number of attributes exhibited by neither x nor y. 

Many dissimilarity coefficients are written as functions of a, b, c, and d 
alone rather than as functions of the original objects x and y. For this reason, 
we will define a Presence~Absence Based Dissimilarity Coefficient (PABDC) 
tobe  amap  

D: (~;+)4 _ {(0,0,0,0)} --~/~ + 

from the set of all ordered 4-tuples of non-negative integers other than the ori- 
gin into the non-negative reals, which satisfies properties (P0)-(P7) below. 

For all (a,b,c,d) ~ (71,+) 4 - {(0,0,0,0)}" 

(vo) 

if, l) 

(P3) 
(P4) 

D is defined for all four-tuples, (a,b,c,d) of non-negative integers 
except, perhaps, (0,0,0,0) 
0 < D(a ,b ,c ,d)  < 1 for all a,b ,c ,d  
D(a,0,0,0) = 0 for all a > 0 
D(a,b ,c ,d )  = 1 for some (a,b,c,d) 
D(a+ 1,b,c,d) < D(a,b ,c ,d)  with equality holding iff 
D(a,b ,c ,d)  = 0 
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0"5) 

0,6) 
0"7) 

D(a,b+ 1,c,d) > D(a,b,c,d) with equality holding iff 
D(a,b,c,d) = 1 
D(a,b,c,d + 1) < D(a,b,c,d) 
D(a,b,c,d) = D(a,c,b,d). 

2. Discussion 

When we decide to work with PABDCs rather than DCs, we automati- 
cally restrict the amount and type of information our coefficients can use to 
determine dissimilarity between objects. For instance, since we only see a, b, 
c, and & we no longer know which attributes were present in both objects 
under examination. No single attribute may be singled out as "more 
significant" than any other. And, of course, no quantitative attributes can be 
directly considered. 

However, working with PABDCs provides more mathematical struc- 
ture to work with, and permits a reasonable avenue for classification of 
PABDCs with various properties. The interpretation and reasoning behind 
the properties 0,0) to 0,7) are given below. It should be noted that although 
some of these axioms might appear to be of marginal importance 0,0) or 
excessively weak 0,6) when dealing with a particular data set, it is the 
author's intent to provide the most general framework possible w structure 
which will be applied uniformly to all data sets. The conclusions reached 
herein may be strengthened considerably for restricted data sets with particu- 
lar interpretations imposed. 

In 0,0) we require that the coefficient be defined for all possible 4- 
tuples. Since the sum a+b+c+d is equal to the number of attributes in the 
attribute set, A, we can safely assume that (0,0,0,0) is not in the domain, but 
we can rule out no other 4-tuple of non-negative integers. 

In 0,1) we further require that the coefficient produce values in the 
interval [0,1]. Most coefficients in use satisfy this restraint, and those which 
do not can often be adjusted linearly to do so, making it easier to compare 
two PAB DCs. 

The definition of a DC required that it have a reflexive property. How- 
ever, since we are using PABDCs, we no longer have the option of examining 
the objects themselves. We want to say, then, that if there are no 
"mismatches" among the attributes for two objects then the objects are indis- 
tinguishable. We provide a weaker requirement in 0,2) which will, along 
with the other requirements, produce the full reflexive property. All we need 
at this point is to require that if two objects share every attribute in the attri- 
bute set, then they are identical; i.e., they have a coefficient of 0. 

We require in 0,3) that it be possible to artificially produce a maximum 
dissimilarity value by careful selection of a 4-tuple, (a,b,c,d). Again this is a 
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condition commonly satisfied by the PABDCs currently used. If a pair of 
objects is imagined as disagreeing on every attribute then it is reasonable to 
expect the objects to be completely dissimilar;, i.e., D(x,y) should be 1. 

In (P4) we require that when the attribute set, A, is augmented by an 
additional attribute, and two objects share that attribute, then the dissimilarity 
between those objects must decrease, if possible. After all, if the two objects 
were not " ident ical"  then we are now increasing the proportion of attributes 
on which they agree, and the assigned dissimilarity value should be reduced. 
If, however, the two objects were already judged to be "identical," then this 
new evidence is only confirmation, and carries no additional information; in 
such a case, the dissimilarity value should be unchanged - -  at zero. 

We continue this line of reasoning with a similar condition goveming 
new attributes added to A on which two objects disagree. If the two objects 
were already judged maximally dissimilar, then again, this new attribute is 
only confirmation, and carries no additional information. Otherwise, this new 
attribute increases the proportion of attributes on which the two objects 
disagree, and thus the dissimilarity value for the pair should increase. This is 
the content Of (P5). 

The next condition, (P6), addresses an issue on which the users of clus- 
ter analysis disagree: what should be done with d? The conflict has to do 
with the interpretation of "matching absences." When two objects jointly 
lack an attribute, does that make the objects more similar? There are some 
cases where a binary attribute represents a dichotomy in which the dominant 
or significant state is not clear. That is to say, it is not clear which of the two 
states is to be considered "presence" and which is to be "absence."  One 
could ask if a white object exhibits whiteness or lacks blackness. In such 
cases, we would want both states to be treated with equal weight. On the 
other hand, a quality is often specific enough that there are so many ways that 
an "absent"  state could develop that this attribute carries little information 
when absent in two objects, and need not imply at all that they are similar. 
But neither do such "negative matches" imply that the objects are dissimilar. 
It is reasonable in both interpretations, however, to assume that an increase in 
the number of joint absences for a pair of objects should not cause an 
increase in the dissimilarity measure between the objects. It is this fairly 
weak assumption which is included in our axioms. 

Finally, as we are assuming that our PABDC depends only on the 
ordered 4-tuple (a,b,c,d) rather than the associated object pair, we have no 
information about the attributes or their distribution of 1 's and O's, or which 
attributes produce matcbes/mismatches. In that light, a mismatch of  one type 
is equivalent to a mismatch of the other type, and b and c should be inter- 
changeable. Thus (P7), requiring that the PABDC be symmetric in b and c. 
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3. Some Immediate Results 

Several properties can be derived from (P0) through (P6). We list three 
of them here: 

(P9) D(O,b,c,O)= I V b c  ~ ~ + , b + c > 0  
(P10) D(a + l ,b,c ,d)  < D(a,b+ l ,c ,d)  V a,b,c,d ~ 71, + 
0~11) D(a,O,O,d) = 0 V a,d ~ ~,+, a + d > O. 

The proofs are straightforward: (P9) follows from (P3) and repeated 
applications of (P4) and (P6). (P10) follows from (P4) and ~5) .  And we 
have ~11)  since (P1), ~6) ,  and ~ )  produce the inequality 

0 < D(a,O,O,d) < D(a,O,O,O) = O. 

These properties are easily interpreted, and can be seen to be appropri- 
ate: (P11) is a necessary and sufficient condition for a PABDC to satisfy the 
reflexive property explicitly required for a DC, namely that an object is ident- 
ical to itself. (P10) simply indicates that switching a "match"  to a 
"mismatch" in the attribute comparisons for a pair of objects must increase 
the dissimilarity measure for the pair. And, of course, any pair of objects 
which disagree on every attribute will be considered "completely dissimilar" 
and will have a dissimilarity of 1, as claimed in (P9). 

4. One Class of PABDC 

We now turn out attention to those PABDCs which satisfy (P0) through 
(P7) and one additional requirement: 

(P8) D is a rational function whose numerator and denominator are 
both (total) linear. Thus D may be written in the form 

c~'a + ~'b + ~ c + ~)'d + e" 
D(a,b,c,d) = 

c~a + ~b +7c + Sd + e 

for fixed a,I],7,8,e,a',13",7",8",e" e R .  

Proposition 1. D is a PABDC satisfying (PO) through (P8) iff D can be writ- 
ten in the form 

D(a ,b ,c ,d )= 
b + c  

(xa + b + c + Sd 

w ~ r e ~ , ~ > 0 .  
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Proof .  It is a simple exercise to verify that any PABDC written in the given 
form will satisfy (P0) through (P8). To show the converse, we begin with the 
expression for D provided by ~8) ,  

(z'a + ~'b + ~"c + 8"d + e" 
D ( a , b , c , d )  = 

a a  + f~b +'yc + Sd  + e 

for fixed a,13,%8,e,a',13",~",8",e" e R ,  

and proceed to identify the values of those fixed coefficients. Clearly, (P l l )  
immediately forces c( = 8" = e" = 0, and ~ )  forces at least one of c~ or e to 
be non-zero. 

Next, consider (P7) when d = 0. Resolving denominators in this equa- 
tion we find that 

(13"b + "/ 'c)(cta + ~c + 'yb + e) = (l~'c + "l[b)((za + ~b + "t'c + e) 

V a,b ,c  e 71.+, (a ,b ,c )  ~: (0,0,0), 

which reduces to 

 (f¢-i)ab + a ( i -   ')ac +  'r)C 2 + 

( ~ ' - ~ y ' ) b  2 + e(~"-T')b + e ( y - ~ ' ) c  = 0 

g a ,b ,c  e 71, + , (a ,b ,c )  ¢ (0,0,0), 

which is a polynomial in three independent variables, a, b, and c, whence all 
of its coefficients must be 0. In particular, using the fact that not both ct and e 
are zero, we get 13" = 3,'. We therefore know that 13" = 3," ~: 0 by (P9). Return- 
ing our attention to the coefficients in the polynomial above, then, the 
coefficient of the third term now produces 13 = 3,. Thus 

D ( a , b , c , d )  = fJ'(b + c)  
(:za + ~(b + c)  + 8d  + e 

and now ~ )  forces (13-13")(b + c) + e = 0 where b and c are independent 
variables, so that we can conclude that e = 0 and 13 = 15". Notice also that (P3) 
now forces 13 ~: 0 so that we may assume without loss of generality that 13 = 1. 
We now have 

b + c  
D ( a , b , c , d )  = 

a a  + b + c  + S d  
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where o~ > 0 by (P4). We need only apply (P6) and (P0) to conclude that 
5 > 0 .  • 

Definition. For any non-negative reals a and b, we denote by D ~  the 
PABDC identified by proposition 1: 

D w3 (a,b,c,d) = 
b + c  

~a + b + c  + ~ l  " 

5. Global Order Equivalence and Monotonicity 

Having classified all of the PABDCs satisfying (P0)-(P8), we now tum 
to the issue of distinctness. Naturally, for different ot and 5 values, the 
PABDCs determined in Proposition 1 would be distinct functions. But the 
actual dissimilarity values produced by a PABDC are often of less interest 
than the rankings of the dissimilarity values for a given object set. In fact, the 
entire class of Monotone Equivariant cluster methods is based on rankings 
rather than values produced by the dissimilarity coefficient involved (see 
Janowitz 1979). If we are concerned with rankings only, then we might be 
interested in finding alternative PABDCs which produce the same rankings 
but which exhibit particular mathematical properties such as metric or 
ultrametric properties (see Gower and Legendre 1986). We now define two 
relations between PABDCs that involve ranking equivalence. 

Definition. Two PABDCs, D and D* are said to form a monotone pair pro- 
vided 

V (a l ,b l  ,Cl ,dl ) ,  (a2,b2,cz,d2) ~ (7/,*) 4 - -  {(0,0,0,0)} 

witha l  + b t  + c l  + d l  = a 2 + b a + c a + d a w e h a v e :  

D(aE,b2,c a,da) < D(a l , b l , c  l ,d l) iff 

D * (az,ba,ca,d2) < D * ( a l , b l , c  l , d l )  . 

Thus D and D* form a monotone pair if they always produce the same 
rankings whenever the underlying attribute set is a given size. In particular, 
we can add new objects to the object set, and can change the recorded 
presence/absence for a particular object and attribute, and be assured that D 
will still produce the same ranking as D*. In fact, we can even change the 
attribute set, as long as we do not change the number of attributes. If we are 
to require equivalent rankings even after changing the number of  attributes, 
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we need a stronger definition, taken from Sibson (1972) and rephrased for 
PABDCs: 

Definition. Two PABDCs, D and D*,  are said to be globally order equivalent 
provided 

w e  have 

V ( a l , b l , c t , d l ) ,  (a2,b2,c2,d2) E (7/.+) 4 - {(0,0,0,0)} , 

D(a2,b2,c2,d2) < D ( a l , b l , c  l ,d l )  iff 

D * (a2,b2,c2,d2) < D * (a l ,b l , c  l ,d l )  . 

It should be noted that this definition agrees with global order 
equivalence in the sense of  Janowitz (1979). 

Proposi t ion 2. Given two PABDCs, D ws and Dot's', satisfying (PO)-(P8), the 
following statements are equivalent: 

(i) ~ / 8  = co" t t~" ; 
(ii) D ws and O ct'5" are globally order equivalent; 
(iii) D w5 and D ~.~. form a monotone pair. 

Proof. ( i ) ~  (ii) Suppose 5 - 5" - k .  Then 

D~.8(a2,b2,c2,d2) < Dc~s(al,bx,c l ,d i )  iff 

(b2 + c2) (bl + Cl) < 
(b2 + c2) + (t~a2 + 5d2) (b 1 + c 1) + (ty.a I + 5d l )  

i f f  

(b2 + c2) (bl + c l )  
< 

(bE + C2) + ~(ka2 + d2) (bl + Cl) + ~(kal + d l )  
iff 

(b2 + c2)(kal + dl) < (bl + cl)(ka2 + d2). 
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And, similarly 

Dot'8" (a2,b2,c2,d2) < Da'8" (al,bl,C l ,dl)  iff 

(b2 + c2)(kal + d l )  < (bl + cl)(ka2 + d2) .  

Hence D ~ and D ~'s" are globally order equivalent. 

(ii)=:~(iii)Trivial 

(iii)=:~(i) Let k = ~- and k = 8 • .  Note that k,k > 0. Assume k ;e k 

Without loss of  generality, assume k > k' .  

Select positive integers p and q such that k > p--- > k'.  
q 

Consider the four-tuples (al ,bl ,c l ,dl)  and (a2,b2,c2,d2) where a :  = 0, 
bl =q + l, ci =0, d: =p(q + l) and a2 = q ( p + l ) ,  b 2 = p + l ,  c 2 = 0 ,  
d2 = 0 .  

b2dl if_, b2dl . 
Then - -  - so that k > ~ > k .  

bla2 q bla2 

We therefore have b2d 1 < kb la  2 and bzd 1 > k'bla2, which, together with 
our selection of  (a t ,b t,c l ,d l  ) and (a2,b2,c2,d2) produce 
(b 2 + c2)(k~/1 + d l )  < (b 1 + C 1)(ka 2 + d2) and (b2 + c2)(k'al + d l )  > 
(b: + c:)(k a2 + d2). 

These inequalities are equivalent to D~f~(a:,b:,cl,d:) > D=f~(a2,b2,c2,d2) 
and D~.f~. (al ,bl,cl ,dl) < D~'fy (a2,b2,c2,d2) as was shown in the proof of  
(i) =~ (ii). 

Thus D t~13 and D a'ff do not form a monotone pair. This complete the 
proof. • 

6. The Behavior of Some Common Dissimilarity Coefficients 

Table 1 displays 21 fairly common similarity coefficients, the first 15 
are taken from Gower and Legendre (1986). To examine behavior with 
respect to properties (P0)-~8) we must first transform the coefficients into 
dissimilarity coefficients in a reasonable way. That is, the ordering that each 
one induces on the domain must be inverted. Each conversion is done with 
one of  several transformations as described below in such a way as to satisfy 
(P1) and (P3) if at all possible. 
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If the range of the similarity coefficient is [0,1] then we transform the 
coefficient by squaring it, if necessary, to resolve square roots, and then sub- 
tracting it from 1. In Table 1, coefficients 2-8, 10-13, 18, and 21 are 
transformed thus. 

If the range of the similarity coefficient is [-1,1] then we transform the 
coefficient by subtracting it from 1 and dividing by 2. In Table 1, coefficients 
9, 14, 15, and 17 are thus transformed. 

Finally, coefficients 1 and 16 are transformed by adding 1 and invert- 
ing. Coefficients 19 and 20 are first multiplied by 4, then subtracted from 1. 

Each of these dissimilarity coefficients has been checked against pro- 
perties (P0)-fP8); Table 2 shows which properties are satisfied by these 
coefficients. In most cases, simple inspection suffices to determine whether a 
property is possessed by a DC, but in a few cases we rely upon the examina- 
tion of a simple partial derivative of the DC in question, as indicated in the 
table. 

Conclusions 

Notice that the tables contain only 5 DCs which satisfy all 9 properties: 
DC#4 which, using the notation of section 4 , is  D 1,1, DC#6 which is Do.5,0.5, 
DC#8 which is D2,2, and DC#9 and DC#16 which are both D 1.1. All of these 
are globally order equivalent by Theorem 2. Note that the transformation of 
several distinct similarity coefficients produces identical dissimilarity 
coefficients. This happens simply because the coefficients in question are glo- 
bally order equivalent, and we are concerned with rankings rather than actual 
numerical values when we perform the transformations. 

One implication is that application of a Monotone Equivariant cluster 
method to data processed by any one of these four DCs will produce a clus- 
tering structure identical to that produced by applying the same cluster 
method to data processed by any other of these four DCs (see Janowitz 1979, 
Theorem 1). Hence, for computational and conceptual simplicity, we would 
recommend DC#4 over DC#6, 8, and 9 (provided that Monotone Equivariant 
cluster methods will be employed). 

Evidently, it is beneficial to examine any heuristically constructed DC 
in the light of  properties (P0)-(P8). Doing so could reveal undesirable 
behavior or indicate a simpler PABDC which is globally order equivalent to 
the original. 

Finally, we would like to note that the axioms presented herein are 
intended for analysis of coefficients which are to apply to all data sets, in this 
way it is possible for one researcher to compare results in a meaningful way 
with the results of  another researcher. We are not implying that those 
coefficients which do not satisfy these axioms are inferior to those which do, 
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No. S im i la r i t y  
a 

(1) b+ c 

Coeff ic ient  D iss im i la r i t y  
b + c  

a + b + c  

Coef f ic ient  

(2) a 
a + b + c + d  

b + c + d  
a + b + c s d  

(3) 

(4) 

a 

a + b + c  

a+d  
a + b + c + d  

b + c  
a + b + c  

b + c  
a + b + c + d  

(5) a 
a +2(b+  c) 

(6) 

(7) 

a + d  
a + 2 ( b + c ) + d  

a 
1 a + ~-(b + c) 

2~0+ C) 
a+ 2(b + c) 

2 (b+c)  
a + 2 ( b + c ) + d  

b + c  
2a+b  +c 

(8) a + d  
1 a +~-(b+ c)+ d 

b + c  
2a+ b + c +  2d 

(9) a - (b + c) + d 
a + b + c + d  

1 a a 

4 •  a_..~.~ + a (11) 1 a d + d 
~-~- + c-'T-~ ETa'] 

(12) ...... a ,,,, 
V ( a  + b) (a + c) 

b + c  
a + b + c + d  

1 b c 

1 b c c 

+ g-~-+ c--~ ÷ b-~dt 

(a +b)(a+ c ) -  a 2 
(a + b) (a + c) 

TABLE 1. 
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No. S im i l a r i t y  Coef f ic ient  

ad 
(13) ~ i a  + b) (a + c) (b + d) (c + d) 

ad-  bc 
(14) ~ (a  + b) (a + c) (b + d) (c +d) 

D iss im i l a r i t y  Coef f ic ient  

a2d 2 
1- 

(a + b) (a + c)(b +d)(c + d) 

~---[1 bc -ad  1 
+ ~/(a + b) (a + c) Co + d) (c + d) 

(15) a d - b c  bc 
ad + bc ad + bc 

(16) a+  d b + c  
b + c  a + b + c + d  

- .V'o'-0- 
07) V'E6" + V"ff  

0 8) 
(b - c) 2 n 2 -  (b - c) 2 

(a+ b + c + d )  2 n2 

(I 9) bc n 2 -  4bc 

(a+ b + c + d )  2 n2 

ad - bc n 2 - 4 (ad - bc) 
(20) d) 2 n2 

(a+ b + c +  

(21) ( a + b + c + d ) ( b + c ) - ( b - c ) 2  n 2 - n (b+ c) + (b -  c) 2 

(a+b+  c+d)  2 n2 

where we have le t  n = ( a + b + c + d )  fo r  conciseness in the 
l as t  four  DCs. 

TABLE 1. 
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DO No. (PO) (P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8) 
from table 1 

1 N Y Y Y Y Y Y Y Y 
2 Y Y Y Y Y Y N Y Y 
3 N Y Y Y Y Y Y Y Y 
4 Y Y Y Y Y Y Y Y Y 
5 N Y Y Y Y Y Y Y Y 
6 Y Y Y Y Y Y Y Y Y 
7 N Y Y Y Y Y Y Y Y 
8 Y Y Y Y Y Y Y Y Y 
9 Y Y Y Y Y Y Y Y Y 
10 N Y Y Y Y Y Y Y N 
11 N Y U Y Y Y Y Y N 
12 N Y Y Y Y* Y Y Y N 
13 N Y U Y N* Y Y* Y N 
14 N Y U Y Y Y Y Y N 
15 N Y U Y N* N** Y Y N 
16 Y Y Y Y Y Y Y Y Y 
17 N Y U Y N* N** Y Y N 
18 Y Y N Y N N N Y N 
19 Y Y N Y N N N Y N 
20 Y Y N Y** N N N Y N 
21 Y Y N Y N N N Y N 

N= No, the DC does not satisfy this property (by inspection). 
N*= No, the DC does not satisfy this property, since when d=O, a change in a has no effect. 
N**= No, the DC does not satisfy this property, since when c=O, a change in b has no effect. 
U= No, the DC does not satisfy this property, since its value is undefined at all points specified 
in (P2). 
Y=Yes, the DC does satisfy this property (by inspection). 
Y*= Yes, the DC does satisfy this property (easy to verify via partial derivative with respect 
toa. 
Y**= Yes, provided a+b+c+d is even, No otherwise. 

TABLE 2. 

only that caution should be used when selecting them for use on a particular 
data set. Our axioms can be modified to suit other broad categories of data 
sets. For example: Suppose it is to be assumed that the attribute set, A, is 
augmented by a collection of "identity" attributes (for each object in the 
object set, add to A an artificial attribute which is "present" in that one 
object, and "absent" in all others). In such a situation, we would find that 
(P0) is too strong since under the new assumption, d ~ n, so that four-tuples 
such as (0,0,0,9) need not be in the domain of the coefficient. As a second 
example: If it is assumed that paired absences are to be ignored and that no 
objects will lack all attributes, then we can again weaken (P0) by not requir- 
ing that the coefficient be defined on such impossible tuples as (0,0,0,d) 
where d > 0. We could also replace (P6) with an equality since paired 
absences are to be ignored. 
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A number of  these special cases and variations on the set of axioms 
will be discussed in upcoming papers. 
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