
Journal of Classification 6:223-231 (1989) 

Fast Random Generation of Binary, t-ary and Other 
Types of Trees 

Adolfo J. Quiroz 

Universidad Sim6n Bolivar 

Abstract: Trees,-and particularly binary trees, appear frequently in the 
classification literature. When studying the properties of the procedures that fit 
trees to sets of  data, direct analysis can be too difficult, and Monte Carlo simula- 
tions may be necessary, requiring the implementation of algorithms for the genera- 
tion of certain families of trees at random. In the present paper we use the proper- 
ties of Prufer's enumeration of the set of completely labeled trees to obtain algo- 
rithms for the generation of completely labeled, as well as terminally labeled t-ary 
(and in particular binary) trees at random, i.e., with uniform distribution. Actually, 
these algorithms are general in that they can be used to generate random trees from 
any family that can be characterized in terms of the node degrees. The algorithms 
presented here are as fast as (in the ease of terminally labeled trees) or faster than 
(in the case of completely labeled trees) any other existing procedure, and the 
memory requirements are minimal. Another advantage over existing algorithms is 
that there is no need to store pre-calculated tables. 

Keywords: Tree algorithms; Monte Carlo studies; Clustering methodology. 

1. Introduction 

Interest in the generation of binary trees at random has been recently 
motivated by the applications to Monte Carlo studies in clustering. For 
instance, De Soete, DeSarbo, Fumas and Carroll (1984) use random, 

Author's Address: Adolfo J. Quiroz, Universidad Sim6n Bolfvar, Departamento de 
Matem~ticas, Aptdo. 80659, Caracas 1080A, Venezuela. 



224 A.J. Quiroz 

terminally labeled binary trees to evaluate an algorithm for the fitting of 
ultrametric and path length trees to rectangular matrices of proximity data. 
Fowlkes, Mallows and McRae (1983), use random binary trees to study the 
'shape' of trees obtained from hierarchical clustering procedures. In com- 
puter science, the enumeration and random generation of trees other than 
binary have been considered. Nijenhuis and Wilf (1975) give algorithms for 
the random generation of completely labeled trees and unlabeled rooted trees. 
They consider 'free' trees, that is, no restrictions are placed on the node 
degrees. Trojanowski (1978) and Ruskey (1978) give procedures for the list- 
ing of all t-ary trees. When considering random generation of trees, most 
authors have devoted their attention to the uniform distribution, that is, the 
distribution that assigns equal probability to all members of the family of 
trees under consideration. The 
choice for the analysis of many 
advantage that some theoretical 
for example, Renyi 1959, Meir 

uniform distribution seems a natural default 
procedures involving trees, and it also has the 
results are available for that distribution (see, 
and Moon 1970, and Robinson and Schwenk 

1975). It is nevertheless worth mentioning that in some cases other ways of 
generating random trees can be more appropriate and have been considered in 
the literature. In order to study the stability of the trees obtained from cluster- 
ing procedures, Gnanadesikan, Kettenring and Landwehr (1977, section 2.4) 
introduce the notion of "shaking the tree": they add random multivariate nor- 
real noise to the original data set being clustered, and apply the same cluster- 
ing procedure to the perturbed data. Fumas (1984), gives a complete survey 
of the different methods available for the random generation of several 
classes of binary trees. We refer the reader to that paper for both terminology 
and a more complete list of references on the subject. In this paper we give 
algorithms for the generation at random, under the uniform distribution, of 
several classes of trees. We consider completely labeled as well as terminally 
labeled trees, and rooted as well as unrooted trees. Our results generalize and 
improve, from the point of view of execution time, some of the results given 
by Fumas (1984) and Nijenhuis and Wilf (1975, Chapter 24). The main 
theoretical tools used here are the properties of the Prufer enumeration of the 
set of completely labeled trees. 

For clarity of exposition, we begin by describing our methods in the 
particular case of t-ary (including binary) trees. Section 2 discusses com- 
pletely labeled trees and Section 3 covers terminally labeled trees. Then, in 
Section 4, we indicate how the methodology can be extended to other fami- 
lies of trees. 



Fast Random Generation of  Trees 225 

2. Completely Labeled t-ary Trees and the Prufer Enumeration 

For the necessary graph-theoretic terminology we refer the reader to 
Fumas (1984). With that notation, the family of  rooted completely labeled 
full t-ary trees on n nodes (where n has to be of the form 1 + kt, k a non- 
negative integer) can be characterized in terms of node degree as follows: 

Proposition 2.1. A completely labeled tree on 1 + kt nodes, k a positive 
integer, is a rooted fuU t-ary tree i f  and only i f  it has one node o f  degree t (the 
root), k - 1 nodes o f  degree t + 1 and t + (k - 1 ) ( t -  1) nodes o f  degree one 
(the leaves). 

Proof. Easy by induction on the number of  nodes of  degree t + 1, by noting 
that, whenever a leaf "has offspring" and becomes a node of  degree t + 1, we 
lose a leaf and get t new ones. 

Similarly, for unrooted full t-ary trees we have: 

Proposit ion 2. lb .  A completely labeled tree on 2 + kt nodes, k > 1, is an 
unrooted fu l l  t-ary tree i f  and only it has k nodes o f  degree t + 1 and 
2 + k(t  - 1) nodes o f  degree 1. 

Cayley's Theorem (1889) asserts that the number of completely labeled trees 
on n nodes is n "-2. A simple proof of  this result is due to Prefer (1918) (see 
also Moon 1967). Prufer's proof establishes a one-to-one map between the 
set of completely labeled trees on n nodes and the set of lists of  n - 2 integers 
in { 1 . . . . .  n } (allowing repeats). We call such a list a Prefer list. The one- 
to-one map is given by the following algorithm: 

Algor i thm A1. (Construction of  a completely labeled tree on n nodes from a 
Prufer list.) 

1. Let a = (a l ,a2  . . . . .  an-2) be the Prefer list corresponding to a com- 
pletely labeled tree on n nodes. Let b = (1,2 . . . . .  n). 

2. Pick smallest number in b not in a. Call it x 1- Join a 1 to x 1 to form an 
edge. Erase a 1 from a and x 1 from b. 

3. Repeat step 2, (joining a 2 tO x 2, etc) until a is empty. 
4. Join the two numbers left in b to form the last edge of  the tree. 

Prufer's algorithm allows us to analyze certain properties of trees by 
studying the more manageable set of  Prefer lists. For example, Renyi (1959) 
has used Prefer lists to obtain the asymptotic distribution of  the leaves-to- 



226 A.J. Quiroz 

nodes ratio in random completely labeled trees. For our application we will 
need the following: 

Proposition 2.2. Algorithm A1 can be implemented to be O(n) in both time 
and space requirements. 

Nijenhuis and Wilf (1975, Chapter 24) provide an implementation of 
algorithm A1 which requires O(n) storage but is O(n 2) in execution time. 
The following implementation of A1 proves Prop. 2.2: 

Procedure Pmfefl'ree. Input variables are the integer n and the array 
A(n - 2) containing a Prufer list. Output is the array EDGE(n - 1,2) contain- 
ing the n - 1 edges of the corresponding tree. 

1. Initialize arrays M(n) and U(n) to be identically zero. U(i) is equal to 
1 if the node i has been erased from the list B, 0 otherwise. 

2. Fori  = 1 t o n - 2 d o  

M(Ai) ~ M(Ai) + 1 

M(i) contains the multiplicity (number of occurrences) of i in the list 
A. 

3. Find smallest io such that M(io) = O. 

PI ~-" io ; P2 <-- io .  

P1 and P2 are pointers to the smallest elements of B not in A. 
4. Fori  = 1 t o n - 2 d o  

begin 
if P2 < P1 then 

begin 
EDGE(i, 1) <-- P2 
EDGE(i,2) ~- Ai 
U(P2) ~-- 1 
P2 <--- P 1 

end 
else 

begin 
EDGE(i, 1) ~-- P 1 
EDGE(i,2) ~ A i 
U(PD ~ 1 
P1 <--PI + 1 
while M(P 1) not equal 0 do 
P1 <'---P1 + 1 



Fast Random Generation of Trees 227 

end 
M(Ai) M(AD- 1 
if(M(Ai) = 0 andAi < P : )  thenP2 ~--Ai 

end 

5. There are only two values of i left for which M(i) > 0. Use those two 
to form the last edge of the tree. 

Clearly, steps 1,2,3 and 5 of PmferTree are O(n) in execution time. 
Since the value of P :  never decreases during step 4 and it is never more than 
n, the internal while loop in step 4 increments P1 a total of no more than 
n - 1 times. Therefore, step 4 and PmferTree are O(n) in execution time. 

The connection between the node degrees in a completely labeled tree 
and the corresponding Prufer list is given by the next proposition. For a 
proof, see Even (1979, page 28) or Moon (1970). 

Proposition 2.3. The degree o f  the node labeled i in a completely labeled 
tree equals the number of  times i appears in the corresponding Prufer list, 
plus 1. 

As a corollary of Propositions 2.t and 2.3 we have the following char- 
acterization of completely labeled full t-ary trees in terms of their Prufer lists. 

Proposition 2.4a. The Prufer list of  a completely labeled tree on 1 + kt 
nodes, the node labels being the elements o f  N =  {1,2 . . . . .  l + k t } ,  
corresponds to a rooted full t-ary tree i f  and only if there are k - 1 numbers 
in N that appear exactly t times in the Prufer list and one number in N that 
appears exactly t - 1 times in the Prufer list. 

And, similarly 

Proposition 2.4b. The Prufer list o f  a completely labeled tree on 2 + kt 
nodes, the node labels being the elements o f  N =  {1,2 . . . . .  2 + k t } ,  
corresponds to an unrooted fuU t-ary tree if  and only if  there are k numbers 
in N that appear exactly t times in the Prufer list. 

Using proposition 2.4a we obtain the following algorithm for the ran- 
dom generation of completely labeled rooted I~1 t-ary trees. A similar pro- 
cedure, using 2.4b, would yield the corresponding unrooted trees. 



228 A.J.  Quiroz 

Algorithm A2. (Random completely labeled rooted full t-ary tree on 1 + k t  

nodes.) 

1. L e t N =  {1,2 . . . . .  1 + k t } .  

2. Choose a subset M = {m i . . . . .  mk-1 } at random from N. 
Choose an element o fN  - M at random. Call it mo. (The root). 
Let 

a" = ( a o , a l , a 2  . . . . .  a'~_l ) 

= ( m o  . . . . .  m o , m l  . . . . .  m l  . . . . .  mk-1 . . . . .  mk-1), 

where mo appears t -  1 times, while each o f m l , m 2  . . . . .  mk-1, appears 
t times. 

3. Choose a permutation x at random from S~_l, the set of all per- 
mutations on 1,2 . . . . .  k t - 1 .  

L e t  a = (a'r~ , a'r~ . . . . .  a "~_, ) and b = (1 ,2  . . . . .  1 + kt) .  

4. With the lists a and b just defined, proceed to construct the tree by 
using algorithm A1. The list a, obtained in steps 1 and 2 of A2, is the 
Prufer list of a rooted t-ary tree, and clearly, all such lists are given the 
same probability. Steps 1 and 2 of A2 can be implemented to be O ( k t )  

in both space and time requirements. (See Knuth,1980, Vol. 2, Chapter 
3). Since our implementation of algorithm A1 requires linear time and 
space, it follows that algorithm A2 is O ( k t )  in both time and space 
requirements. Binary trees are obtained by letting t = 2. 

3. Random Terminally Labeled t-ary Trees 

It is usually the case, when trees are used in hierarchical clustering pro- 
cedures, that the names given to the internal nodes of the tree are unimpor- 
tant. Only the shape of the tree and the names of  the terminal vertices matter, 
since these vertices represent the data being clustered. In this context, the 
concept of terminally labeled tree fits naturally. (As before, the reader will 
find the formal definitions in the paper of  Fumas, 1984). Let F be the collec- 
tion of completely labeled rooted trees on n + m nodes, of which n are leaves, 
the leaves being labeled 1 to n and the root being labeled n + 1. Let L e F. 
From L, we can produce a unique terminally labeled rooted tree T by erasing 
the labels from the intemal nodes. Call C (for canonical) the map that sends 
L to T. Since we obtain the same T for all permutations of the labels of the 
internal nodes of L, not including the root, we have that the cardinality of 
C(T) is ( m - 1 ) ! .  (See Fumas, 1984, Theorems 2.3.1 and 2.4.1). This, 
together with Proposition 2.1 implies that random terminally labeled full t-ary 
trees can be obtained by sampling from the uniform distribution on F and 



Fast Random Generation of  Trees 229 

then deleting the labels of  the internal nodes in the resulting trees. This is 
done by the following algorithm. 

Algor i thm A3. (Random terminally labeled rooted full t-ary tree on 1 + kt  
nodes.) 

1. Let m = t + (k - 1)(t - 1); m is the number of  leaves. 
2. Let 

a" = (a ' l ,a"  2 . . . . .  a'kt-l) 

= (m+t  . . . . .  m + l , m + 2  . . . . .  m+2  . . . . .  l + k t  . . . . .  l + k t ) ,  

where m + 1 appears t -  1 times and the rest of  the numbers greater 
than m appear t times each. 

3. Choose a permutation r~ at random from Sla-1 Let 
a = (a'~, , a'r~ . . . . .  a'rc~,_,) and b = (1,2 . . . . .  1 + kt). 

4. With the lists a and b just defined, proceed to construct the tree by 
using algorithm A1. 

By leaving the numbers 1 to m out of  the Prufer list, these numbers 
become automatically the labels of  the leaves. We make m + 1 the label of  
the root. Since steps 1, 2 and 3 are linear in kt, algorithm A3 is O(kt )  in both 
space and time requirements. As before, the binary tree case is obtained by 
letting t = 2. This improves on the best results given by Fumas (1984) for 
binary trees. (His Construction Procedure III is O(k t  log (kt)) in execution 
time). A procedure similar to A3 yields the corresponding unrooted trees. 

4. R a n d o m  Generat ion of  Other  Classes of  Trees 

The only property of  t-ary trees that we have used in the previous sec- 
tions is the fact that a characterization in terms of  node degrees (Proposition 
2.1) is possible for this family of  trees. Supp~.~se that we have a family F of  
completely labeled trees on n nodes, that can bc characterized as the family 
of  trees with ak nodes of  degree k, 1 < k < K,,,,=, f~r some positive integer 
Kraal. Then we can produce random trees from F by mimicking Algorithm 
A2 as follows: 

Algor i thm A4. (General procedure for random generation of  completely 
labeled trees.) 

1. Let N = { 1,2 . . . . .  n}, M be the empty s e t ,  be the empty list and 
k = 2 .  

2. Choose a subset 



230 A.J .  Quiroz 

Mk = {mk, . . . . .  mk,. } 

at random from N - M. 
M 4 - M u M k .  
a" 6-- (a',mk, . . . . .  mk, . . . . .  mk~ . . . . .  mk.~), 

where each of  mk, . . . . .  mk,~ appears k -  1 times in the list being con- 

catenated to a'.  
3. If k < K,,,ax, k 4- k + 1 and go tO step 1. Otherwise go to step 3. 
4. Choose a permutation ~ at random from Sn-2. Let 

a = (a'~, , a ' ~  . . . . .  a'r,._~) and b = (1,2 . . . . .  n). 
5. With the lists a and b just defined, proceed to construct the tree by 

using algorithm A1. 

Algorithm A4 is linear in time and space requirements, and can be 
adapted to produce terminally labeled trees in the same way described in sec- 
tion III for the t-ary trees. Since all Prufer lists corresponding to trees in F are 
given the same probability by algorithm A4, the resulting random trees have 
the uniform distribution on F. In some cases, even if the family of  trees being 
considered does not have a complete characterization in terms of  node 
degrees, the Prufer enumeration might still be used to obtain trees from that 
family at random. One such example is the family of 'free' trees considered 
by Nijenhuis and Wilf (1975, Chapter 24). Another example that has been 
studied in the literature is the family of  terminally labeled rooted trees with n 
leaves and m intemal nodes, where no restriction is imposed on the degrees of  
the internal nodes. Oden and Shao (1984), give an algorithm for the genera- 
tion of  these trees at random. 

Their implementation is O(n 2) in storage requirements, and also 
requires a one-time initialization which is O(n 2) in execution time, while 
generating each tree, after the initialization, requires linear time. Our method 
allows us to give a O(n + m) algorithm, in both execution time and memory 
requirements, to produce these trees at random: 

Algor i thm A5. (Random terminally labeled rooted tree with n leaves and m 
internal nodes.) 

1. For 1 < i < m, let a ' i  = n + i. This step ensures that all nodes labeled 
n + 1 to n + m appear in the Prufer list and, therefore, are not leaves. 

2. For m < i < n + m - 2, let a ' t  be a random number between n + 1 and 
n + m (inclusive). 

3. Choose a permutation pi at random from S,,+,,,-z. 
Let a = (a'xl ,a'r~ . . . . .  a~÷,.~) and b = (1,2 . . . . .  n + m). 

4. With the lists a and b just defined, proceed to construct the tree 
by using algorithm A1. 



Fast Random Generation of Trees 231 

5. Choose the root of the tree at random from the internal nodes. 
6. Remove (ignore) the labels of the internal vertices. 

Fortran implementations of algorithms A1 to A4 are available from the 
author. 

References 

CAYLEY, A. (1889), "A Theorem on Trees," Quarterly Journal of Pure and Applied 
Mathematics, 23, 376-378. 

DE SOETE, G., DESARBO, W. S., FURNAS, G. W., and CARROLL, J. D.(1984), "The Esti- 
mation Of Ultrametrie And Path Length Trees From Rectangular Proximity Data," 
Psychometrika 49, no. 3, 289-310. 

EVEN, S. (1979), Graph Algorithms, Rockvitle, MD: Computer Science Press. 
FOWLKES, E. B., MALLOWS, C. L., and MCRAE, J. E. (1983), "Some Methods for Study- 

ing The Shape of Hierarchical Trees," Murray Hill, NJ: AT&T Bell Laboratories Techn- 
ical Memorandum 83-11214-6. 

FURNAS, G. W. (1984),' 'The Generation of Random, Binary Unordered Trees," Journal of 
Classification 1, 187-233. 

GNANADESIKAN, R., KETrENR]NG, J. R., and LANDWEHR, J. M. (1977), "Interpreting 
and Assessing The Results of Cluster Analyses," Bulletin of the International Statistical 
Institute, 47, 451-463. 

KNUTH, D. E. (1981), The Art of Computer Programming, Second edition, Reading, MA: 
Addison-Wesley. 

MEIR, A., and MOON, J. W. (1970), "The Distance Between Points in Random Trees," Jour- 
nal of Combinatorial Theory, 8, 99-103. 

MOON, J. W. (1967), "Various Proofs of Cayley's Formula for Counting Trees," in A Sem- 
inar on Graph Theory, ed. F. Harary, New York: Holt, 70-78. 

MOON, J. W. (1970), "Counting Labeled Trees," Canadian MaIhematical Monographs, No. 
1. 

NIJENHUIS, A., and WILF, H. F.(1975), Combinatorial Algorithms, New York: Academic 
Press. 

ODEN, N. L., and SHAO, K-T. (1984), "An Algorithm to Equiprobably Generate all Directed 
Trees with K Labeled Terminal Nodes and Unlabeled Interior Nodes," Bulletin of 
Mathematical Biology, 46(3), 379-387. 

PRUFER, H. (1918), "Neuer Beweis eines Satzes uber Permatationen," Archives of 
Mathematical Physics, 27, 142-144. 

RENYI, A. (1959), "Some Remarks on The Theory of Random Trees," Publications of the 
Mathematical Institute of the Hungarian Academy of Sciences, 4, 73-85. 

ROBINSON, R. W., and SCHWENK, A. J. (1975), "The Distribution of Degrees in a Large 
Random Tree," Discrete Math, 12, 359-372. 

RUSKEY, F. (1978), "Generating t-ary Trees Lexicographically," SlAM Journal on Comput- 
ing, 7, 424-439. 

TROJANOWSKI, A. E. (1978), "Ranking and Listing Algorithm for k-ary Trees," SlAM 
Journal on Computing, 7, 492-509. 


