
Journal of Classification 2:255-276 (1985) 
lournal of 

Classification 
©1985 Springer-Vedag New York Inc. 

Obta in ing  C o m m o n  Pruned  Trees 

C. R. Finden 

University of St. Andrews 

A. D. Gordon 

University of St. Andrews 

Abstract: Given two or more dendrograms (rooted tree diagrams) based on 
the same set of objects, ways are presented of defining and obtaining com- 
mon pruned trees. Bounds on the size of a largest common pruned tree are 
introduced, as is a categorization of objects according to whether they belong 
to all, some, or no largest common pruned trees. Also described is a pro- 
cedure for regrafting pruned branches, yielding trees for which one can assess 
the reliability of the depicted relationships. The tree obtained by regrafting 
branches on to a largest common pruned tree is shown to contain all the 
classes present in the strict consensus tree. The theory is illustrated by appli- 
cation to two classifications of a set of forty-nine stratigraphical pollen spectra. 

Keywords: Common pruned trees; Consensus trees; Hierarchical 
classification; Regrafting. 

1. Introduction 

In classification studies (Hartigan 1975; Gordon 1981), the resem- 
blances within a set of objects are commonly represented hierarchically in 
the form of a dendrogram, or rooted tree diagram, such as those shown in 
Figures 1 and 2. Given two or more trees describing the same N objects, 
interest has been increasing in ways of  defining and obtaining a consensus 
tree, which in some sense summarizes the information contained in the ori- 
ginal tree diagrams. 

Several possible reasons for this activity follow. First, it is well known 
that different clustering criteria applied to the same data set can, and gen- 
erally do, produce different results; each clustering criterion explicitly or 
implicitly assumes an underlying model for the data, and distorts the results 
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to a greater or lesser degree towards this model. To the extent that similar 
results are obtained using different clustering criteria, one can be more 
confident that the results are indicating genuine structure in the data and are 
not purely artifacts of the particular clustering criteria employed. Secondly, 
it can be relevant to compare classifications of the same set of  objects 
described by different sets of variables, or by the same variables measured at 
different times. Thirdly, it can be relevant to investigate the stability of a 
classification when subjected to small changes in the measurements, or to 
the removal of objects from the data set. In this latter case, one seeks to 
identify objects which are influential, in a similar spirit to that undertaken in 
regression analysis (e.g., Cook and Weisberg 1982); thus, if the entire data 
set is denoted by 12 and the subset under investigation is denoted by oJ, one 
could compare a classification of the objects in f~ \ omega with a 
classification of the objects in I1 from which one had subsequently pruned 
all branches attached to objects belonging to co. 

Many different measures of the difference between tree diagrams have 
been proposed, but this paper concentrates on methods which provide as the 
end result a tree diagram, thus allowing one to assess the relationships 
between the N objects. Such consensus trees have been presented by 
Adams (1972), Margush and McMorris (1981), Diday (1982), and Neu- 
mann (1983). These approaches have in common the property that the con- 
sensus tree contains all N objects. An alternative approach (Gordon 1980) 
is to prune as few branches as possible from each tree so as to make the 
reduced trees in some sense equivalent, yielding a common pruned tree; 
one possible definition of equivalence is described in the next section. The 
size of this common pruned tree, i.e., the number of  base points which it 
contains, gives a measure of the resemblance between the original trees. In 
addition, the objects contained in the common pruned tree are indicated as 
having their relationships more reliably represented than objects which have 
been excised from the tree. 

This paper describes several algorithms, which have been implemented 
in computer programs, for obtaining common pruned trees. Also presented 
is a study of bounds on the size of the largest common pruned tree, which 
indicates objects that cannot belong to a common pruned tree of  a specified 
size. There may be more than one largest common pruned tree, and the 
final section introduces a categorization of  objects according to the number 
of such trees to which they belong. Also described in that section is a pro- 
cedure for regrafting branches which have been excised in obtaining a com- 
mon pruned tree. 

The work will be illustrated by application to the data set analyzed in 
Figures 1 and 2. These data comprise 49 pollen spectra obtained from, and 
numbered in order down, a core of sediment from Abernethy Forest, near 
Inverness (Birks and Mathewes 1978). A principal components analysis of 
the data revealed five well-separated groups, A (objects 1-t5), B (16-32), 
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Figure 1. Single link dendrogram for Abernethy Forest data. 

C (33,42-45), D (34,46-49), and E (35-41). It can be seen from Figures 1 
and 2 that both clustering criteria employed (single link and sum-of-squares) 
obtain this partition into five groups, but the relationships between these 
five groups differ in the two dendrograms; the higher level relationships are 
summarized in Figures 3 (a) and 3 (b). Figure 3 (c) displays the upper levels 
of the consensus tree obtained from Adams's (1972) second method 
(relevant for the comparison of trees with unlabeled internal nodes, such as 
those in Figures 1 and 2). An unsatisfactory feature of the Adams con- 
sensus tree is that it contains structure which is not present in either of the 
original trees. 

2. Equivalence of Trees 

A rooted tree diagram based on the set of N objects 
12 ~ { 1, 2 . . . . .  N } can be defined as a hierarchically-nested subset of 
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Sum-of-squares dendrogram for Abernethy Forest data. 

P(O) ,  the set of all subsets of 12: it is (Margush and McMorris 1981) a 
subset T~ of P ( O )  satisfying the following conditions. 

1. ~ E .T, ,~ (~ T, 

2. {i} E T~ for all i E l) 

3. I fA ,  B E T, withA n B ~ , t h e n A  c B o r B  C A .  

Let {Trj (j--1 . . . . .  n,)} denote the subsets of objects contained in T,. 
These subsets can be placed in a 1:1 relationship with the nodes (vertices) 
of the tree T,: there are N terminal nodes, each specifying a singleton sub- 
set, and (nr  - N )  internal nodes, each of which specifies the subset of 
objects lying below it in the tree. If Tr is a binary tree, i.e., if each amalga- 
mation is between two subsets, n, = 2N - 1. 
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Figure 3. The relationships between the groups in the partition into five groups, as represented 
in (a) single link dendrogram, (b) sum-of-squares dendrogram, (c) Adams consensus tree, (d) 
common truncated pruned tree. 

In this formulation, no account is taken of the heights of the internal 
nodes: such a tree has been referred to as local order invariant (Sibson 
1972), or as labeled and non-ranked (Murtagh 1984). Two trees comprising 
the same constituent classes are termed local order equivalent (Sibson 
1972). 

Given a set of t rooted trees { TI . . . . .  Tr} based on the same set of N 
objects, consider traversing tree T, from base point i to the top vertex: let 
B,k(i) denote the set of objects encountered for the first time at the k-th 
internal vertex that is passed through. For example, the sequence of 
encounters starting from base point 20 in the tree T1 depicted in Figure 1 is 

20,22,18,17,21, (23,24), 19,25, (26-29),16 .... , (35-41), 

where objects which are bracketed together are first encountered at the same 
internal vertex; thus, 

Bit(20) = 22, B12(20) = 18, B15(20) -- (23,24), 
Bijs(20) --- (35--41), and by convention, B~o(20) = 20. 
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The corresponding sequence of encounters in the tree T2 depicted in Figure 
2 is 

20,22,18,17,19,16,(21,23-26),(27-32),...,(1-15); 

thus, 

B20(20) = 20, B21(20) -- 22, B25(20) = 16, B29(20) ffi (1-15) .  

It is clear that trees T m and T n are local order equivalent if 
Bmk(i) =- Bnk(i) for all values of i and k. Restricting attention to the t 
sequences of encounters starting from the i-th base point, let 8j denote the 
minimum number of  objects which has to be removed from each of  the 
sequences so as to ensure perfect agreement (including the preservation of 
ties in the ordering) between the reduced sequences; then a i ~ N - ~i is a 
measure of the agreement between the sequences starting from the i-th base 
point, and is termed the length of a longest common subsequence starting 
with the i-th base point (Gordon 1979). This problem differs slightly from 
the standard longest common subsequence problem (see, for example, 
Wagner and Fischer 1974; Maier 1978) in that attention has to be paid to 
tied ranks; the longest common subsequence can be obtained using a 
dynamic~rogramming strategy. N 

If ~ a i = N 2, the trees are local order equivalent. If ~ a i < N 2, in 
i=l iffil 

order to obtain local order equivalence one needs to prune the trees. For 
example, if it is decided to remove object j from the trees, then one prunes 
the branch attached to base point j at as high a level as possible consistent 
with not affecting other base points, If one obtains reduced trees based on 
M(<~N) objects, for which ~ a~ = M 2, the reduced trees are local order 
equivalent; each of them will be referred to as a common pruned tree. The 
aim is to find common pruned trees with largest value of  M. This largest 
common pruned tree need not be uniquely defined; thus, the two trees dep- 
icted in Figures 4 (a) and 4 (b) have two largest common pruned trees of size 
3, these being portrayed in Figures 4(c) and 4(d). 

3. Pruning Algorithms 

For small data sets, one could envisage examining all ]~£] ways of prun- 

ing the same k objects from each of the t trees and checking the reduced 
trees for local order equivalence, increasing the value of k until one had 
identified the largest common pruned tree or trees. For even moderate- 
sized data sets, however, such a global search is computationally infeasible. 
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Figure 4. (a), (b) Two trees based on the same set of four objects; (c), (d) the two largest 
common pruned trees obtained from the trees shown in (a) and (b); (e) strict consensus tree 
of the trees shown in (a) and (b). 

Instead, approximating algorithms which remove objects one at a time have 
been developed and implemented in two independent programs CMTREE 
and FSTREE (Finden 1983, 1984a). These programs are restricted to the 
comparison of two trees, although the trees need not be binary. As is the 
case with other stepwise optimal classification algorithms, there is no guaran- 
tee that the common pruned trees produced by the programs are globally 
optimal, i.e., largest common pruned trees. 

All programs mentioned in this paper run under the VAX/VMS operat- 
ing system on a DEC VAX-11/780 computer. They are FORTRAN pro- 
grams written mainly according to the conventions of standard FORTRAN 
77 as defined in ANSI(1978); however, there are a few program departures 
from this specification to take advantage of certain VAX-11 FORTRAN 
extensions encompassing interactive terminal and space-saving features 
(DEC 1982). 

In programs CMTREE and FSTREE, several different criteria are avail- 
able for the elimination of objects; thus, the programs will prune a branch 
and base point j for which o'j is minimum, where definitions of t r / inc lude 

(i) o-.i = o~j; 
(ii) o-j = the number of branches for which the j-th object occurs in a 

largest common subsequence; 
(iii) a modification of (ii): suppose that the path from the k-th base 
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point to the top vertex has Fk longest common subsequences asso- 
ciated with it, and that the j-th object occurs in fjk of these longest 
common subsequences; then 

k 

In options (ii) and (iii), it is not in fact necessary to compute any longest 
common subsequence, but all longest common subsequences are implicitly 
considered for object membership; a dynamic programming strategy is used 
in the computations. 

Program CMTREE allows options (i) and (ii), whereas FSTREE allows 
all three options. FSTREE is an improved and faster version of CMTREE, 
but CMTREE has been tested over a longer period of time. 

The algorithm for program CMTREE is summarized in Table 1 using 
PASCAL notation and following the conventions and definitions of Day and 
Edelsbrunner (1984): in that paper, an algorithm's time (resp. space) com- 
plexity is described by a function f(N) expressing for each N the largest 
amount of time (resp. space) the algorithm requires to solve any problem 
involving N objects; if there exists a positive constant c and a function 
g(N) such that f(N) <~ cg(N) for all large positive N, f(N) is said to be 
O(g(N)). 

Using Table 1, the total time complexity of the CMTREE algorithm is 
seen to be O (5/5). The critical step in resolving the time complexity is step 
3: this step is of  time complexity O(N3), and two loops of O(N) encompass 
it. 

The time complexity of step 3 can also be written as O(K~ K2 N), 
where K~ and /£2 are upper hounds to the number of blocks of base points 
in tracing a sequence from a base point to a top vertex in, respectively, the 
first and second tree; K~ and K2 are each of O(N). The total time com- 
plexity of the algorithm is thus O(K1 K2 N3). For unbalanced trees, Kl 
and K2 will be close to N, but for well-balanced trees, K I and Kz may lie 
close to log2 N. thus, for well-balanced trees, it can be anticipated that the 
run time will be considerably less than for unbalanced trees of the same 
size; it has been found in practice that program CMTREE can cope with 
well-balanced trees having a size N of 128 in 15 minutes dedicated CPU- 
time on the VAX-11/780. The complexity of the CMTREE algorithm is 
O(N~). 

Program FSTREE uses virtually the same algorithm and has the same 
time and space complexities. However, it has been speeded up using experi- 
ence gained on program CMTREE and uses dynamic storage techniques to 
save space. Program FSTREE can cope with well-balanced trees of size 128 
in 2 minutes dedicated CPU-time on the VAX-11/780. 
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~SLE 1 

Algorithm for Program CMTREE 

Time 
Algorithm Complexity 

. l :mqin 

i. Input, check for error, and structure ~he two trees; 0(N z) 
for k:-- 1 t_qo N do 

null[k] :- ~alse; 
repeat 

fo_~r k:= I to N do 

fo~ ~:- 1%o Ndo 
i_~ not null[j] then 

f o r  i : -  1 t o  2 d...oo 
~ i ~  

2. Calculate sequence of blocks of base points encountered in 0(N) 
tracing through the ith reduced tree, T i , from base point j to 
top vertex, each block except first representing a branching 

3. From the sequence of blocks of base points for each tree, calculate, 0(N ~ ) 
using the dynamic programming equations, the length of a longest 
common sub6equence and the identities of base points which lie in 
any longest: Common subsequence; 

4. Update values of ~ O(N) 

if T '~#P ' then 
beq!. 

5. Find a base point p with smallest ~; O(N) 
null[p] :- t~ue 
end; 

u~,il T~'mT z ' ; 

6. Ou%pxh the common pruned tree 0(N) 
e_~. 

When these programs were used to compare the two trees depicted in 
Figures 1 and 2, the largest common pruned trees obtained contained 26 
objects. One of these trees is presented in Figure 5, but this solution is not 
unique; thus, objects 5, 10, 14, and (23,24) in Figure 5 could be replaced by 
objects 6, 12, 15, and (19,25) respectively. It is noteworthy that the objects 
contained in Figure 5 are all derived from only three of the five groups 
labeled A-E in the original dendrograms. As is shown in Figures 3 (a) and 
3(b), this is because the relationships between these five groups are 
different in the two dendrograms. This is an illustration of the fact that 
hierarchical classifications of the same data using different clustering criteria 
are particularly likely to differ in the higher levels of the dendrograms. 
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Figure 5. A common pruned tree obtained from the dendrograms depicted in Figures t and 2. 

Further, it has often been observed (e.g., Rohlf 1970; Kruskal 1977) that 
hierarchical classifications are more reliable in their representation of low 
level (small dissimilarity) features than high level features in the data, 
whereas the reverse is true for geometrical methods of representation such 
as principal components analysis. 

To allow attention to be restricted to the low level relationships, Gor- 
don (1980) suggested comparing truncated sequences, i.e., sequences for 
which all objects after the first few are bracketed together in a single block 
and given the same rank. The following methods of truncation of the 
sequences starting from each base point have been implemented in the pro- 
grams CMTREE and FSTREE: 

(i) each sequence is truncated once it contains (at least) a specified 
number of objects; 

(ii) each sequence is truncated once it has encountered a specified 
number of internal nodes. 

The common pruned structure obtained from applying these truncation cri- 
teria need not be a tree, as parts of the structure could be relevant for some 
but not all of the base points. For example, if sequences are to be truncated 
once at least four objects have been encountered, the sequences starting 
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from base points 46, 47, 48 and 49 in 7"1 and T2 would all be truncated at 
the internal node corresponding to subset (46-49), but the sequences start- 
ing from base point 34 would be truncated at the higher internal node 
corresponding to the subset (34, 46-49). A more stringent requirement 
leads to a common pruned tree: 

(iii) each sequence is truncated once it encounters an internal node 
below which all sequences passing through the node satisfy cri- 
terion (i) (alternatively, (ii)). 

Thus, in the above example, sequences from all five base points would be 
truncated at the internal node corresponding to subset (34, 46-49). 

When comparing two trees using truncation criteria, the programs 
CMTREE and FSTREE operate in the manner already described, deleting 
objects one at a time until common truncated pruned trees or structures are 
obtained; an additional feature is that differential weights can be assigned to 
agreements in the untruncated parts of  the sequences and in the final blocks 
of tied ranks. 

To illustrate the methodology, the dendrograms shown in Figures 1 and 
2 were compared, with attention being restricted to the first five objects in 
each sequence, truncated in accordance" with criterion ( i i i ) .  Objects from 
groups D and E contributed to the largest common truncated-prfined tree 
obtained, which was of size 36. Since the relationships between the objects 
in group D were in complete agreement in the original trees, all five of  them 
were included; the group E' contains the objects (35, 38-41). All objects 
belonging to the final block in a sequence are encountered at the same level, 
thus the relationships between the final five groups can be represented as 
shown in Figure 3(d), although the truncation criterion would indicate the 
two subgroups of A' as joining together only at the top vertex. 

It is worth mentioning that the trees shown in Figures 1 and 2 are fairly 
similar to one another, having 30 of  their 48 non-singleton subsets in com- 
mon. Experience with comparing other, more divergent, trees indicated that 
a largest common pruned tree can contain very few objects. 

4. Bounds and Further Algorithms 

The pruning algorithms described in the previous section cannot be 
guaranteed to produce a common pruned tree of largest size, and it is per- 
tinent to investigate their efficiency; if the largest common pruned tree is of 
size PC" and the largest tree provided by a program is of size N', we want 
(iV* - N') to be small, preferably zero. 

One approach is to repeat the analysis of the data many times, using a 
range of parameter values in the programs: if the largest common pruned 
tree obtained is of size N', and trees of size N' are obtained a high propor- 
tion of the time, one can be more confident that N' = N'. 
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Alternatively, one can investigate bounds on possible values of N'; this 
approach also indicates objects which cannot belong to a largest common 
pruned tree, and suggests further algorithms for removing object from trees. 
The bounds and algorithms are based on the matrix A ---- (ku), where k;j is 
defined to be the length of (i.e., number of objects in) a longest common 
subsequence starting with base point i and including base point j ;  and h t; is 
a j, the length of a longest common subsequence starting with base point i. 
These definitions of length are to be understood as measured in accordance 
with a truncation criterion if required, although the computer programs 
introduced in this section are restricted to the investigation of common 
pruned trees that have been obtained in the absence of any truncation cri- 
terion. 

The program UBTREE (Finden t 984b) evaluates the elements of the A 
matrix for two given trees, and outputs them to a disc-file for later use. The 
algorithm for program UBTREE is given in Table 2, from which~i,t can be 
seen that the total time complexity of the algorithm is O(~4)" the critical 
step 3, of time complexity O(N3) ,  is encompassed by a loop 6f O ( N ) .  The 
space complexity of the algorithm is O (N2). 

A suite of methods of obtaining bounds on possible values of N" is 
given in the remainder of this section: in the presentation, it is convenient 
to distinguish between 1-st order, 2-nd order, and 3-rd order methods, 
defined in the manner indicated below. Let 1 i denote the i-th largest kjj,  

i.e. ll >/ 12 ~>...~> 1N 

If 1c >/ c, a common pruned tree of size c might (but need not) exist, but 
if 1c < c there can be no common pruned tree of size c; hence one can 
obtain a bound on c', the largest value of c for which it is possible that 
there is a common pruned tree of this size. Further, if kjj < c, base point 
j cannot belong to a common pruned tree of size c. One might, therefore, 
be able to obtain a sharper bound on c* by iteratively deleting base points 
with small values of kjj and recalculating the other hjj's. In that one makes 
use of only the N diagonal elements of A, this approach could be termed a 
1-st order method. 

The 2-rid order method makes use of the whole of A. If there exists a 
common pruned tree of size c (possibly obtained in accordance with some 
truncation criterion) with base points il . . . . .  ic, then 

~.i~ik >~ c (j ,  k--- 1 . . . . .  c) 

In other words, there exists a permutation of rows and corresponding 
columns of A which yields a (c × c) diagonal block in the matrix, all of  
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TABLE 2 

Algorithm for PrOgram USTREE 

Time 
Algorit~ Co~plexity 

~clin 

I. Input, check for error, and structure the two trees; 0(N z) 
fo_~r j:~ I t_~o H do 

b e q i n  
f o r  i : =  i to_ 2 do  

beqin 

2. calculate sequence of blocks of base points encountered in tracing 0(N) 
through the ith tree, Ti, from base point j %o top vertex, each 
block except first representing a branching 
_end~ 

3. From the sequence of blocks of base points for each tree, calculate, 0(N ~) 
using the dynamic programming equations, the jth row of the A matrix~ 

4. output the jth row of the A matrix 0(N) 
e_~ 

endu. 

whose elements are no less than c. If A possesses this property, it will be 
termed block diagonal of  order c. If A is not block diagonal of  order c, 
there is no common pruned tree of size c; hence one obtains another bound 
on c', which cannot be worse than that provided by the 1-st order method. 
As before, one could envisage an iterative algorithm which deleted some 
rows (and corresponding columns) of A, and recalculated the remaining ele- 
ments. Instead of pursuing this idea, the remainder of this section presents 
a slightly more elaborate deletion scheme, which should provide a sharper 
bound on c'. 

In this 3-rd order method, one specifies a preferred base point n which 
cannot be directly deleted in the iterative stage. A necessary condition for 
base point j to belong to a common tree, which includes base point n, of 
size c is that it belongs to a diagonalizable block, which includes base point 
n, of size (c × c) in A all of whose elements are no less than c. If A does 
not contain a (c × c) block, including base points j and n, all of whose ele- 
ments are no less than c, base point j cannot belong to a common pruned 
tree of size c which includes base point n, and so j can be deleted. 

The problem of checking for the existence of such (c × c) blocks 
(including specified rows) has arisen in many guises; for example, it can be 
related to the graph theoretical problem of checking for the existence of 
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complete subgraphs of size c (including specified vertices). This correspon- 
dence can be seen by defining the matrix O ~- (0 u) by 

1 if bo thk  u >1 c and k ii >i c 

0u = 0 otherwise 

with 0 u = 1 (0) denoting the presence (absence) of an edge joining vertices i 
and j .  

This problem is NP-complete (Garey and Johnson 1979). An approxi- 
mating algorithm has been implemented in program LMTREE (Finden 
1984c); this program reads in the A matrix calculated by UBTREE, and 
investigates the feasibility of user-specified values of c', the postulated value 
of the upper bound c" to the size of the common pruned tree for the two 
given trees. 

The algorithm for program LMTREE is given in Table 3. The outer 
loop (step 2) is concerned with the input of various values of c': as the user 
can zero in on the best estimate for the upper bound c" by a binary-split 
method, this loop should be completed O(logN) times. The total time 
complexity of the algorithm can thus be seen to be O (N 3 logN). The space 
complexity of the algorithm is O (N2). 

Selected explanatory comments on Table 3 follow. 

. 

. 

The A matrix does not possess a (c x c) diagonalizabte block, 
including base points n and j ,  all of whose entries are no less than c 
if either (i) k u < c or kin < c or k nj < c (step 3), or (ii) the 
number of non-excised base points k for which k kj >f c and 
k j k t> c is less than c (step 4). 

In steps 7 - 9, an investigation is undertaken of elements of  the 
reduced A matrix (containing M rows) which are less than c (alter- 
natively, of the Z (say) zero elements in the reduced O matrix). 
Let ~j denote the number of distinct zeroes in the i-th row plus the 
i-th column, and let the set { ~ ( i - -  1 . . . . .  M)}, with the element 
corresponding to the preferred point n deleted, be ordered in 
decreasing order of magnitude, denoted by {zj(j = 1 . . . . .  M - l ) } ,  
where 

zl >i z2 >I... >/ zM-, 

If the reduced ® matrix can be made into a matrix whose elements 
are all 1 by the deletion of L rows and corresponding columns, it 
follows that 



TABLE 3 

Algorithm for Program LMTREE 

T i m e  
Algorit~ Complexity 

beg in  

i. Input A matrix; O(N a) 
repeat 

2. Input suspected u~per bound, c'; O(1) 
if c'>O then 

beqln 
count:= 0; 
f o r  n~= 1 _t_o s do 

begi~ 
r e j e c t : =  _fals___~e; 
f qor i:= i to N do  pres[i]:-- tru___~e; 
if knn~C ' _%he_9 ~ reject:= true~ 
if not reject then 

3. begin o( ~ ) 
_for 3 : "  1 t o  S a o  

if A- .<C '  Or A .<C' Or A3n~C' then 
33 . -~ n3 . . . .  

pres[ 3 ] : "  fal~e; 

~o_r j:= i %o N d_a 
i_~f pres[j) and  j ~ n then 

4. if. Number of non-excised base points k for which Ak3)C" and O(N) 
k3k)e' is less khan c' ~ pres[J]:- fa___lse# 

5. until No base points exclsed in loop; 0(I) 

6. i_~ Number Of non-excised base points k for which Akn)C' 0(N) 
and Xnk)C ' is lees than c' tb~n reject:~ true 

i f  n o t  r e j e c t  _the_~n 
~eg~n 

7. Z..= Number of non-excised elements Ail Of A matrix for which O(N z ) 

AIj<C' Or A3i<c'I 

f o r  i :  = I t o  S do 
i ~  p r e s C i ]  ~ i '~n t~_e_n 

b e ~ n  
ram:= . ~  + i; S[mm] := 0; 
.fg~ 9 : "  1%._o N_d9 

if pree[J] _and_ (A£3~C" ~ A3x¢c' ) then 
i_f i ~ 3 ti~en s[~nm] : ~  s [ m , . ]  + l 
91se S(mm]:= S[,~] + 2 

en_d~ 

8+ Sort mm entries in vector S into decreasing order; O(N log N) 
M: ~ mm ÷ i; L: = M - c ' ;  

9. y~ Sum of flrst n entries in vector S~ O(N) 
_i~ Z,¥ _then reject:- t;ue 
end 

i_ f  n o t  z e 3 e c t  t h e n  
Count:= count + l 

e_~ 
i_f count ) c' _t~n 

io. Output that common pruned tree of size c' is possible O(1) 
else 

II. Output that common pruned tree of size c' is not possible O(i) 
end; 

until C" = 0 
9n__d. 
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L 
z Zz, 

i~l 

Thus, if it is the case that 

M~c 

Z > ~ . , z t  , 
i=1 

there can be no common pruned trees of size c. 

When the programs UBTREE and LMTREE were used to compare the 
dendrograms depicted in Figures 1 and 2, the result c '=  29 was obtained, 
i.e., the largest common pruned tree might contain 29 objects but cannot 
contain 30 objects. (In this instance, the same bound c* was provided by 
the 1-st order method, but for other data sets examined, the 3-rd order 
bound has been an improvement on the 1-st order bound.) A detailed study 
of these data indicated that there is in fact no common pruned tree of  size 
greater than 26, and this was the size of tree provided by the programs 
CMTREE and FSTREE a high proportion of the time. However, the search 
for common pruned trees of size greater than 26 was facilitated by the 
marked group structure present in these data; although the bound cannot be 
guaranteed to be completely sharp, the algorithm should be of assistance in 
the comparison of tree diagrams. It is also relevant to note that the algo- 
rithm indicates that the twelve objects belonging to groups D and E cannot 
belong to a common pruned tree of size 26. This result is useful, but it will 
be seen in the next section that a more precise statement can be made about 
these data. 

5. Categorization and Regrafting 

The largest common pruned tree need not, and in general will not, be 
unique. One can thus seek to categorize base points into one of three 
classes: 

class A, comprising base points which belong to all largest common pruned 
trees; 

class S, comprising base points which belong to some but not all largest 
common pruned trees; and 

class N, comprising base points which belong to no largest common pruned 
tree. 

If there are not too many common pruned trees of maximum size, it 
can be informative to obtain all of them: running the programs CMTREE 
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and FSTREE with different parameter settings might achieve this; there is 
also an option allowing the user to specify base points for deletion, thus ena- 
bling one to avoid particular optimal solutions. Further, the algorithm 
described in the previous section allows one to identify (some of the) points 
belonging to class N. With sufficient effort, therefore, one might be able to 
categorize all the base points into one of the three classes specified above. 
For example, a study of the data analyzed in this paper suggested that the 
class memberships are: 

A: 1-4, 7-9, 11, 13, 17, 18, 20, 22, 27-29, 33, 42-45 
S: 5, 6, 10, 12, 14, 15, 19, 23-25 
N: 16, 21, 26, 30-32, 34-41, 46-49. 

If, however, attention is restricted to the first five objects in each 
sequence, truncated in accordance with criterion (iii), objects (34, 35, 38-41, 
46-49) are moved from class N to class A. 

It can also be informative to use different symbols to depict the rela- 
tionships in the common pruned tree of objects belonging to different 
classes. This is illustrated in Figure 6 for the objects belonging to group B. 
In this, the two largest common pruned trees of size 9 are depicted by 
unbroken lines (class A objects) and dashed lines (class S objects); relation- 
ships depicted by the other two symbols ( - . -  and . - . )  should be disre- 
garded at present. 

A further elaboration suggested by Gordon (1980) was to regraft 
branches which had been removed in obtaining the common pruned tree: it 
was proposed that these be attached at the lowest possible level in the com- 
mon pruned tree for which their subsequent (higher level) relationships 
with objects in the common pruned tree are in complete agreement in the 
original trees. One way of achieving this aim is given by the algorithm sum- 
marized in Table 4. Before discussing this algorithm, however, it is neces- 
sary to define the concept of a strict consensus tree and introduce further 
terminology. 

Recall that a tree T, was defined in terms of its constituent 
hierarchically-nested subsets {To(j = 1 . . . . .  nr)}. Sokal and Rohlf (1981) 
defined the strict consensus tree SC of the trees T~ . . . . .  Tt to comprise 
those subsets { S C : ( j =  1 . . . . .  ns)} that belong to all of the trees 
T1 . . . . .  Tt. Strict consensus trees are a special case of Margush and 
McMorris's (1981) majority-rule consensus n-trees, the two types of con- 
sensus tree being identical when two original trees are compared. 

As an illustration, consider the trees depicted in Figures 4(a) and 4(b): 
the subsets in these trees are 

(a): {1}, {2}, {3}, {4}, {1,2}, {3,4}, {1,2,3,4}; and 
(b): {I}, {2}, {3}, {4}, {3,4}, {2,3,4}, {1,2,3,4}; 
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1 8  
2 0  
2 2  

. . . . . . .  1 9  
I'-- . . . . . .  2 5  I 

B t _ _  ..4- - 23 - - -~_ . . _  j B 
: - - 2 4  . . . .  
. . . . . . . . . . .  2 1  . . . . . . . . . . .  

2 7  

. . . . . . . . . . . . . . . . . . .  1 6  . . . . . . . . . . . . . . . . . .  : 

. . . . . . . . . . . . . . . . . . .  2 6  . . . . . . . . . . . . . . . . . .  : 
:. . . . . . . . . . . . . . . .  : - -  3 0 " :  . . . . . . . . . . . . . . .  : 
: " - - 3 1 - . "  : 
. . . . . . . . . . .  • - "  . . . . .  3 2 " "  . . . . . . . . . . . . . . . .  

Figure 6. Two common pruned and regrafted trees of the objects in group B. Relationships 
between base point in class A are denoted by .... ; class S by - - - or - "- ; class N by " " ". 

hence, the strict consensus tree comprises the subsets 

{1}, {2}, {3}, {4}, {3,4}, {1,2,3,4}. 

This strict consensus tree is portrayed in Figure 4(e). 
Introducing further  terminology: let C denote the set of  objects belong- 

ing to the largest common pruned tree, denoted by CP, which is to be sub- 
jected to regrafting; let P = 12 \ C denote the set of  objects pruned from 
the original trees T/ . . . . .  Tr; and let {CPj(j = 1 . . . . .  no)} denote the sub- 
sets of  objects that are present in CP. 

In the algorithm summarized in Table 4, one considers adding an object 
kEP to one o f  the subsets CPi (say) of CP. The augmented class CPiU {k} 
is defined to be compatible with the tree Tr if there exists a class T a such 
that 

(i) all members  of CPi U {k} belong to Ta; and 
(ii) T d does not  contain any object belonging to C \ CP;. 

The object k is added to the smallest subset CPi for which CPiU {k} is com- 
patible with all T~( r=  1 . . . . .  t); since CU{k} is compatible with 
TI . . . . .  Tt, there does exist a subset to which k can be added. The ele- 
ments  of  P are added to CP only at  the end of the algorithm: the tree is not  
sequentially updated. 

The t ime complexity of  the algorithm summarized in Table 4 is 
O(Nat). In testing for compatibility, steps 3 and 5 search down trees; if K~ 
and K2 are upper bounds to the numbers  of  subsets examined in, respec- 
tively, steps 3 and 5, then K1 and K2 are both O (N). However, if the trees 
are well-balanced, or the data are such that all objects k ~ P are added at a 
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TABLE % 

Regrafting algorithm 

Time 
Algorithm Complexity 

beain 

I. Identify all classes comprising solely members of P which belong O(NZt) 
to evezy T r (r = I, ...,t). Let the maximal classes be denoted by 
P~,...,Ppj for each Pm (~ = i, ...,p), obtain the strict consensus 

tree based on the objects in Pro; 

2. fo__~r m:= I t_o p do OCN) 
beqin 
Select a representative element k (say) of Pro; Cold:" C; 

3. re,eat O( N ) 
Determine the set of offspring classes {c[i] (i - l,...,n)} 

of Cold; i:= 0; 
rs~eat 

i:- i+l; r: ~ i; matched:-- true; 

4. while r~t and matched do_ O(t) 

5. beqin O(N z ) 
if c[i]u{k} is not ~tible with T r then matched: = f~; 
r:= r+l; 
end; 

until matched or i-n; 
if matched th~n Cold:- C[i]; 

until no___tt matchedQ 
Print that Pm and its subsets (if any) will be attached to Cold; 
en___dd 

end. 

NOTE : "A~ is an offspring class of Az" means that Ai c Az, and if A~ is such that 

A~ c_ A~ c A z then either A 3 = A~ or A~ = A z. 

vertex near the top of CP, one can expect the run time to be considerably 
reduced. The space complexity o f  the algorithm is O(N2t). 

Figure 6 illustrates the application of the regrafting procedure to the 
objects contained in group B. The relationships between regrafted objects 
belonging to class S are depicted by alternate dashes and dots, while those 
for objects belonging to class N are shown by dotted lines. 

It is informative to compare the common pruned and regrafted trees 
shown in Figure 6 with the strict consensus tree of the objects in group B, 
depicted in Figure 7. It can be seen that all of the subsets of the strict con- 
sensus tree are contained in each of the common pruned and regrafted trees. 
A referee conjectured that this result held generally. Denoting the tree 
obtained from applying the regrafting algorithm summarized in Table 4 to a 
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Figure 7. Strict 
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26 ̧  
30"m 
31-.-I 
32 

consensus tree of the objects in group B. 

largest common pruned tree by CPG, and its constituent subsets by 
{CPGj(j --- 1 . . . . .  ng)}, the result can be stated formally as: 

Theorem {SCj ~-- I ..... ns)} c {CPG: (./= I ..... ng)}. 

Proof The proof is divided into three parts, considering subsets of SC which 
(i) comprise solely members of P; (ii) comprise solely members of C; (iii) 
do not belong to (i), (ii) above. 

(i) From step 1 of the algorithm in Table 4, all such subsets of SC 
belong to CPG. 

(iii) All such subsets of  SC belong to each of Tl . . . . .  Tt. Hence, 
from step 5 of  the algorithm, all such subsets of  SC belong to 
CPG. 

(ii) Let Tic denote the tree obtained from the tree T by pruning from 
it all objects, with associated branches, which do not belong to C. 

Every subset of SC~c belongs to T~lc for r = 1 . . . . .  t, hence 
it belongs to CP since Trlc = CP(r = 1 . . . . .  t). 

It remains to prove that the regrafting procedure: 
CP-'-" CPG does not destroy subsets of CP which belong to SC 
by adding other objects to them. 

Suppose SC: belongs to CP. Unless SCj -- C = f~ (in which 
case, CP = CPG, and the result follows), CP must contain at least 
one other object, or group of objects, C1 (say), with the property 
that (SCj, Ct) is a subset of CP. 

Consider regrafting an object, or group of objects, PI (say) on 
to CP.Pi will be added to CP below the internal node specifying 
the class (SCj, C1) only if group SCj amalgamates with P1 before 
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C1 in all of the original trees, i.e., only if the class (SC s, P1) 
belongs to T r I{C,p1 ] for all r. However, if this is the case, P1 can 

be added to CP to obtain a common pruned tree of larger size 
(contradicting the assumption that CP is a largest common pruned 
tree). 
Hence, SCj belongs to CPG. • 

The common pruned and regrafted trees thus possess the Pareto pro- 
perty of preserving unanimity (Neumann 1983). However, the details of  
the proof indicate the importance of regrafting objects on to a largest com- 
mon pruned tree. 

Figures 6 and 7 illustrate the fact that largest common pruned and 
regrafted trees can contain more structure than strict consensus trees, this 
extra structure not being imposed on the data but receiving support from 
the original trees. This property, and the fact that they present information 
about which of the relationships in the tree are more reliably depicted, are 
seen as considerable advantages of such common pruned and regrafted trees. 
However, it seems likely that detailed categorizations and representations 
will be helpful only when there are not too many largest common pruned 
trees. 

The manuals listed in the reference section, with associated program 
listings, are available on request. 
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