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Abstract: We investigate the properties of  several signiticanee tests for distin- 
guishing between the hypothesis H of a "homogeneous" population and an 
alternative A involving "clustering" or "heterogeneity," with emphasis on 
the case of multidimensional observations xl . . . . .  xn E jRp. Four types of 
test statistics are considered: the (s-th) largest gap between observations, 
their mean distance (or similarity), the minimum within-cluster sum of 
squares resulting from a k-means algorithm, and the resulting maximum F 
statistic. The asymptotic distributions under H are given for n "--'oo and the 
asymptotic power of the tests is derived for neighboring alternatives. 
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1. Introduction 

When a clustering algorithm is applied to a set of data, a classification 
of objects is obtained whether or not the data exhibit a true or "natural"  
grouping structure. This fact causes no problems if clustering is done for 
obtaining a practical (even if somewhat artificial) stratification of the given 
set of objects, e.g., for organizational purposes. However, if interest lies 
more in the recognition of an unknown clustering structure of the data (data 
analysis), an artificial clustering is not acceptable, and therefore the classes 
resulting from the algorithm must, in addition, be investigated for their 
relevance and their validity. Apart from descriptive, graphical, or explora- 
tory methods, this task can be performed by using probabilistic models and 
suitable statistical significance tests. 

Our approach is to consider a set of n p-dimensional observation points 
xl . . . . .  xn in Euclidean space tR p. We describe a series of statistical 
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methods for discriminating between, on the one hand, the hypothesis H 
that these observations are sampled from a "homogeneous" population, and 
an alternative A involving "heterogeneity" or a "clustering structure," on 
the other hand (Section 2). More specifically, we consider the following test 
statistics: the largest nearest neighbor distance (3.2) between the n observa- 
tions ("gap" statistic with some modifications, Section 3); some kind of 
mean similarity (4.1) (Section 4); the minimum within-class sum of squares 
(5.1) resulting, e.g., from a k-means clustering algorithm; and, finally, the 
corresponding maximum F statistic (5.4) (Sections 5 and 6). If, for a given 
significance level (error probability) ~, such a test statistic exceeds the 
corresponding critical value c -- c (~), the hypothesis H of homogeneity is 
rejected (e.g., in favor of a clustering structure A). 

For one-dimensional data (p = 1), these tests or modfications of them 
have been proposed and analyzed repeatedly in the literature. Some type of 
gap statistic has been used, for testing bimodality, in Weiss (1960) and Har- 
tigan (1977), in Giacomelli et al. (1971) who proposes a "dip intensity" 
measure for the histogram, or in the papers of NeweU (1963), Wallenstein 
and Naus (1973, 1974), del Pino (1979), Kuo and Rao (1981) who consider 
spacing or k-spacing methods in /R 1. Concerning the squared-error criterion 
and the F statistic, we may cite the paper of Engelman and Hartigan (1969), 
chapter 4.8 of Hartigan (1975), and various proposals and investigations by 
Sheath (1977a, 1977b, 1979a, 1979b) and Barnett et al. (1979). A more 
complete review is given in Bock (1981). 

In the present paper, we shall emphasize the multidimensional case 
p > 1. Then the crucial points are, in practice, the calculation of the critical 
threshold c (a) and the performance (power) of the tests under an alterna- 
tive of clustering. We investigate these questions in an asymptotic sense for 
n---~. We review and derive results on the asymptotic distribution of the 
test statistics under H, and characterize the asymptotic power of some tests 
under neighboring alternatives A ffi An approaching H for n - 'oo. In partic- 
ular, by recourse to a paper of Pollard (1982a), we obtain the asymptotic 
distribution of the maximum F statistic (5.4) from variance analysis and 
thereby generalize a theorem of Hartigan (1978) to the multivariate case 
(corollary 6.5 and theorem 6.6; these reults have been cited in Bock 1983). 
Moreover, it appears that the asymptotic power of the gap test may be 
characterized by a speed factor (log n) -I (for An converging to H),  and by a 
factor n -'~ for tests based on the mean similarity (4.1). Thus, the situation 
is worse than in classical likelihood procedures for parametric problems 
where the factor n -~ occurs, and we cannot expect an excessive discrimina- 
tion power from these tests. 

A more thorough discussion of significance testing and evaluation 
methods in cluster analysis is provided by Dubes and Jain (1979), Bock 
(1981), and Perruchet (1982, 1983). 
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2. Probabilistie Models for Homogeneity and Heterogeneity 

Let xt . . . . .  xn E 2R p be n p-dimensional observations which represent 
n objects under investigation and which are to be analyzed for homogeneity 
resp. a clustering structure. We shall use a probabilistic model and consider 
x l  . . . . .  xn as realizations of n independent p-dimensional random vectors 
X1 . . . . .  X,, all with the same distribution density f (x). Depending on 
the shape of f ( . )  we shall speak of a homogeneous or a clustered popula- 
tion. As for "homogenei ty ,"  an intuitive definition would be the 

Uniformity hypothesis He" 

X~ . . . . .  X, have a uniform distribution in a given bounded, open and con- 
nected set G C /R ~' with 1GI := vol (G)> 0, i.e., 

f (x) = f0  (x) := l e  ( x ) / IGI  (2.1) 

Here l e  ( ' )  denotes the characteristic function of the set 
G: l e  (x) --- 1 or 0 if x E G resp. x ~ G. In practice, a relevant set G will 
be assumed to exhibit further "n ice"  properties, e.g., to be convex or to 
have an ellipsoidal or a rectangular form (see remark 3.2). 

Another interpretation of "homogeneity" which is most suitable for 
many applications, underlies the 

Unimodality hypothesis H0: 

We have f (x) = h (x) with some unimodal density h ( ' ) .  

Note that a density h ( - )  is called unimodal if there exists a point 
/z E 2R p (the mode of  h) such that for each unit vector (direction) u E /R p, 
the density f (~ + tu) is a strictly decreasing function of the real variable 
t/> 0. In practice, there will be additional restrictions for f (e.g., con- 
tinuity, convex contour lines, etc.). 

In Figures 1.a and 1.b we have depicted two "homogeneous"  samples 
from He resp. H0; in contrast, Figures 1.c and 1.d illustrate two samples 
which indicate some typical clustering structure. In particular, Figure 1.c 
refers to the 

Alternative A "" 

The common density f (x) is multimodal, i.e., there exists a finite number 
k>/ 2 of  distinct points ~'1 . . . . .  ffk E JR p (the modes of f )  where f ( ' )  
attains a strict relative maximum. 

Thus, in a suitable graphical representation of f ( . )  or of the empirical 
point density, we may recognize "hills" and separating "valleys" where 
gaps between observations are much larger than is to be expected, e.g., 
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c. Multimodalify (ALternative A ~) d. Translation mixture model A 

Figure 1. Samples under the models H~, H0 ,  A ", and A. 

under He. Therefore a "gap test" seems to be advisable in this case (see 
Section 3. A similar argumentation applies to some weaker d e ~ t i o n s  of 
unimodality or multimodality where the strictness condition is relaxed suit- 
ably). Another type of clustering is described by the 

Mixture alternative A: 

The common density f (x) is a translation mixture of the form 
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k 
f (x) = ~ Pi " h ( x - / x  i) (2.2) 

i--1 

with k>~ 2 different (subpopulation) centers ~1 . . . . .  /z k E JR ' ,  a density 
h (x) describing the shape of the clusters, and k class proportions 
Pl . . . . .  pk>0  with Zi~pi = 1 (all/~i, p~, k unknown). 

In typical situations where h ( - )  is continuous and unimodal and the 
class centers/zx . . . . .  /~k are sufficiently distant, the density (2.2) will show 
several modes and can be subsumed under A ". It will be made evident in 
Section 4 that the mixture case (2.2) can be tackled using some mean simi- 
larity criterion provided that the shape h ( - )  of the clusters is known. In 
other cases we may use the maximum F statistic in Section 5 for discrim- 
inating between ,4 and H0. 

3. Gap Tests 

For testing the uniformity hypothesis Ha, we consider, for each 
j -- 1 . . . . .  n, the minimum Euclidean distance U,j from the sample point 
Xj to all other points X~ (v;~j )  resp. to the boundary 0G of G: 

Uny : =  Min( Min {11  - X ll },IIXj - 0 a l l }  
/P 

j----I . . . . .  n (3.1) 

(a modified nearest neighbor distance). Then the gap statistic 

Dn :-- Max{ Unl . . . . .  U,,n} (3.2) 

is the radius of the largest ball which can be centered at some Xj without 
containing, in its interior, some other point of {X1 . . . . .  Am} or a G. It is 
the basic criterion of the gap test. Reject Ha if and only if Dn > c. The 
threshold c = cn (~) is to be calculated from Pa (Dn>c)  = at, the given 
error probability of the first kind. 

Since the exact distribution of  D~ under Ha is very intricate for finite 
n, we use, for calculating c, an asymptotic result given by Henze (1981, 
1982): 

Theorem 3.1 For any bounded, open and connected set G C IR ~ with volume 
] G I, we have under Ha,  for all t E JR : 

lira Pa (n ~,p • D ~ / I G I - l o g  n < t) = e -e - t - -  • L (t) (3.3) 
/ 1 ~  OO 

where v p := ~rp/2 / F (1+p/2) /s the volume of  the unit ball in IR p. 
Thus, up to a linear transformation, the asymptotic distribution of D~ p is 

Gumbel's extreme value distribution and for large n, we may approximately 
use the corresponding critical value 
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5. (~) := {IOl • [log n - log ( -  log ( 1 - o 0 ) ] / ( n  vp)} I/p 

for D,,. 

Remark 3.1: Actually, at least for p =. 1 and 2, the term IlXj - 0GII may 
be omitted in (3.1) without changing the asymptotic results given above 
(and below) provided that O G is a simply closed and twice differentiable 
curve; but no analogue seems to be valid for p>~ 3 (Henze 1981). 

It is possible to characterize the asymptotic power of the gap test by 
using a sequence of neighboring ("contiguous") alternatives An approaching 
H0 for n--*oo. Let XI . . . . .  X,, each have the density 
f~ (x) := fo(x)  + A (x) / log n with an arbitrary continuous and bounded 
function A (x) with f A (x) dx = 0. Then under a mild regularity assump- 
tion, namely sup{la (x)--a (Y)t I t l x -Yl l<E}- - -  o(1/ ( - log~))  for 
~---0, we have (Henze 1981): 

lim PA, (n vp • D¢/ IGl-log n - 6  ~<t) -- L (t) for t E IR (3.4) 
n.-, ,¢o 

with a non-centrality parameter 

A (x) 
8 := log {f_ exp { - } • fo(x)  dx} >1 0 

fo(x) G 
(3.5) 

Thus the asymptotic error probability of the second kind is given by 

fl : - -  lim PA~ (D,, ~<cn(a)) - -  L (L -1 ( l - a ) - 8 )  - -  ( l - a )  es 

The routine application of a gap test requires some practical comments: 

Remark 3.2. The gap test can be performed only if the region G is known 
from the outset. It is evident from (3.1) that the choice of G has a great 
influence on the test statistic D,. If G is not given beforehand, we must, in 
practice, resort to some approximate, conservative estimate G ° for G, e.g., 
a concentration ellipsoid or the convex hull of the observations (retaining 
only those in the interior of G') .  As an alternative, we may transform our 
data, linearly and componentwise, to the interval [0,1] such that G - [0,1] p 
will be a suitable choice. However, such a transformation can be delicate 
since it introduces a different weighting of distances measured along the p 
original coordinate axes. 

Remark 3.3: Since convergence is slow in (3.3), 5, (o~) may be an inaccu- 
rate estimate for c, (~x) for finite n. However, we may profit from the fact 
that the relation (3.3) holds in the same form if the nearest neighbor 
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distances U.I . . . . .  U.n were assumed to be independent (see Henze 1981). 
In this case, the equation for c reads: 

V (an>c) 1 - P  ( a  n ~c) I-[P G (Unl ~c)] n (3.6) 

If  the distribution of U.t is known, solving for c gives another approxima- 
tion for c. (a) for medium-sized n. This approximation proves to be excel- 
lent, e.g., in the two-dimensional case p----2 with G = [0,1] 2 the unit 
square, and 

PG (Unl ~ c )  =* 1 - ( 1 - 2 c )  2 (1-~" c2) "-1, 0 ~<c ~<~6 (3.7) 

provided that n > /20  (Henze 1982). 

There are several modifications and generalizations of the test statistic 
Dn and the corresponding gap test. 

Given some integer r with 1 ~< r ~< n, we may use D~:= Unc.+l-r), the 
r th largest nearest neighbor distance, instead of Dn; here 
U.(1) ~< . . . . .  ~< U~(,,) denote the order statistics of U.I . . . . .  U.,,. Then 
the asymptotic formulas (3.3) and (3.4) must  be modified according to 

r-1 e-St 
lim PG (n • vp • DP.r/ Ial-log n ~ t )  -- Z ( t )  • ~ ....... s? 
n--~o s--O 

(3.3*) 

r--1 e-St 
lim PAn(n • vp • D ~ /  IGl- log n - 8  <~t) = L ( t )  " ~_~ s !  (3.4*) 

n ~  s--O 

where, on the right hand side, Smirnov's limit distribution is obtained 
(Henze 1982). 

R e m a r k  3.4: Gap statistics of this type are related to the well-known single 
linkage dendrogram from cluster analysis based on the n ( n - l ) / 2  Euclidean 
distances d U -- l lxj-x~tl .  The statistic D~. (calculated without the term 
IlXj-0GII in (3.1)) is just the level at which the r th last single object joins 
some other class in the single linkage dendrogram. Thus the resulting D.r- 
test may be interpreted in the framework of hierarchies. In the one- 
dimensional case, a similar idea has been followed by Weiss (1960) and Har- 
tigan (1977) who investigated the maximum gap in the min imum spanning 
tree for testing bimodality. 

To obtain a non-trivial limiting error probability 0< /3<  1, the contigu- 
ous densities f .  have to approach f0 with the order 1/ log n, which is very 
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slow. This result indicates some difficulty in distinguishing He  from its 
(nonspecified omnibus) alternatives with the aid of a gap test (analogous 
difficulties are well known from nearest-neighbor density estimation). There 
is strong evidence that we can improve on this by using, in the definition of 
D,  ffi Dnl or D~,  the distance U~ of xj to its s-th nearest neighbor (respec- 
tively to 8G) instead of U,j, and to choose for the integer s a sequence 
s ffi sn approaching ~ for n---,~. However, no exact results are known 
here, and in the multidimensional case, practical considerations (computer 
time and storage requirements) will restrict s to be small for large n. 

For a fixed integer s, the modified statistic D,~ (based on 
U,~I . . . . .  /-Inn) has been investigated by Henze (1982, case a.). Similar 
tests for homogeneity (or goodness-of-fit) have been formulated using b., 
the empirical distribution of the transformed nearest-neighbor distances 
(Bickel and Breiman 1983), or in the one-dimensional case, c., the average 
of suitably transformed k-spacings (del Pino 1979, Kuo and Rao 1981). All 
papers show the same problems in performance as cited above. The tests 
are unable to detect alternatives approaching the uniform, respectively, a. at 
a rate faster than 1 / log  n, b. at a rate 1/4~n (this may be cured by a suit- 
able weighting depending on the alternative, as suggested by Schilling 1983a, 
1983b), and c. at a rate faster than n -'~ (for symmetric statistics). 

4. Tests Using Mean Similarity for Mixture Models 

While in the last section the rar~ing of pairwise distances was the 
predominant feature, we will investigate, in this section, the use of a mean 
distance (or a mean similarity) in the clustering framework. More 
specifically, we will consider cases where "homogenei ty"  is understood in 
the sense of the unimodality hypothesis H0, and "clustering" is described 
by a mixture alternative A, (2.2), where the within-group distribution den- 
sity h ( - )  is the same as under H0. From intuitive grounds (e.g., f rom a 
look at Figure 1.b and 1.d) it may be co~ectured that H0 and A can be dis- 
tinguished by comparing the mean similarity of all observations with some 
standard threshold c (another motivation is given in remark 4.1). 

To be specific, denote by s ffi s ( x , y )  a similarity index describing the 
nearness of two points x , y  E IR p, e.g., a decreasing function s -- q (A) of 
the Euclidean distance 4 - - I I x - y l l  or some symmetric function 
s -- ~ ( x - y )  of the difference x - y  (see lemmas 4.1 and 4.2). The mean of 
all pairwise similarities Sjl :ffi s (X~,Xt) of the observations X1 . . . . .  X, is 
defined by 

-1 

l - j< l -n  
(4.1) 
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The mean similarity test rejects H0 iff Tn < c with some critical threshold 
c = c. (~). 

This test is motivated by the conjecture that, under the mixture alterna- 
tive A, the mean Tn will be smaller in some sense than under H0. For two 
quite general types of similarity indices this is verified by the following lem- 
mas 4.1 and 4.2. As for the first one, denote by 

g (7) := f h (x) h (x+'0) ax (4.2) 

the (symmetric) distribution density of the difference Y~X1-X2  of two 
observations under H0. 

Lemma 4.1 l f  h (7) is a decreasing function y (11711) of the Euclidean norm 
11711, then the distance A :-- llX~-x~lt is stochastically larger under A than 
under Ho, i.e., 

PA (a < d )  ~<Po(A ~<d) (4.3) 

holds for all d>/ O. This implies that for any decreasing function 
q ('):/R+---,[0,1], the similarity S:=q (A) is stochastical~ smaller under A 
than under Ho: 

Pa (S <s)>/ Po(S <s) for s E JR+ (4.4) 

and the same ordering holds for the expectation of S: 

xA :-- EA [S] ~< E0 [S] -- :Xn (4.5) 

Proof." For any ~- E /R p and d>/ 0, consider balls A:-- {11711 I IIn-~ll ~<d} 
and B:-- {11~11 1 11711 .<d} in /R p centered at r resp. 0. Provided that 
A n B # f l  (i.e., llrll < 2 d ) ,  there is a one-to-one linear mapping of the cap 
A n B to the congruent cap A'A B by reflecting it at the hyperplane passing 
through r /2  and orthogonal to the vector ~':y = 7 - 2 r '  (7 -T/2) ' r / [ ]  rtl 2 
(with Jacobian -1). For any "0EB, y E B  we have f1711>~ d>~ Ilyll and 
~' (11711) -<~, (d) ,<~, (llyll) since 7 (') is decreasing. Therefore, by a 
change of variable: 

fAn~ ~'(11~I1) d7 ~<fAn~ ~(d) d7 = f ~ n a  ~,(d) dy ~<f2na ~'(llyll) dy 
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and we obtain: 

(r) := P0(tlY-~'ll ~ d )  -- YA h(~) d r  

-- ~fna ~'(11~11) d , 7 + J ~ ( l t ~ l l )  d 

~< AYnB~(II~II) d ~ + . . f  ~'(IIYlI) dy 
A N B  

-- ~ ~,(1[~11) d ,7 -- e0(ll  Ell ~<d) --- P0(A ~ d )  = ~r (0) 

(A similar argument shows that ~" (I-) is a decreasing function of Ilrll.) 
Applying this inequality, we can prove (4.3): 

i i '  

i i '  

i i '  

~<~-(o) .~  ~ p~ pl, = ~r (o) = to ( / ,  ~ d) 
i i '  

Finally, the implication (4.3) = >  (4.4) = >  (4.5) follows by well-known 
theorems (e.g., Lehmann 1955). • 

It is evident that we will obtain a quite analgous result when consider- 
ing an increasing function q ( l l X f X ~ l l )  of pairwise distances and a 
corresponding "mean  distance test." However, in this paper, we prefer a 
formulation using similarities because there is another similarity index 
whose investigation parallels the findings above, but which allows no obvi- 
ous distance analog. This similarity index is generated by a kernel (a distri- 
bution density) K (x) and the symmetric function 

0,): ~= f K (x) K (x -y )  dx (a convolution density) according to the for- 
mula: 

S = Sjt :-- ~ (X~-X~) = f K(x-Xy) K(x-X~) dx . (4.6) 

This definition is motivated by remark 4.1. We tacitly assume K (-)  and 
( ' )  to be bounded. Note that if K ( ' )  is spherically symmetric with 

center 0, then ~ (-)  has this property, too. If, additionally, K (-)  is 
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unimodal then the convolution ~" (y) is again unimodal with mode 0 (this 
follows from theorem 4 of Wolfe 1975) and (4.6) reduces to the former 
type S - -  q (A). 

Lemma 4.2 For a similarity index S = ~ (Xj-Xt) of the type (4.6) the ine- 
quality (4.5) holds, Le., S is, on the average, smaller under the mixture alterna- 
tive A than under the hypothesis Ho. 

Proof." We introduce the function 

:-- So[K( -Xl)] = S h(x) 

and apply the relation ~ (~ - n) ~ S K ( x - ~ )  K ( x - g )  dx. Then,  using 
the independence of X~ and X~ for j ~  l: 

-~ Pr k(x-lZr dx 

~ f{~fr Pr k2(x-lzr)} dx= ~--~prf k2(x-tzr) 

(4.7) 

where the inequality sign follows, e.g., from Jensen's inequality. Equality is 
possible only in the trivial case when k (x) is a constant. * 

Remark 4.1: Another  motivation for the mean similarity test is provided by 
considering the number  N (~) of ~-neighboring pairs {Xj,Xt} (i.e., with 
llx -Xxll ~ and j ,  l = 1 . . . . .  n, j # l ) .  It has been shown by Eberl and 
Hafner (1971) that, for n ---,*o and E---~n = n-1/P---,0, N (¢n) has an 
asymptotic Poisson distribution with expectation proportional to 
1:---S f2 ( x ) d x .  Since neighboring pairs are conjectured to be more 
numerous under homogeneity, this integral is expected to be larger under 
H0 than under A (the formal proof is similar to (4.7)). This remark may be 
the basis of a test procedure: First, the unknown density f ( ' )  of our 
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observations is estimated by a kernel type estimator ,;'n ( ' )  (using the ker- 
nel K (x)); by insertion we obtain an estimate l~:=f f~  (x) dx for I; 
finally the hypothesis H0 is rejected (in favor of A) iff In is smaller than 
some critical threshold. It turns out that this test is equivalent to the mean 
similarity test given above with the special similarity index (4.6) (Beck 
1977). 

According to these results, the mean similarity T, seems to be an 
acceptable statistic for testing H0 against A. However, its suitability and 
practicability depend critically on two assumptions: (i) that the density h (-) 
of the underlying distributions is known beforehand except for an unknown 
translation vector (since otherwise the critical level c for Tn cannot be 
obtained; see (4.16) below); (ii) that only translation mixture alternatives 
are involved. In practice, assumptions of this type are met when clustering 
results from a displacement of a known, homogeneous situation by inten- 
tional actions or accidental effects with unknown, group-specific shifts (e.g., 
the consumer behavior before and after a marketing strategy, or the dis- 
semination of plant colonies from a common center). In particular, we mus t  
observe that any mean similarity T,, is sensitive to a change of scale (replac- 
ing h (x) by h (x /o ' ) /o  -~ with some o->1 reduces, e.g., the mean kH of 
T,). Therefore the mean similarity test is susceptible to confounding the 
effects of scale and clustering and can be applied only if the former possibil- 
ity has been excluded from the outset. (In Section 5 we shall present a scale 
invariant test involving an optimal classification.) 

Remark 4.2: At first look, the problem H0 versus A is tempting to use a 
maximum likelihood ratio test (Wolfe 1970). However, for doing so, the 
exact class number k must be known additionally. Moreover, neither the 
exact nor the asymptotic distribution of the log likelihood ratio statistic is 
known in this case: the usual asymptotic theory (resulting in an asymptotic 
x2-type distribution) breaks down since the parameters in (2.2) are not 
identifiable under H0 and Fisher's information matrix proves to be singular. 
(This question has been discussed by Wolfe (1971), Hartigan (1977b) oh. 2 
and 6, Binder (1978) and others; some theoretical results have been 
obtained recently by Ghosh and Sen 1984). In constrast, for the mean simi- 
larity test, we are able not only to obtain the asymptotic distribution of the 
test statistic T, (theorem 4.3), but also to characterize the asymptotic power 
of the test under local alternatives (see theorem 4.5 and (4.24)).--For both 
tests, the distribution density h (-)  has to be specified; in practice, we will 
try, e.g., a multivariate normal distribution (example 4.1). 

The mean similarity Tn is a U-statistic. Therefore its asymptotic distri- 
bution Under H0 or A can be inferred from the general theory of U-statistics 
(Silverman 1976, Ranclles and Wolfe 1979, theorem 3.3.13). For describing 
the results, we need the following auxiliary functions (conditional or uncon- 
ditional means): 
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t(x) := Eo[~(X1-X2)IX2 = x] = f ~ (~-x )  h(~) d ~ (4.8) 

[ qk  t '(x) := EA ~(X1-X2)IX2 = = ~ Pr t(x-tZr) (4.9) 
r-1 

~bl(Y): = Eo[q(X1-X2+y)] =: f q(~÷y) g(~) d 

= f k (x) k (x+y)  dx 

tO2(a,b):= Eo[q(X1-X2+a) q(X1-X3+b)] 

(4.10) 

(4.11) 

: : S d 

+3(y): = Eo[~:(X1-X2+y)]-~ f ~2(~+y) g(~) d ~. (4.12) 

(These definitions refer to the case s (x,y) = ~ (x-y)  in (4.6); the similar- 
ity index s (x,y) = q ( l lx-y[[)  may be treated analogously.) 

The case of the hypothesis H -- H0 is summarized in theorem 4.3: 

Theorem 4.3: Under Ho the expectation kH and the variance o']t,n of the 
mean similariO, 7", are given by 

kH := Eo[T,] = EolS12]= f k2(x)dx = qJl(0) (4.13) 

trOt, n:= Varo(Tn)=[o'2tt+ 2(n -2 )  ~-/~/1 / [~J (4.14) 

with 

o'er:= raro(Sl2) = t~3(0)-tk2(0) 

~'~:= COVo($12,$13) = Varo(t(X1) ) = tk2(0,0)-qJ?(0) 

and 

lim n • o 'b , . - -  4zb . (4.15) 
/ . / ~ o o  

Provided that 0<o-~/<oo and Eo the standardized test statistic T~ 
~ J 

has, under I f  o and for n---*oo, an asymptotic normal distribution: 
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L 
(T, , - -kH)/  o-H,n -"* N (0,1) 

L 
where--,  means convergence in distribution. 

Thus the critical threshold c -~ Cn (a) for Tn may be approximated by 

~,, (a):= ku  + u. • o-/.t,,, (4.16) 

with 4, (u~) "= a and 4, the distribution function of N (0,1). We omit the 
details of the proof of theorem 4.3. Note that (4.15) implies that under the 
stated conditions: 

(T~-X,y) _C N (O,~D 

Example 4.1: For illustration, let us consider the case where "homogeneity" 
is described by a p-dimensional normal distribution Np (0, o -2 lp) with a 
known variance 0 .2 and the density h (x):--- (2~" o'2) -p/2 

• exp {-[,xl[2/2o'2 t. Using the kernel K (t):-- (4/3/ rr)°/4 exp {-2fl ,]t[[ 2 } 

with some smoothing parameter f l>0,  we obtain the similarity index 
/ / 

= ~ (~ -~ , ) - -  oxp l -  ~ ~ | wit~ ~--I1~-~,,1 ~ ~o ,o~ ~i~t~o 
t ! 

I J' { } T, -- Z ~ .  exp -fl  IIXj-xtl l  ~ . 
j <  t 

Under H0, its expectation is given by: 

) , n  = E0[T~I  - -  1 + 4/3 o -2 

and its variance is (4.14) with 

o-b = {1 + 8/3 o-2}-P/2-{1 + 4/3 o-21 -p 

~'b = [{1 + 2/3 o'2111 + 6/~ o'211-P/2-11 + 4/3 o'2} -~'. 

Some simulation studies show that, e.g., for 1 ~<p ~<4, 15 ~<fl 0 .2 ~45, 
n --- 100, the normal approximation (4.16) of the 5% point c, (0.05) of T,, 
is satisfactory if hu  / O'H,, >t 2,5 (thus avoiding skewness). 
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In the remainder of this section we investigate the asymptotic power of 
the mean similarity test. At first, we remark that a central limit theorem 
holds for T, under any fixed mixture alternative A as well. Formally it is 
obtained from theorem 4.3 by substituting there the mixture density (2.2) 
for the density h (-) ,  Some elementary, but tedious calculations lead to the 
following result (Book 1977): 

Corollary 4.4: Under the mixture alternative (2.2), the expectation k A and the 
variance o" ],n of T, are given by 

k k 

XA:= EA[T,] = EA [$12] -- ~ ~ A Ps ¢ l ~ - / z s )  (4.17) 
r -1  s-1 

with 
k k 

o-A.-2.- VarA (s 9 = E E P, 
r ' - I  s,-I 

(4.18) 

-rJ:= CovA ($12, $13) = VarA ( t ' (Xt))  (4.19) 

k k k 

r-1 s l l  t-1 

This corollary will be used in the proof of theorem 4.5. 
For characterizing the asymptotic power of the mean similarity test, we 

consider a sequence of mixture alternatives A -- A, generated by (2.2) with 
class means of the form 

/z j - - /z  + n -'~. z~ i--- 1 . . . . .  k (4.20) 

which converge to some central point/~ with the order n -'~ (the class pro- 
portions p~ . . . . .  Pk are held fixed). We wilt prove: 

Suppose that Eo and that the function Theorem 4.5: 

~l(Y),  (4.10), has continuous second derivatives (at y = 0). Then, under An 
L *I 

and asymptotically for n--*~, we have: 

~n (Tn-•tt) L N (-82, 4~ "2) , (4.21) 

where the non-centralify parameter 

k 
82-- ~ p~(z-'~)' G (z~-'~) >f O, (4.22) 

i-1 
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is calculated from the positive semi-definite p x p matrix of G of the second par- 
tial derivatives ofqJl (Y) aty = O: 

G :-- -D2  ~1(0) = f [grad k(71)l[grad k(~)] '  d r) (4.23) 

and the weighted average ~ := Z Pi zi- 

By a simple application of (4.21), we are able now to calculate the 
asymptotic error probability of the second kind for the mean similarity test: 

/3 = l i r a  P%((Tn-kn)/q'~,n>~ u,,) 

= lirn Pa(-4~n (Tn-XM)I (2o'n)>~ u,,) 

= 1-~b(u~ + al 2rn)  = cb(-u,,-8l 2ru)  (4.24) 

It is seen from (4.20) that the value -~n 82 measures the spread of the 
class centers/*1 . . . . .  /z k around their (weighted) mean p. + ~ / n  '~. In par- 
ticular, for the normal density case of example 4.1 the non-centrality param- 
eter is given by 

k 
a 2 = 2~ ( I  + 4~ 0-2) + " / 2 .  Y.  p, l l z , -~ l l  2 . 

r - - I  

The (low) rate of convergence n -'~ in (4.20) indicates some weakness 
of the mean similarity test in recognizing real spurious clusterings for finite 
n .  

Proof of theorem 4.5. The proof relies on the representation 

(Tn-kl-t) = 4nn (Tn-kA-Qn)  +'~n Qn + ,~n (Xa-x t t )  

with the random variable 

tL := 2 ~ (t'(x,)-xA) 
n 1-I 

(4.25) 

containing n independent, centered terms calculated from the conditional 
mean t" in (4.9) (for the sake of brevity we write A for An). We shall 
show that under this sequence for n--,oo: 
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(a) ,~n (X A--X H)-'* -8  2 

(b) d,, := n • EA [ ( T,,-X A - Q,, ) 2]_... 0 and therefore 

(T,,-k A--Q,,)---" 0 in probability 

(c) ~ Q, L N(0, 4r]~) 

Then the result (4.21) follows from Slutzky's theorem (e.g., Randles and 
Wolfe 1978, p. 72). 

(a) Suppose the function tOl(y)to be sufficiently smooth to have the fol- 
lowing Taylor expansion for fly I I-" 0: 

Ot(y)-qJ(0) = y '  grad tkl(O) - ½ y '  Gy + o(tlyl} 3) 

with the matrix G:= -D2  tkl(0). Inserting y =/x~-/x s = (zr-zs) /  n '/' = 
O(n-'/9 and using the representations (4.13), (4.17) for kn ,  kA we obtain: 

k k 

r~l s=l 

K k 

= - ~ Y2 5". pr p, ( z T z J '  G (z~-z,)  + o (n-  ~) 
r=l s=l 

k 

= - ~  pr(zr-z-)' G(zr-- i )  + o(n -~) 
r= 1 

= _ 8 2 + o ( n  -~) , 

since the linear te rm ~'~'r '}'~s Pr Ps(itLr--]'gs) = ~-"r Pr tZr  - Z s  Ps IZs  = 0 cancels  
out. The special representation (4.23) for G follows immediately by 
differentiation of 

gradtkl(y) = grad ( f  k ( x )  k ( x + y ) d x )  

= f k(x)[grad k ( x + y ) ] d x  

= f k ( 'o -y )[grad  k('0)]dn 

and inserting y = 0. This derivation holds e.g., if t lgrad k(~)t l  is bounded; 
other representations for G are (under suitable regularity assumptions): 
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G = - f  D2 q(~) " g(~)d~ = - f D 2  g(~) " ~(~)d~ 

(b) Since Tn-k A and Qn are centered variables we have 

= n[Vara(r.) + Var~(Q.)-2KovA(r . ,Q.)]  

where 

Var~(Q.) = 4 .  Vara(t'(XO)= 4 , 2  
n n 

CovA(Tn,Qn) = 2 . ~=.~=. ]~ Cova(Sij, t ' (Xt)) / [~] 
n i< j 1 

8 
n2(n_ l )  ]~"~ COVA(So, t '(Xi)) 

i< j 

--_ 4 .  CovA(S12 ,  t ' ( X l ) ) - - - -  4 V a r A ( t , ( X 1 ) ) =  4 ~.2 
?l n n 

_ 2 ...._ 2 _ 2 ._._ 2 for n -'-*oo, we conclude Since U An V H, dA n J H 

! [  ] d. = n - 1  o ' ] - 2 z 2 - - - * 0 .  

(c) The asymptotic normality of x/-~n Qn follows from Liapounov's central 
limit theorem for the bounded case (see Lodve 1963, p. 277). It is applied 
to the centered i.i.d, variables Ynt := t ° (Xt ) -  kA, (l = 1 . . . . .  n). Since 

the function ~ ( ' ) ,  (4.6), is bounded by assumption, a look at (4.8), (4.9), 
(4.10) and (4.17) shows that the variables Ynt are bounded, too. Moreover, 
the variance Vat (Y-t Ynt)= n " ~ .  approaches co since r~---* r ~ >  0 for 

n---.oo. Thus the assumptions of Liapounov's theorem are fulfilled and 
Et Ynt/ (vrnn rA )  is asymptotically N (0,1). This implies that 

.~n Q. / (2r t t )  = Et Y J  (-,/~n r H) is N (0,1), too, for n -'*oo. • 
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5. Tests Using the Least Squared Error Criterion 
(Maximum F Test) 

Since the tests given above do not use any clustering at all, they can be 
applied, at least in principle, without or before starting a clustering algo- 
rithm. However, in practice, the main interest is often more in finding a 
suitable classification, and only subsequently to test if this classification is 
more marked than for random, homogeneous data. Therefore we need 
methods for simultaneously testing and constructing a classification of data. 
It is to be expected that methods of this type will extract more information 
from the data concerning a prospective clustering structure and that the 
corresponding tests will exhibit a better power performance than a gap or a 
mean similarity test which is tailored more to the hypothesis of homogeneity 
than to the clustering alternative. But since their performance depends on 
both the clustering model and the clustering algorithm, it is evident that 
both must be adapted in a suitable sense from the outset. 

We treat this problem in the framework of partition type classifications 
using the well-known within cluster sum of squares criterion: Given some 
fixed class number k~> 2, we look for a partition C ffi (C1 . . . . .  Ck) of the 
given objects 1 . . . . .  n (respectively of the sample xl . . . . .  x~ of 
XI . . . . .  X,,) with k nonoverlapping classes C1 . . . . .  Ck such that. the 
"variance criterion" 

k 
g (c) := i llxT c,[l-- rain = : 

n i-1 j~c i 
(5.1) 

is minimized over all k-partitions C. Here ~c i denotes the mean of all xj 

belonging to the class Ci of C. An optimal partition Cn = (C~I . . . . .  C~'g), 
i.e., with g~= gn (Cn'), is usually approximated by a k-means, minimum- 
distance, or exchange algorithm (see, e.g., Bock 1974, Hartigan 1975, Sp~ith 
1982,1983). 

Intuitively, we expect that the minimum criterion value g~" tends to be 
small if the random vectors X1 . . . . .  Xn have a multimodal density (e.g., a 
translation mixture density (2.2)) with k well separated modes (see Figure 
1.d) and to be large if a homogeneity hypothesis H0 holds with some uni- 
modal density h. Therefore, for testing H0 and simultaneously for assessing 
the relevance of an optimal classification C~, the following minimum-variance 
test seems to be reasonable: 

(A) Reject H0 and accept C~ iff g~ := mien gn(C)<y  

where T = Y n (a) is some suitably chosen threshold. 
However, this test lacks an important invariance property which seems 

to be indispensable for practical purposes: Whilst any scale transformation 
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of the type ~ :=/3Xj (1 <~j ~<n; with some arbitrary constant /3#0)  
preserves unimodality as well as multimodality and thus leaves the test prob- 
lem invariant, the test statistic g~ changes its value into/32 g,~. Since often, 
in practice, only the type of the distribution of Xj can be specified (involv- 
ing an unknown scale factor or standard deviation), a scale invariant test will 
be advisable, 

A corresponding test statistic can be obtained from the remark that for 
any partition C the total sum of squares s~ can be decomposed into two 
parts: 

s~ := 1 ~ ttxF~lt2 = g~(c) ÷ b~(c) 
n j--1 

(5.2) 

where 

k 

a.(c) :=  L E IC, l " l l ~ c , - ~ l l  2 
n i--I 

(5.3) 

is the SSQ between the classes of C and ~ the mean of all xt . . . . .  x , .  
Therefore the minimization problem (5.1) is equivalent to the maximization 
problem: 

k 

b.(C) ~ Ic'l" ll~c, -~II2 
= k -- max = :k. t~.4) 

g. (c) :-- g. (c) T. Z l lxj-~c,l 12 

where the maximum value k~ may be expressed by 

/ ~ - -  k ~ ( c ; ) =  -- ~ - 1  . (5.5) 
g.(C.3 g. 

Thus the test (A) is equivalent to the maximum F test. 

(B) Reject H0 and accept C~ iff k~ := max k, (C)>x  
C 

with some critical level x = x~ (=) and a scale invariant test statistic k~. 
The name derives from the fact that ( ( n - k ) ~  ( k - l ) )  • k,(C) is just  the 
well-known F-ratio statistic when testing the hypothesis/~1 --. . .=/z k in the 
multivaraiate variance analysis model Hc : Xj ~ N~ ( ~ ,  o -2 I~,) for all 
j E C~ and i = 1 . . . . .  k, assuming C to be known. Thus k,~ is, essentially, 
the maximum F-ratio which can be obtained by searching for the "mos t  
significant" partition C. 
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Under normal distribution assumptions, both tests (A) and (B) were 
shown to be optimal in some Bayesian sense (Bock 1972, 1974 ch. 13). 

6. The Asymptotic Distribution of the Test 
Statistics g~ and k~ 

In the past, a main obstacle for generally applying the minimum vari- 
ance and maximum F tests (A), (B) in Section 5 has been the non- 
availability of the sampling distributions of the test  statistics g£ and k2, 
hence of the thresholds Tn(~) and t%(a). Only for the one-dimensional 
case have some simulation results been published by Engelman and Hartigan 
(1969), and Hartigan (1978) obtained the asymptotic normal distribution for 
g2 and k2 in this case. For two dimensions some single simulation values 
may be found in Lee (1979). 

In this section we shall derive the asymptotic distribution of the test 
statistics g~ and k~ in the general p-dimensional case. Throughout we 
assume that X, XbX2 .... are independent random vectors o f / R  ~, each with 
the same distribution P such that E[ Ilxll 2 ]<oo and the support of  P has 
cardinality at least k, the given class number. For example, P may be 
induced by some distribution density f (x) which describes, as the case may 
be, a hypothesis or an alternative from Section 2. 

Our derivation is based on the well-known result that the minimization 
problem (5.1) for C is equivalent to the following best-location problem 

Look for k locations zl . . . . .  zk E JR p such that the mean minimum 
squared deviation 

1 ]~ min i[Ixj-zi[l ~} (6.1) W (z, P,,):= n j-1 1 ~<i ~<k[ 

=i a (xj, z)-inf=: w; 
n j - 1  z 

is minimized over all systems z - - ( Z l  . . . . .  zk) 
Here P. is the empirical distribution of the sample 

with k locations of _/R ~'. 
xt . . . . .  x, and 

rain Iltx-zitl 2] a (x,z) : =  

the distance between x and the nearest location of z. 
To be more specific, let us denote, for a given partition 

C =  (CI . . . . .  Ck) of {xl . . . . .  x,}, by z(C):--  (.~q . . . . .  ~c e) the set of  

corresponding class means. Inversely, for a given location system 
z = (zl . . . . .  zk), denote by B (z) := (Bl(z) . . . . .  Bk(z)) the correspond- 
ing minimum distance partition of /R p with k classes 
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~ ( z )  := {xtx ~ ~R~, Itx-z~tl = Min Itx-zjtt} (6.2) 
l<<.j<~k 

(i = 1 . . . . .  k; ties may be resolved arbitrarily), and by 
C(z) : = (Cl (z )  . . . . .  Ck(z))  the corresponding minimum distance partition 
o f  the sample {xl . . . . .  x~}, i.e., with classes Ci(z)  := Bi ( z )N  {xl . . . . .  xn}. 
Then the equivalence of both problems (5.1) and (6.1) is made precise by: 

Theorem 6.1 (Book 1974): 

a. I f C ~ - -  (C~1 . . . . .  C~k) is an optimum partition o f {x i  . . . . .  x ,}  for  (5.1) 
then its center system z(Cn') is optimum for (6.1). 

b, I f  zn ffi (znl . . . . .  z~)  is an optimum location system for  (6.D, then its 
minimum distance partition C(zn') of  {xl . . . . .  xn} is optimum for (5.1). 

c. We have, necessarily, the stationarity conditions z~ ~ z(C(zn')) and 
C,~ ffi C(z(C~3), (e.g., z~ = Yc~ for i ~= 1 . . . . .  k i fC~ is unique). 

d. The minimum criterion values in (5.1) and (6.1) coincide: 

g~ :--- g.(c~') --- W(zn, In) • .  w~ (6.3) 

This last relation shows that the asymptotic distribution of g,~ is 
obtained by considering the asymptotics of the solution z,~ of (6.1) and its 
minimum criterion value W~ ffi W(zn, Pn). 

Since for n---,oo the empirical distribution Pn converges to P (in the 
weak sense) we expect that the asymptotic behavior of the optimal location 

o • • • 

system znffi (znl . . . . .  z~) is related to the soluton ~ -- ~*(P) - -  
(~1", . . . .  ~k') of the following continuous version of (6.1): 

k 
ffi ~ ~ ) I I x - z t l l  2 de (x )  --* inf= " w" (6.4) 

i-- 1 z 

and, moreover, to the partition B ° -- (B;  . . . . .  Bk') of/R p which solves the 
continuous analogue of (5.1): 
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k z ii (6.5) 

Here minimization is over all partitions B ffi (BI . . . . .  Bk) of /R p with k 
Borel sets B1 . . . . .  Bk C IR p, and/zB i :-- E [XIX E Bi] denotes the condi- 
tional mean of X in B~ (1 ~< i ~< k). Evidently, the continuous version of 
theorem 6.1 holds as well (Bock 1974). 

Theorem 6.2: 

a. I f  B' f f i  (B; . . . . .  BE') is an optimal partition of IR p for (6.5), then its 
center system ~ (B')  :ffi (tzB~ . . . . .  ~ B;) is optimal for (6.4). 

b. I f  the location system ~'ffi  (~1", . . . .  ~ is optimal for (6.4), then each 
minimum-distance partition B (~ ") of 2R p is optimal for (6.5). 

Necessarily, the stationariCy conditions B ° =  B (~ (B'))  resp. 
" =, ~ (B (~ ")) hold. In most cases (e.g., if B" is essentially unique) this 

means that B'- -  B (~ ") and 

~ =  E[XIX  E B~7 i =  1 . . . . .  k. (6,6) 

d. The minimum critrion values are equal for both problems (6.4) and (6.5): 

g" := g ( B ' )  -- P)  = w" (6.7) 

Remark 5.1: It is evident from their definition that all criteria g,(C),  
W (z,P) and G (B) remain invariant under a relabeling of the classes 
C1 . . . . .  Ck of C, the locations zx . . . . .  Zk of z, or the regions BI . . . . .  Bk 
of B. Therefore, the solutions C~, z~, ~ and B ° of the corresponding 
minimum problems (5,1), (6.1), (6.4) and (6.5) cannot be unique in the 
strong sense, but only up to k! permutations. This will be tacitly under- 
stood when referring to a "un ique"  solution, as well as the fact that the spe- 
cial assignment of class boundaries is irrelevant here. 

Note that the existence of a solution B" is guaranteed for (6.4) since 
E [llxl12]< , but that there may be different solutions. For example, if 
p >/ 2 and X has a spherically symmetric distribution P, then any rotation of 
an optimal center system ~'ffi  (~1", . . . .  ~k') is another solution of (6.4). 
For some special cases involving normal distributions see Gray and Karnin 
(1982) and Baubkus (1985). On the other hand, in the one-dimensional 
case, uniqueness holds, e.g., if log f (x) is concave (Fleischer 1964, Trush- 
kin 1982, Kieffer 1983). The corresponding solution for the normal distri- 
bution may be found in Ogawa (1951, 1962), Cox (1957), or Bock (1974, § 
15.f). 
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Now we may formulate the following consistency property which has 
been proved, with different methods and under different assumptions, by 
Degens (1978), Bryant and Williams on (1978) and Pollard (1981, 1982b): 

Theorem 6.3: Let L ( P ) C R  kp be the set o f  all solutions ~" o f  (6.4) and 
z~ ffi (z~l . . . . .  z,*k) any solution for (6.1), e.g., the empirical center system 
z~ :-- z(Cn'), Then, for n -'-'oo, we have almost surely zn*"*L(P) in the sense 

! I 

z t o O  
t J 

[1[" [1] denotes the Euclidean norm in JR kp). In particular, if  (6. 4) has a unique 
solution ~" ffi (~ 1; . . . .  ~ k') then, under an appropriate relabeling o f  the classes 
o f  C~, we have convergence o f  all centers: z,~ffi ~ c f f ' ~ ;  = E [XIX E Bi'] a.s. 

for i f f i  1 . . . . .  k .  

The asymptotic distribution of the center system zn ffi z (Cn') has been 
obtained by Pollard (1982a) in the case where the solution ~" of (6.4) is 
unique and the random vectors X~ are distributed with a density f (x). For 
later use, the following theorem 6.4 combines several final and intermediate 
results of his paper. We introduce the following notation: 

(i) The random vector Yn "ffi (Y'nl . . . . .  Y'nk)' o f / R  kp whose ith subvec- 
tor 

?/ 

Y., :-- 2n -~"  ~ (X]-~i3 • 1B.(X/) 
j -1 

( i - - 1  . . . . .  k) is, essentially, the centered mean of all Xj lying in the 
polyhedron B;  (remember that l s ( x )  denotes the characteristic function of 
a set B). By the central limit theorem, Y, has an asymptotic normal distri- 
bution: 

y, L N(0, V) with V :-- diag (Vx . . . . .  Vk) (6.8) 

whose covariance matrix has a block diagonal form with 

:-- pi • Cov(XIX ~ B,') 
p~ : - - P ( X  ~ B; )  

i = l  . . . . .  k 
(6.9) 

i - 1  . . . . .  k 

(ii) The kp x kp matrix F ffi (F~t) of all partial second derivatives of the 
deviation function W (z,P) with respect to z at z ffi F is made up of 
p x p blocks Fit given by 
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2 
r; i  := IIg:--¢;ll £ (x-g3 (x -~: ) '  f ( x ) d o ' ( x )  i #  l (6.10) 

F~i :-- 2p~ Ip-2~[~ 1 ~t(x-g3 (x-~:)' f(x)do'(x) 

(i, l---1 . . . . .  k). The integrals extend over the common boundary 
F,.t = O Bi*NOB;of the polytopes B:, Bt* (possibly Fit -- 0 )  and dot(x) is the 
(p-D-dimens iona l  Lebesque measure on Fa. The surface integrals occur 
because in (6.4) the domain of integration is dependent on z. 

Theorem 6.4 (Pollard 1982a) : Assume that the density f (x) of the random 
vectors X1,X2 .... is regular in some sense: f (x) is continuous and dominated 
by some functionp (llxll) with f r p p(r) dr< °o, El Ilxl121< oo andr isposi- 
tive definite. Moreover, suppose that the solution ~" ~ (~ l*, . . . .  ~ ~ of  (6. 4) is 
unique, and that the optimal empirical class centers zni are labeled such that 
zn':'~ ~ a.s. for all i (see theorem 6.3). Then, for n "--~°° : 

a. -f-nn (z,~-~') = r -~ Y~ + op(1) (6.11) 

has an asymptotic normal distribution N (O, F -1 VlP-1). 

b. g~,= W~= W(z~,, In) (6.12) 

= W (~', Pn) - ( I /2n)  • Y'n F-1 Yn + op(1/n) 

where the approximating term 

I~n :-- W(~',Pn) -----1 i A (xj,~') L N(W, , r2 /n )  
n j - I  

(6.13) 

is, by the central limit theorem, asymptotically normally distributed with expection 

W*= W(~*,P) = g(B ' )  and (6.14) 

r 2:= Var(A ( X , g ' ) ) = ~ , p , E  11 -~ , l  [ X E  B; - g  • (6.15) 
i-1 

Remark 5.2: The approximations (6.11) and (6.12) may be found on page 
924 of Pollard (1982a): While (6.12) is identical with the last line there, the 
relation (6.11) results from inserting the second-last line into the seventh- 
last line. 
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In the sequel, we shall assume without further reference that the 
results of theorem 6.4 are valid. An immediate consequence is: 

Corollary 6.5: The minimum within cluster sum of squares g~ = W~ has an 
asymptotic normal distribution given by 

~n  (gn*"g') = ~ ( W2- W') L N(0,T2). (6.16) 

Proof." From (6.12) we obtain 

(W2-W') - -4"~n  ( I V n - W ' ) - I /  (2~rffn) r ' n F  -1 r ,+Op(1/ ,~n)  

where the first term is asymptotically N (0, T 2) according to (6.13). More- 
over, since Yn has the limiting distribution (6.8), the second term is op(1). 
Thus (6.16) follows. • 

The asymptotic distribution of the maximum F-ratio k2 needs some 
further notation. First let us introduce some unconditional and conditional 
moments of X: 

/£ :1 EiX] 

o~, ~ E[ ItX-/£11' ] 
1£3 := E [ ( X - / £ ) ' [  Ix - / £  II 2 ] 

for i = 1 . . . . .  k. Then 

~;= E[XIX~B;] 
era := E[ I IX-~dII ' IX~B,  ] for t=2,4 
/£31 := E[(X-~3"I IX-~; I I2IX~B{]  , 

b" :=~ EP," 1t£ ;-~ 112 (6.17) 

is the population SSQ between and W" 
lation SSQ within the classes of B °. 
o'2 = g ' +  b" such that the population SSQ ratio is given by 

k* := b*/ g* = o'2] g* -1  

Finally, let 3, := o" 2] g* --- k" + 1 and 

(~ i - - /x )  P '3 i - -o '2 i  t1~-~,1t 2] K2: = o '4 + 2 7  ~ Pi[(3'/2)o-4i--2 " ' " " 

= I[--k  o'21] + Pi(~t-/z) t(~i-/~) Pt[ll~i'--'tz 2 - 2 4 ~  " ' V, " 

- 4k*" Z p,(~i'--tz)'lz3, + k "2 Z Pi{o'a,-o-L} 

= g" -- G(~ ") = Z Pi o-2~ the popu- 
In analogy to (5.2), they sum to 

(6.18) 

(6.19) 
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Now we formulate the multivariate generalization of theorem 2 in Hartigan 
(1978) and, by the way, prove the conjecture in chapter 7 of Hartigan 
(1977): 

Theorem 6.6 The maximum F-ratio k~ = s~/ gn'-I has an asymptotic normal 
distribution given by 

-~n (k~-k  °) L N(0,K2/g*2) . (6.20) 

Proof. By definition, we can write 

( k ; , - k ' )  -- ~ (s2./ g.'--o d g ')  = 4-fin (s2.-~g.')/ g;, 

Since, by theorem 6.5, the denominator gn converges to g" in probability, 
the assertion (6.20) will be proved if we show that for n--*oo: 

h. :-- ~ (s2--3 , gn') L N(0,K2 ) (6.21) 

Now, write s2-----Z IIXj-~ll2/n-II~.-~ll 2 with the mean vector 
X, := ~ Xj / n, and use Pollard's approximation (6.12) for g~; then you 
obtain 

h n = ~ n [  l ~ ' n  j-I [[XJ-/z[t2-1['~-/z[12-7 t~nl+ 

[y /2n  '~ ] Y' ,F-1  Y,, + % [ n  -~} 

Since the last two terms are op(1) because of (6.8), we have to prove that 
the first term, Hn say, is asymptotically N(0,x2). Bearing in mind the 
definition (6.13) of 12/n, we see that H, may be expressed by the (p+2) 
dimensional mean vector 

n 

U, :ffi n - l ~  Uj with summands Uj :-- 
j - t  

Ilxj-~,ll ~ 
xj -a  

a (xj,¢') 
(6.22) 

(j = 1 . . . . .  n). To be specific, we have 

H, = ~ (h(~n)-h(u')) (6.23) 
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with a function h: JR p+2 -'-'/R defined by h(u )  :== ul -[[uzllz-3,u3 (here he 
vector u -- (ul, u'2, u3)' E JR p+2 has been suitably split into three parts) 
and u" :-- E [(-/t] = (o'2, 0', g ' ) ' .  Note that h ( u ' )  = o'2-~/g" = O. 

We pause to state a simple transformation lemma (see e.g., Witting and 
N~lle 1970): 

Lemma 6.7 Suppose that some k dimensional random vfctors U, converge, for 
n---,oo, to a point u E JR k and satisfy .~n (~r , -u*)  --~ N(O,M)  with some 
covariance matrix M .  Consider a d~ff~rentiable real-valued function h:  
IRk-'-' IR whose gradient vector k (u) := (Oh~ 8ui . . . . .  Oh~ Ouk)' is continu- 
ous at u ---- u . Then, asymptotical~v for n---'~, we have 

U* Z Hn := ~ n  ( h ( U n ) - h (  )) N(O,*< 2) 

with the variance ,<2 :__ k ( u ' ) '  MX (u ' ) .  

By the law of  large numbers  and the central limit theorem, our mean vec- 
tors U, in (6.22) satisfy the stated conditions, with u ' =  E [(-/1] and 
M =  coy ((11) := E [ ( U l - u ' )  (U1-u ' ) ' ] .  Moreover, the special function 
h ( - )  given above has a continuous gradient vector ~.(u)--  (1 , -2u '2 , -~/) '  
with k ":--k (u ' )  -- (1,0',-~,)'. Thus, by the lemma, the variable/-/ ,  (6.23) 
is asymptotically N (0,*< 2) with *<2 :_ k "  M k ". 

Since (-/'i is a partitioned vector, its covariance matrix M = (Mst) is 
partitioned, too, with blocks Mst (1 <~s,t ~<3). Since k" --- ( -1 ,  0' ,-3,) ' ,  we 
obtain 

K 2 = ~. "' MX" = M u - 2 3 ,  M13 -t- 7 2 M33 (6.24) 

After some straightforward calculation we obtain: 

M I I : - -  Var(llX-/~ I12) - -  o'4-o'~ 
k 

= Z p~[o'4;+ 4(C;'-~)' F~(C:-/~) + 4(C,-~)' 
i - I  

bl,3i 

+ 2~2,11g:--~112 + I1¢:-~1141-o-~ 

M~3: = Kov (llx-~tl2,~ (X,¢sp*)) 

*[ 1 = '~ ,  /7/ ° ' 4 i ' 1 - 2 ( ~ 7 - - / z ) ' / x 3 i - t - c r 2 i  IIC,'--~ 112 
i--1 

- -or  2 g 
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k 
"2 72 31133 := Var (A (X,~ ")) = ~., Pi 0 " 4 i - - g  = 

i=1 

Inserting these expressions in (6.24) gives just the formula (6.19) for K 2. • 

In practice we will use the maximum F test for deciding if a k- 
clustering C~ found by the k-means method, is more marked than a cluster- 
ing obtained for some random, homogeneous data. Before applying this 
test, we have to specify a density f (x) describing the hypothesis H0 of 
"homogeneity,"  to determine the optimum partition B" -- (B~ . . . . .  B~  of 

,m 

/R p with its k centers ~,., and to calculate the asymptotic mean k" and the 
variance K2/g,2 in (6.20). In the case of a multivariate normal distribution, 
B" has been found from simulations and geometrical considerations for 
small values of k and p (Baubkus 1985). Since the test criteria g~, k~ are 
defined as minimum values, their exact distribution is supposed to be 
skewed and the approximation (6.20) may be satisfactory only for vary large 
n. This question has to be investigated more thoroughly as well as the 
asymptotic behavior in the case of multiple solutions. 

7. Conclusions 

Four types of tests for "homogeneity" versus "clustering" have been 
investigated in the foregoing sections. It is obvious that no one of these 
tests is the "ideal" one or can cope with all situations of clustering. The 
main difficulty for practical applications will be the need to specify, in some 
sense or the other, the type of clustering or homogeneity to be detected. 
On the one hand, the size and shape of the domain G or the type h ( - )  of a 
(unimodal) density are to be chosen beforehand while, on the other hand, 
"valleys" and "modes"  respectively mixtures are supposed to be indicators 
of the alternative. In particular, the maximum F test will be tailored mainly 
to normal density situations with spherical clusters of the same variance. 

These problems reflect the multidimensional aspects met in cluster 
analysis and are typical for situations where no simple, clear-cut structure is 
given at the beginning (in contrast to most one-dimensional testing prob- 
lems). This necessitates some care when applying any test for clustering, 
bearing in mind that different types of clusters may be present simultane- 
ously in the data and that the number of clusters is, in some sense, depen- 
dent on the intended level of information compression or coarsening (e.g., 
in a hierarchy of clusters). Thus, a global application of a cluster test to a 
large or high-dimensional data set will not be advisable in most cases. How- 
ever, a "local" application (e.g., of  the maximum F test with k -- 2 classes) 
to a specified part of the data will often be useful for providing evidence for 
or against a prospective clustering tendency. 
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