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Abstract: Let Rn denote the set of  rooted trees with n leaves in which: the 
leaves are labeled by the integers in {1 . . . . .  n}; and among interior vertices 
only the root may have degree two. Associated with each interior vertex v in 
such a tree is the subset, or cluster, of leaf labels in the subtree rooted at v. 
Cluster {1 . . . . .  n} is called triviat Clusters are used in quantitative meas- 
ures of similarity, dissimilarity and consensus among trees. For any k trees 
in Rn, the strict consensus tree C(TI . . . . .  Tk) is that tree in R ,  containing 
exactly those clusters common to every one of the k trees. Similarity 
between trees 7'1 and T2 in Rn is measured by the number S (Tb T2) of non- 
trivial clusters in both TI and T2; dissimilarity, by the number D(TI,T2) of 
clusters in T1 or 7'2 but not in both. Algorithms are known to compute 
C ( Tl . . . . .  T k) in O ( kn 2) time, and S ( Tb T2) and D ( Tb T2) in O (n 2) time. 
I propose a special representation of the clusters of any tree T in Rn, one 
that permits testing in constant time whether a given duster exists in T. I 
describe algorithms that exploit this representation to compute 
C(Tt . . . . .  Tk) in O(kn) time, and S(T1,T2) and D(T1,T2) in O(n) time. 
These algorithms are optimal in a technical sense. They enable well-known 
indices of consensus between two trees to be computed in O(n) time. All 
these results apply as well to comparable problems involving unrooted trees 
with labeled leaves. 

Keywords: Algorithm complexity; Algorithm design; Comparing hierarchical 
classifications; Comparing phylogenetic trees; Consensus index; Strict con- 
s e n s u s  tree. 

1. Introduction 

In recent years numerical taxonomists have become increasingly 
interested in the theory and practice of comparing tree-like structures such 
as cladograms, phenograms, dendrograms and phylogenetic trees. Fre- 
quently the essential object can be modeled as an acyclic connected 
undirected graph (i.e., a tree) in which the vertices of degree one (the 
leaves) are each assigned unique labels. Of the vertices of degree greater 
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Figure 1. TREES WITH LABELED LEAVES. TI and T2 are rooted trees drawn 
with the root at the bottom. T 1 and T3 are binary trees. /'4 is neither rooted nor 
binary. 

than one (the interior vertices), one (the root) may be distinguished from 
the others so that the tree becomes rooted Among interior vertices only the 
root may have degree two; other interior vertices must have degree at least 
three. A tree is called binary if all its vertices have degree at most three. 
Figure 1 illustrates the various possibilities. Since it is convenient to sup- 
pose that leaves are labeled by distinct integers, we denote by Rn (respec- 
tively, (.In) the set of all such rooted (respectively, unrooted) trees with 
leaves labeled by the integers in {1 . . . . .  n}. For further information con- 
cerning trees, the reader can consult Harary (1969) or any standard graph 
theory text. 

Much of the interest in tree comparison concerns three central prob- 
lems: to construct a consensus of  a set of  trees (Adams 1972; Margush and 
McMorris 1981; Sokal and Rohlf  1981; McMorris, Meronk and Neumann 
1983; Neumann 1983; Stinebrickner 1984); to measure the degree of con- 
sensus among trees in a given set (Mickevich 1978; Colless 1980; Nelson 
and Platnick 1981, pp. 238-257; Schuh and Farris 1981; Rohlf 1982; Stine- 
brickner 1984); and' to measure dissimilarity between two trees (Robinson 
1971; Waterman and Smith 1978; Robinson and Foulds 1981; Brown and 
Day 1984; Hendy, Little and Penny 1984). In some respects these problems 
are closely related. A consensus tree method may be based on the 
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optimization of a consensus index. A consensus index method may meas- 
ure consensus tree characteristics or relationships of consensus tree to origi- 
nal trees. Measuring pairwise dissimilarity between trees may form the basis 
of consensus tree or index methods. When consensus tree and index 
methods are restricted to sets of  two trees, significant interrelationships 
among the three problems may exist (Day 1983). 

Any tree comparison technique is not likely to be useful unless it is 
based on analysis of meaningful features in the input data. For trees in R,,, 
taxonomists associate with each interior vertex v the subset, or cluster, of 
leaf labels in the subtree rooted at v. In Figure 1, for example, /'2 has clus- 
ters {1,5}, {2,4} and {1,...,5} associated with its three interior vertices. The 
set of all such clusters for T is called the cluster representation of T and is 
denoted by 7 ¢. For the rooted trees in Figure 1, T;-- 
{{1,5},{2,4},{2,3,4},{1, .... 5}} and T~= {{1,5},{2,4},{1,...,5}}. Since 
N=-{1 . . . . .  n} appears in the cluster representation of every T in R,,, it is 
called the trivial cluster. Clusters can be introduced in several similar con- 
texts. McMorris, Meronk and Neumann  (1983) define an n-tree on N as a 
set T of subsets of N satisfying N E T ,g  ¢ T,{i} E T for every i in N, and 
X n YE {O,X, Y} for every X and Y in T. They call the proper nonsingleton 
elements of  T its clusters and consider them the n-tree's important features. 
Hen@, Little and Penny's hierarchical classifications are n-trees, their 
directed phylogenetic trees are essentially rooted trees in Rn, and they use 
clusters to establish the obvious bijection between the sets of hierarchical 
classifications and directed phylogenetic trees (Hen@, Little and Penny 
1984). 

Cluster representations play a fundamental role in methods constructing 
the consensus of a set of trees in Rn. If  k is a positive integer and R~ 
denotes the k-fold Cartesian product, the strict consensus tree method is a 
function C: R,Jc--'R, such that C(T1 . . . . .  Tk) ' =  nl<<.i<k Ta' for all 
I"1 . . . . .  Tg in R,.  Sokal and Rohlf  (1981) call C(T1 . . . . .  Tk) strict 
because its cluster representation contains just those clusters that are com- 
mon  to all k trees being compared. Figure 2 exhibits the strict consensus 
C (T1, 7'2) in an example where C (T1, T2) '  - -  7"1'N T2' ffi 
{{8,11},{6,8,11},{1,...,14}}. McMorris, Meronk and Neumann (1983) 
parameterize the strictness concept in a pleasing way: let l be an integer 
such that [k/2] + l<~l<<.kqx] denoting the greatest integer not exceeding 
x),  and define the function Mj: Rn~"R, by placing a cluster in 
341 (7'1 . . . . .  Te)' if and only if it is in at least l of I"1' . . . . .  Tk'. If  l = k, 
ACt is strict consensus C; while if  l ffi Ik/7~ + 1, hart is the majority rule con- 
sensus tree method of Margush and McMorris (1981). McMorris and Neu- 
mann  (1983) characterize Mt methods axiomatically. 

Cluster representations play a fundamental role in methods measuring 
similarity or dissimilarity between two trees in R,,. To measure similarity, 
define the function S: R~--.Z~" such that S(T1, T2) -- [Tl'n/'2'1 - 1  for all 
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Figure 2. A STRICT CONSENSUS TREE, T1 and T 2 are modified from pheno- 
grams 1.2 and 1.3 in Nelson's Figure 1 (1979), Interior vertices are labeled to facili- 
tate each tree's representation as a postorder sequence with weights. 
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TI, T2 in Rn. Since S(Tb/'2) counts the nontrivial clusters common to both 
trees, it has maximum value (n -2 )  when /'1 = T2 for binary trees, and 
minimum value (0) when 7'1' and /'2' have only the trivial cluster N in com- 
mon. In terms of strict consensus, S(TI,T2) = IC(T1, T2)'I-1; 
equivalently, S counts the nontrivial branch points (informative components) 
in C(Tb/'2) and is the unnormalized version of Nelson's measure of com- 
ponent information (1979). Although Rohlf (1982) describes S, it usually 
appears in normalized form (Nelson 1979, Colless 1980, Sokal and Rohlf 
1981). To measure dissimilarity between trees, let A denote the symmetric 
difference operator on sets and define the function D: R~---.Z~ such that 
D(TI,  T2) = ITI'AT2'I for all TbT2 in Rn. Since D(TI, T2) counts the clus- 
ters in /'1' or I"2' but not in both, it has minimum value (0) when 7'i = T2 
and maximum value (2 n -4 )  when /'1 and T2 are binary and have only the 
trivial cluster in common. In terms of strict consensus, 
D(TI,T2) =~ ITI't + IT~'I-2"1 C(ZbT2)'l (Day 1983). D is a metric meas- 
ure of dissimilarity (Resfle 1959; Margush 1982; Day 1983) and has been 
given axiomatic characterizations (Margush 1982; Day 1983). Tateno, Nei 
and Tajima (1982) call it the distortion index. 

Any tree comparison technique is not likely to be useful unless an algo- 
rithm for its computation exists that makes efficient use of time and space 
resources. To evaluate time and space complexities of such algorithms, let 
n be a measure of problem size and describe an algorithm's time (respec- 
tively, space) complexity by a function f expressing for each n the largest 
amount of time (respectively, space) the algorithm needs to solve any prob- 
lem instance of size n. In describing the asymptotic behavior of such 
positive-valued functions, we say that f (n )  is O(g(n)) whenever there 
exists a positive constant c such that f(n)<~ c'g(n) for all large positive n; 
f ( n )  is fl (g(n)) if g(n) is O(f(n)) .  An algorithm is called efficient if its 
time complexity function is O(p(n)) for some polynomial function p(n). 
An algorithm is called optimal if its time complexity is O(g(n)) for a lower 
bound g(n) on the time complexities of all algorithms solving the given 
problem. When comparing two trees in R,,, it is reasonable to use n itself 
to measure problem size; but when computing the consensus of k trees in 
Rn, one must use both k and n. For general information on the analysis of 
algorithm complexity, the reader can consult the classic textbook by Aho, 
Hopcroft and Ullman (1974) or the fine survey by Weide (1977). 

Very little has been published concerning the design and analysis of 
algorithms to solve tree comparison problems. In one sentence Robinson 
and Foulds (1981, p. 146) sketch an algorithm that can be used for D; they 
conclude that " the calculation of  distance therefore presents no difficulties 
for practical-sized problems." Tateno, Nei and Tajima (1982, p. 391) 
remark that the computation of D "is straightforward and simple." In a few 
sentences Hendy, Little and Penny (1984) sketch an algorithm applicable to 
the computation of D, one apparently requiring O(n 3) time for trees in Rn. 
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Recently F. J. Rohlf (personal communication) outlined for trees in R~ an 
algorithm strategy enabling C(T1 . . . . .  Tk) to be computed in O(kn 2) time 
and S(T1,T2) and D(TbT2),  in O(n 2) time. I have since investigated 
whether improved algorithms exist for C, D and S. As a main result I 
describe in Section 2 an optimal algorithm computing for trees in R,  the 
strict consensus C(TI . . . . .  Tk) in O(kn) time. In Section 3 I extend this 
result to the domain U, of unrooted trees with labeled leaves. In Section 4 
I explain how to compute D(TbT2),  S(TbT2) and other consensus indices 
in O(n) time. In Section 5 I use the new algorithms to examine distribu- 
tions of dissimilarities for normalized versions of D. I conclude by describ- 
ing several research problems suggested by this investigation. 

2. Computing Strict Consensus Trees in R. 

The time and space complexities of tree comparison algorithms are sen- 
sitive to the data structure adopted as the external representation of trees in 
Rn. To be efficient in its use of space, this representation must occupy 
O(n) space for a tree in Rn; to foster the design of efficient algorithms, it 
must provide tree information in a form that is natural and convenient for 
both users and implementers of tree comparison algorithms. Sequential tree 
representations incorporating a postorder enumeration of vertices (Standish 
1980, pp. 67-73) meet these requirements, and so I adopt the postorder 
sequence with weights (PSW) as the external representation of trees in R, .  

This representation requires for each tree in Rn that interior vertices be 
assigned arbitrary distinct integer labels and that subtrees above each vertex 
be ordered in the plane from left to right. The trees in Figure 2 satisfy 
these requirements. If such a tree has m interior vertices and n leaves, its 
PSW is a sequence < u l  . . . . .  urn+n> of ordered pairs uj--- <vj, wj> in 
which vj is a vertex label and wj is the weight of the subtree rooted at vj, 
i.e. the number of vertices in this subtree, excluding vj. In /'1 of Figure 2, 
the weight of vertex 19 is 4 since it counts vertices 6, 8, 11 and 16; the 
weight of every leaf is 0. A tree's vertices appear in its PSW in the order in 
which they are visited during a postorder traversal (Standish 1980, pp. 60, 
72) from its root. Table 1 exhibits the PSWs for the trees in Figure 2. 

Since tree comparison algorithms operate on PSWs in standard ways, it 
is convenient to isolate these elementary operations as separate procedures. 
Table 2 describes procedures to build a PSW for a tree (PREPARE, 
ENTER, TEND), to measure a tree's size (M, N), to traverse a tree 
(TRESET, NVERTEX) and to obtain structural information during traversal 
(LEFTLEAF). Each procedure can be implemented in Pidgin ALGOL 
(Abe, Hopcroft and Ullman 1974, Section 1.8) so that it executes in O(1) 
time; each is straightforward in design and requires no further comment. 

Recall that the strict consensus of 7'1 . . . . .  Tk in Rn is a tree 
T ffi C(T1 . . . . .  Tk) with cluster representation T'-- N l<~.<.<k T/. Table 3 
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T A B L E  1 

Trees Represented as Postorder Sequences With Weights 

T1 C ( T1, T~) T2 

__J ..E. wj ..E. wj _E_ 

1 10 0 10 0 2 0 
2 7 0 7 0 4 0 
3 15 2 8 0 5 0 
4 8 0 11 0 7 0 
5 11 0 16 2 9 0 
6 16 2 6 0 10 0 
7 6 0 19 4 12 0 
8 19 4 12 0 13 0 
9 12 0 4 0 17 $ 

10 4 0 2 0 1 0 
11 2 0 1 0 14 0 
12 1 0 14 0 18 11 
13 17 2 5 0 6 0 
14 20 4 9 0 8 0 
15 21 6 13 0 11 0 
16 14 0 3 0 15 2 
17 5 0 22 16 16 4 
18 9 0 3 0 
19 13 0 19 18 
20 18 3 
21 3 0 
22 22 21 

exhibits a high-level Pidgin ALGOL procedure, called COMCLUSTER, to 
compute T' in this case. Initially 7'1' is taken as an approximation T' to the 
final result (line 1). Each remaining Tt' is compared to T' (lines 3-8). 
Boolean switches associated with clusters in T' are cleared to indicate that no 
clusters have yet been found in T/ (lines 3-4). Each cluster in T / i s  tested 
for membership in T'; if present in T', the corresponding switch is set (lines 
5-6). The switches are used to delete from T' clusters that are not  in T/  
(lines 7-8). The bottleneck computation occurs at line 6. Any straightfor- 
ward implementation of the cluster membership test looks at each cluster 
element and requires fl  (n) time; since line 6 is executed fl (kn) times, 
straightforward implementations of COMCLUSTER have 12 (kn 2) time com- 
plexity. This asymptotic behavior improves only if one designs a more 
efficient cluster membership test. The solution to this design problem 
involves two complementary ideas: to relabel the tree leaves so that each 
cluster is completely described by two integers; and to encode these descrip- 
tions in a table in such a way that the cluster membership test requires O(1) 
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TABLE 2 

Procedures to Manipulate Trees Represented 
as Postorder Sequences with Weights 

PREPARE(T) 
This procedure prepares to construct a postorder sequence T with weights. Initially T is the 
empty sequence. 

ENTER(T,v,w) 
This procedure appends to the end of T an entry <v ,w> associating weight w with vertex v. 

TEND(T) 
This function procedure returns the index of the last entry in T. 

M(T) 
This function procedure returns as its value the number of interior vertices in T. 

N(T) 
This function procedure returns as its value the number of leaves in T. 

TRESET(T) 
This procedure prepares T for an enumeration of its entries, beginning with the first entry. 

NVERTEX(T,v,w) 
This procedure returns the next entry <v ,w> in the current enumeration of T. Valid entries 
are returned by the first M(T) + N(T) invocations of NVERTEX after initialization by 
TRESET; thereafter NVERTEX returns the invalid entry <0,0>.  

LEFTLEAF(T) 
If NVERTEX has returned entry < vj,wj> in T, the leftmost leaf in the subtree rooted at vj 
has entry < vk,wk> where k = j - wj. This function procedure returns Vk as its value. 

time. With this data structure design, line 6 requires O(1) time so that 
COMCLUSTER has O (kn) time complexity. 

Leaf relabeling is accomplished during a postorder traversal of  any tree 
T in/{n. Extract from T's PSW the subsequence < x l  . . . . .  xn> of  leaves 
in the order in which they are visited during traversal. Define the function 
e: N ~ N  such that for each j in N, e ( j )  = i when j ~ x~, i.e. when j is the 
ith leaf visited during traversal. Clearly e is a bijection on N. Informally, 
the encoding function e enables one to pass back and forth between leaf 
labeling conventions convenient to user (external labels) and implementer 
(internal labels). When any interior vertex v is visited during traversal, the 
leaves < XL . . . . .  xR > in its subtree have been relabeled with integers in 
the contiguous subsequence < e (XL) . . . . .  e (xR ) > ~= < L,  
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TABLE 3 

The C O M C L U S T E R  Procedure 

procedure COMCLUSTER(k,T1 ..... Tk,T): 
begin 

I .  .......... T '  - -  T ' I ;  
2. fo_.~r i *-- 2 until k do 

begin 
3. ~ f o r j  - -  lunt i l  ] T' I d_9_o 
4. switch[il *-- false; 
5. fo_.~r each cluster Z in T '  i d...oo 
6. i f Z  = 7 5 in T '  then switch[i] - -  true; 
7. fo~rj .-- 1 u n m l T ' l  do  
8. "_ff switch[j] = false then T'  ~ T'  - {Zj} 

en___dd 
en__dd 

L + 1 . . . . .  R >.  Thus in the relabeled tree the cluster associated with v is 
described concisely by the ordered pair < L , R  >. By extension, the cluster 
representation of T can be described concisely by e and the ordered-pair 
descriptions of T's clusters. Figure 3 exhibits the tree 7"1 in Figure 2 with 
its leaves relabeled after a traversal of vertices in the order shown in Table 
1. The encoding function e has mapped the user's leaf labels < 1,...,14> 
into the internal labels <9,8,14,7,11,5,2,3,12,1,4,6,13,10>. After relabel- 
ing, the cluster representation of/ '1 can be described by the ordered pairs in 
{< 1 ,2>,< 1 , 1 4 > , < 3 , 4 > , < 3 , 5 > , < 6 , 9 > , < 7 , 9 > , < 8 , 9 > , <  11,13>}. 

It remains to design a data structure for e and the encoded cluster 
representation of T that enables cluster membership to be determined in 
O(1) time. One solution associates with T an array X--  (Xe), called the 
cluster table for T, that has n rows and four columns. Column 4 contains 
cluster switches of the type used by the COMCLUSTER procedure. 
Column 3 describes the encoding function e. Columns 1 and 2 contain the 
ordered-pair descriptions of T's clusters. Figure 3 exhibits the cluster table 
for T1 in Figure 2. Each cluster < L,R > is assigned a row of X where L is 
placed in column 1 and R, in column 2. Assignment of cluster to row is 
specified by a function g defined as follows. Let < ul . . . . .  Um+,z > be T's 
PSW, where uj = < vj, wj>, and extract the subsequence <Yl . . . . .  y,,,> of 
interior vertices in the order in which they are visited by a postorder traver- 
sal. Associated with each yj is the cluster <L j ,R j> .  Let f :  
{1 . . . . .  m}---*{1 . . . . .  m+n} be the function mapping each yj to its 
corresponding PSW position, i.e. yj = vf~). 
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Figure 3. A CLUSTER TABLE. TI of Figure 2 is shown with leaves relabeled to 
permit the description of its clusters by ordered pairs of integers. In the cluster 
table, columns t and 2 describe clusters; column 3 describes the leaf retabeling. 

Define the function g : {1 . . . . .  m}---*{2 . . . . .  n} such that for each j ,  

Lj i f j  < m and wf(/)+l> 0, 

g( j )  = Rj i f j  < m and wf(j)+l =~ 0 ,  

n if j---- m. 

(1) 
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Theorem g is an injection. 

Proof. Let j and k be integers in {1 . . . . .  m_.} such that g(j )  ffi g ( k ) .  If 
g (j) ffi n then immediately j == k.  Let g (j') < n and suppose without loss of 
generality that Lk<~Lj and Rj<~Rk. Either g(./)ffi Lj or g ( j ) - - -R j .  If  
g ( j )  --- Lj and j ; ~ k ,  then wfcj)+l>0 so that L k < L j  ffi g( j )  ffi g (k)  ffi Lk, a 
contradiction. If  g( j )  = R~ and j~ek ,  then wf~i)+1 ffi 0 so that 
R k > R j  = g( j )  = g(k )  = Rk, a contradication. Thus j -- k. • 

Corollary g is a bUection i f  and on~ if  T is binary. 

Proof. T is binary if and only if m -  n - 1 ;  the result follows by the 
pigeon-hole principle. • 

The placement of cluster ~< L j , R j >  in X is determined by the rule that 
Xg(j),l = Lj and Xg(/),2 = Rj;/~he definition of g guarantees that < L j , R j >  
appears in exactly one of twg' possible rows. Any arbitrary cluster < L , R  > 
may or may not be in X; but if it is, its description must  appear in either 
row L or row R. Thus by using X the duster  membership tes t  can be 
implemented to execute in O (1) time. 

Since tree comparison algorithms operate on cluster tables in standard 
ways, it is convenient to isolate these operations as separate procedures. 
Table 4 describes procedures to build a cluster table (BUILD), to establish 
the correspondence between external and internal labels (ENCODE), to test 
for cluster membership (ISCLUST), to manipulate switches associated with 
clusters (CLEAR, SETSW, UPDATE),  and to enumerate clusters 
(XRESET, NCLUS). These procedures can be implemented in Pidgin 
ALGOL so that BUILD, CLEAR and UPDATE execute in O(n) time and 
the others, i n  O(1) time. Of them, only BUILD warrents further discus- 
sion. 

Table 5 exhibits a Pidgin ALGOL version of the BUILD procedure. 
The cluster table X is initialized (lines 2-3) and tree T in Rn is prepared for 
a postorder traversal (line 1). The traversal determines whether the vertex 
v being visited is a leaf (lines 8-10) or an interior vertex (lines 11-15). If  v 
is a leaf, the encoding function value e (v) is stored in column 3 of  X (line 
9). Otherwise the cluster < L , R >  associated with v is identified (lines 
9,11), its placement in X is determined (lines 12-13), and it is stored in 
columns 1 and 2 of X (lines 14-15). In the placement calculation at line 13, 
variables w and loc correspond to Wyti)+l and g( j )  in equation (1). Since 
initialization (lines 1-5) and traversaI (lines 6-15) each require O(n)  time, 
BUILD has O(n) time complexity. 

Recall that the strict consensus of 7'1 . . . . .  Tk in Rn is a tree 
T ffi C(T1 . . . . .  Tk) with cluster representation T 'ffi Nl<~i<~kTi'. Table 6 
exhibits a Pidgin ALGOL procedure, called COMCLUST, that computes T' 
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TABLE 4 

Procedures to Manipulate Cluster Tables 

BUILD(T,X) 
This procedure constructs in X descriptions of the clusters in a rooted tree described by the 
postorder sequence T with weights, BUILD assigns each leaf an internal label so that every 
cluster is a set {i : L ~ i ~ R] of internal labels; thus each cluster is simply described by a pair 
<L,R> of internal labels, 

ENCODE(X,v) 
This function procedure returns as its value the internal label assigned to leaf v. 

ISCLUST(X,L,R) 
This function procedure returns value true if cluster <L,R> is in X; otherwise it returns value 
fals~ 

CLEAR(X) 
Each cluster in X has an associated switch that is either cleared or seL This procedure clears 
every cluster switch in X. 

SETSW(X,L,R) 
If <L,R> is a cluster in X, this procedure sets the cluster switch for <L,R>. 

UPDATE(X) 
This procadure inspects every cluster switch in X. If the switch for cluster <L,R> is cleared, 
UPDATE deletes <L,R> from X; thereafter ISCLUST(X,L,R) will return the value false. 

XRESET(X) 
This procedure prepares X for an enumeration of its clusters. 

NCLUS (X,L,R) 
This procedure returns the next cluster <L,R> in the current enumeration of clusters in X. tf 
m clusters are in X, they are returned by the first m invocations of NCLUS after initialization 
by XRESET; thereafter NCLUS returns the invalid cluster <0,0>. 

by incorporating a cluster table in the COMCLUSTER design. That  COM- 
CLUST reflects C O M C L U S T E R ' s  structure is shown by mapping COM- 
C L U S T E R  statements to comparable COMCLUST statements:  1 - .1 ;  2--*2; 
3 - 4 - * 4 ;  5- - -6-14;  6 - . 15 ;  7 - 8 - . 1 8 .  COMCLUST builds the cluster table X 
f rom 7'1 (line 1) and then traverses each remaining Ti to identify and pro- 
cess its clusters (lines 2-18). The increased complexity in C O M C L U S T ' s  
design (lines 6-14) involves constructing for each cluster Z in ~ '  a descrip- 
tion < L , R , N >  where L = n f in{e (v ) :vEZ} ,  R -- m a x { e ( v ) : v E Z } ,  
N - -  t ZI  and e is the encoding funct ion defined in column 3 of  X. I f  
N = R - L  + 1, Z ' s  internal labels fo rm a contiguous sequence 
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TABLE 5 

The BUILD Procedure 

procedure BUILD (T,X): 
begin 

1. ~ TRESET(T);  
2. fo..Ar i "-- 2 until N(T)  do 
3. X[i , l ]  *-- X[i,2] ' --  0; 
4. leafcode - -  0; 
5. NVERTEX(T,v ,w) ;  
6. while v ;~ 0 d o  
7. "_ff v is a leaf then 

begin 
8. "' leafcode ,--- leafcode + I; 
9. X[v,3] ,- R '-- leafcode; 
I0. NVERTEX(T,v,w) 

en...Ad 

e!S~ 
begin 

11. ~ L " -  X[LEFTLEAF(T) ,3] ;  
12. N V ER TEX  (T,v, w); 
13. i f  w - 0 then  loc - -  R e!se loc " -  L; 
14. X[loc,1] " -  L; 
15. X[loc,2] ' --  R 

en_Ad 
end 

< L,L + 1 . . . . .  R > so that membership of Z in X must be tested (line 
15); otherwise Z cannot be-a cluster in X. 

For example, suppose cluster table X in Figure 3 is built from 7"1 in 
Figure 2 and consider clusters of T2 in Figure 2. Since cluster {6,8,11} has 
internal labels {5,3,4}, <L,R,N> = <3,5 ,3>;  since N = R - L  + 1, the 
internal labels form a contiguous sequence < 3,4,5> so that membership of 
< 3 , 5 >  in X must be tested. On the other hand, cluster 
{2,4,5,7,9,10,12,13] has <L,R,N> = <1,13,8>;  the cluster cannot be in 
X since N;~R-L + 1. 

To derive COMCLUST's time complexity, consider first the tree traver- 
sal loop (lines 3-18). Initialization (lines 3-4), leaf processing (lines 6-7) 
and postprocessing (line 18) each require O(n) time. Since O(n) entries 
are pushed on stack S (lines 7, 14), O(n) entries are popped (line 10) so 
that interior vertex processing (lines 8-15) requires O(n) time. Thus each 
tree T~., 2~i~k ,  is processed in O(n) time; since T1 processing also 
requires O(n) time (line 1), COMCLUST has time complexity O(kn). 
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TABLE 6 

The COMCLUST Procedure 

procedure COMCLUST (k,T1 ,...,Tk,X): 
begin 

1. BUILD (T1,X); 
2. for i '-- 2 until k do 

begin 
3. ~ Empty the stack S; 
4. CLEAR(X); TRESET(Ti); NVERTEX(Ti,v,w); 
5. repeat 
6. .~ v is a leaf then 
7. push( < ENCODE (v), ENCODE (v), t, 1 >,S ); 

els_ee 
begin 

8. ~ <L,R,N,W> ' -  <~o,0,0,1>; 
9. repeat 
10. ~ < L * , R * , N * , W * >  ' -  pop(S); 
11. <L,R,N,W> '--- < min(L,L*), 

max(R,R*), N + N*, W + W*>; 
12. w*- w - W* 
13. until w ~ 0; 
14. push(<L,R,N,W>,S); 
15. .~N - R - L + I the__.fin SETSW(X,L,R) 

end 
16. NVERTEX (Ti,v,w) 
17. until v =, 0; 
18. UPDATE(X) 

en__dd 
en__dd 

NOTE: push(r,S) inserts r as the top entry of stack S; pop(S) deletes the top entry r from 
stack S and returns r as the procedure value. 

When  COMCLUST terminates execution,  cluster table X describes the 
cluster representat ion T' of  the strict consensus C(Tt . . . . .  Tk). It  remains  
to construct  a PSW T corresponding to T'. Al though computing T directly 
f rom X seems difficult, comput ing T f rom X and 7"1 is straightforward. In  
Table 1, for example,  a PSW for C(Tb  T2) can be obtained f rom Tl'S PSW 
by removing entries for  interior vertices 15, 17, 20, 21 and 18. Table 7 
exhibits a Pidgin A L G O L  procedure,  called CONTREE,  that computes  a 
PSW T for C(T1 . . . . .  T~) using this strategy. COMCLUST is invoked,  T 
is prepared for PSW construction,  and T~ is prepared for  postorder traversal 
(lines 1-2). Entries for  Tl 's  leaves are copied to T (lines 5-7). Entries for  
Tl ' s  interior vert ices are copied to T if their associated clusters are still 
recorded in X (lines 8-10). Since Tl 's  traversal (lines 3-12) requires O(n) 



Optimal Algorithms for Comparing Trees with Labeled Leaves 21 

TABLE 7 

The CONTREE Procedure 

procedure CONTREE (k,T1,...,Tk,X,T): 
begin 

1. COMCLUST (k,T1,...,Tk,X); 
2. PREPARE(T); TRESET(T1); NVERTEX(Tbv,w); 
3. repeat 
4. if v is a leaf then 

begin 
5. ' .... R ~ ENCODE(X,v); 
6. ENTER(T,v,w); 
7. FA [v] ,-- TEND (T) 

end 
ets._..~e 

begin 
8. L *-- ENCODE(X,LEFTLEAF(TI)); 
9. if ISCLUST(X,L,R) then 
10. ENTER(T,v,TEND(T) + 1 - FA[LEFTLEAF(T1)]) 

end 
11. NVERTEX(TI,v,w) 
12. until v -- 0 

end 

NOTE: Array FA can be equivalenced to the fourth column of X. 

time, COMCLUST dominates execution (line 1) so that CONTREE has 
O(kn) time complexity. 

To establish a lower bound on the time complexities of strict consensus 
algorithms, recall Cavalli-Sforza and Edwards' result (1967) that Rn contains 
II2~i¢~(2i-3)  binary trees so that ~R,,I >/2 n for n>~5. Therefore it seems 
reasonable that general-purpose representations of trees in R~ require 12 (n) 
bits. Since strict consensus algorithms then require 12 (kn) time just to 
identify the problem, and since CON-TREE solves the problem in O(kn) 
time, CONTREE is an optimal algorithm for the strict consensus tree prob- 
lem. 

3. Computing Strict Consensus Trees in Un 

The strict consensus concept can be developed for Un as well as for Rn. 
Let an edge of any tree T in Un be called interior if it is not incident with a 
leaf. Deleting an interior edge separates T into two components and yields 
a corresponding bipartition of leaf labels into two subsets. The set of  all 
such partitions is called the partition representation of T and is denoted by T'. 
The partition representation of T3 in Figure 1 is T3'--{{{1,5},{2,3,4,6}}, 
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{{2,3,4},{1,5,6}},{{2,4},{1,3,5,6}}}. Partition representations play in U, the 
role of cluster representations in Rn. Thus for k a positive integer, the strict 
consensus tree method is a function C: U~ k---'U, such that 
C ( T1 . . . . .  Tk ) ' ffi N l ~ t <~ k T/ for all T1 . . . . .  Tk in Un . 

Although C(T1 . . . . .  Tk) can be computed using partition representa- 
tions in U,, it also can be computed using cluster representations in Rn-1. 
To see this, define function ep: U,---'Rn-1 such that if T in U, has edge 
{v,n} incident with leaf n, ep(T) is obtained from T by deleting {v,n} and 
n, and taking v as the root. In Figure 1, • (T3) ffi 7'i and • (7'4) ffi T2. The 
function • is a bijection (Rohlf 1983; Hendy, Little and Penny 1984) so 
that ~ - I ( T 1 ) -  7"3 and ~ - l (T2) - -  T4 in Figure 1. Using ~ ,  strict con- 
sensus in Un can be solved as a consensus problem in Rn-1 by computing 

C(T1 . . . . .  Tk) f f i  . . . . .  • (2) 

If each T in U, is represented by a PSW (the traversal being from leaf n), 
the PSW for • (T) is simply the PSW for T without its last entry. As a 
result, the strict consensus of k trees in Un can be computed in O(kn) time 
using equation (2) and the CONTREE procedure for trees in R, .  

4. Computing Consensus Indices 

Consensus indices measure degree of agreement among objects in a set. 
Taxonomists often define consensus indices on trees /'1 and T2 in R, or in 
Un. Table 8 exhibits eleven such indices, each computable in O(n) time 
from information in the cluster tables for 7"i, 7'2 and their strict consensus. 
For further information the reader can consult: Bourque (I978), Robinson 
and Foulds (1981), Margush (1982) and Hendy, Little and Penny (1984) 
for D; Nelson (1979), Colless (I980) and Sokal and Rohlf (1981) for CIc; 
Mickevich (1978) and Rohlf (1982) for CI~; Nelson (1979) and Nelson and 
Platnick (1981) for term information (TERM) and total information 
(TOTAL); and Schuh and Farris (1981) for levels sum (LSUM). Day 
(1983) describes a comparison model relevant to CIc, TERM, TOTAL and 
LSUM. Shao (1983) investigates interrelationships among many of these 
consensus indices. 

D and S are basic unnormalized indices of dissimilarity and similarity 
between two trees. D is an unnormalized metric based on the symmetric 
difference of sets (Restle 1959; Margush 1982). Essentially S(T ,T)  counts 
interior vertices in 7'; taxonomists say that it measures the resolution of T. 
In Table 8 the pairs (d,s) and (d',s') represent alternative strategies for nor- 
malizing the pair (D,S),  where d(T1,T2) + s(TI, T2)= d'(TbT2) + 
sI(T1,T2) " -~ 1. Notice that s'(TI, T.2)ffi 2s(T1,T2)/  ( l + s ( T b  T2)) and 
d (7"1, I"2) ffi d(T1, 7'2) / (2-d(T1,T2)). The index d is a normalized metric 
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TABLE 8 

Indices of Consensus Between Two Trees 
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Index Domain 

D (TI, 7"2) Rn, Un 

S(T~,T2) R., t:. 

a(T.T2) R., U. 

s(TI,T2) R., U. 

a'(  Tl, 7'2) R n, U. 

s'( TI, T 2) R n , U. 

C[¢( Th T2) Rn 

u. 

ClM ( Tb T2) Rn 

or. 

TERM(T~, T:) R. 

TOTAL ( Tb 7'2) Rn 

LSUM(T1, T 2) Rn 

Expression 

M(TI)+M(T2)-2 • M(T) 

M ( T ) - I  

D(TbT2)/ [D(Tb T2)+S(TbT2)I 

S(Tb T2)[ [D(TI, T2)+S(Th rg] 

D (rh T2)/[D (rh 7'2)+2 " S (rl,/'2)I 

2. S(TbT2)/ [D(ThT2)+2" S(TbT2)I 

S(TI, T2)/ [n-2l 

S(TbT2)/ In-31 

tmin[n~-l,n-nl}/[l(n-I)/21 • [n/2lt 

~tmin{ni-l,n-ni-1}/[1(.-t)/21 • [(n-2)/211 

l~.,l ni-n-S(TbT2)]/ [(n-1)(n-2)/21 

[~~ nj-nl/ [(n+l)(n-2)/2] 

nj n] IE,[2i-I2i / I.,.-1,,.-2,/61 

NOTE: T=C(ThT2). M(T) is the number of interior vertices in T. In Rn each ni is the 
cardinality of the ith cluster in T'; in U, each n t is the cardinality of a block in the 
ith bipartition in T'. 

based on the symmetric difference of sets (Marczewski and Steinhaus 1958). 
Since s' (TbT2)  -- S (TbT2)  / [(S (T1,T1) + S (7'2,7'2)) / 2], it is the 
ratio of the strict consensus tree's resolution to the average resolution of  Ti 
and T2. For binary trees, the denominator in the d' and s' definitions is 
independent of /'1 and T2 and depends only on n; in this case d' is a metric 
and s' equals CIc. 
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T A B L E  9 

The TERM Procedure 

procedure TERM (TI,T2,X,T): 
begin 

1. ~ CONTREE(2,TbT2,X,T); 
2. hum '-- 1 - M(T) - N(T);  
3. XRESET(X); NCLUS(X,L,R); 
4. repeat 
5. hum,--- hum + R - L  + 1; 
6. NCLUS (X,L,R) 
7. until L -- O; 
8. return 2 • hUm/((N(T) - I)(N(T) - 2)) 

end 
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Figure 4. TIME REQUIRED TO CALCULATE D AND S CONSENSUS INDICES 
BETWEEN RANDOMLY SELECTED UNROOTED BINARY TREES WITH n 
LABELED LEAVES. Each point is the average of 10,000 computations on a DEC 
VAX 11/780 computer. The least-squares line is f ( n )  =, .001202n -.002786. 
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TABLE 10 

Statistics for Empirical Distributions of 10,000 d and d' Distances 
Between Randomly Selected Binary Trees with n Leaves 

n Mean Std. Dev. Skewness Kurtosis 5% C.V. C.N. 

d 
20 .99489 .013 -2.735 I2.831 .93750 5 
40 .99803 .005 -2.742 11.238 .97222 4 
60 .99879 .003 -2.808 11.235 .98214 4 
80 .99914 .002 -2,724 10.438 .98684 4 

100 .99928 .002 -2.703 10.309 .98958 4 
120 .99944 .002 -2.755 10.417 .99138 4 
140 .99954 .001 -2.830 10.888 .99265 4 
160 .99959 .001 -2.678 9.835 .99359 4 
180 .99962 .001 -2.749 10.474 .99432 4 
200 .99966 .001 -2.815 11.019 .99490 4 

d s 

20 .99014 .024 -2.596 10.931 .88235 5 
40 .99612 .010 -2.701 10.785 .94595 4 
60 .99761 .007 -2.786 10.990 .96491 4 
80 .99828 .005 -2.710 10.283 .97403 4 

100 .99858 .004 -2.692 10.190 .97938 4 
120 .99888 .003 -2.747 10.330 .98291 4 
140 .99908 .003 -2.823 10.811 .98540 4 
t60 .99918 .002 -2.673 9.775 .98726 4 
180 .99925 .002 -2.743 10.412 .98870 4 
200 .99932 .002 r2.809 10.957 .98985 4 

NOTE: The 5% 
between 
between 

critical value can be used to test whether a distance 
given trees is statistically less than a distance 

randomly generated trees. C.N. = class number. 

Table 9 exhibits a Pidgin ALGOL procedure computing in O(n) time 
the term information (TERM) between two trees. Procedures for other 
indices are equally straightforward. 

5. Empirical Studies 

H. T. Wareham has written computer programs (available from Day) to 
compute consensus indices using the algorithms and ideas described herein. 
One program accepts trees in U. as input and is written in PASCAL; the 
other accepts only binary trees in U. as input and is written in the C pro- 
gramming language. Both programs run on a DEC VAX 11/780 computer 
equipped with the UNIX 4.2 BSD operating system. The C program 
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Figure 5. MEANS OF SAMPLES OF 10,000 d AND d' DISTANCES BETWEEN 
RANDOMLY SELECTED UNROOTED BINARY TREES WITH LABELED 
LEAVES. Triangles represent d' means. 

requires about .24 seconds to compute values of D and S for trees with 200 
leaves. Figure 4 displays average times the C program requires to compute 
these indices between trees of various sizes; these data exhibit the program's 
linear expected time complexity. 

For binary trees T1 and 7'2 in U,, Hendy, Little and Penny (1984) con- 
jecture that the probability that d'(Tb 7'2)-- 1 approaches 1 as n ---,oo. To 
investigate this conjecture, Wareham computed d and d' distances between 
10,000 pairs of randomly selected binary trees in Un for each n = 5(5)200. 
Table 10 exhibits summary statistics for the empirical distributions. Figure 5 
displays d and d' means for the distributions; these data support the conjec- 
ture. 

6. Conclusion 

I described an optimal algorithm to compute in O(kn) fu'ne the strict 
consensus of k trees with n labeled leaves. It can be used to compute in 
O(n) time well-known indices of consensus between trees with labeled 
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leaves. It can be employed to investigate sampling distributions of con- 
sensus indices based on the strict consensus tree. It is based on two com- 
plementary design ideas: to relabel tree leaves so that every tree cluster has 
a concise description; and to encode these descriptions in a cluster table so 
that cluster membership can be tested in constant time. This design sug- 
gests several problems for research. Can the PSW representation of a tree 
be constructed in O(n) time from its cluster table? If so, it may be possible 
to compute M/consensus trees in O(k2n) time; is this result then optimal? 
Can the two design ideas lead to improved algorithms for consensus tree or 
index methods other than those already mentioned? The leaf relabeling 
idea may lead to an efficient algorithm for a quartet distance measure 
recently proposed by G. F. Estabrook, F. R. McMorris and C. A. Meacham 
(personal communication). 
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