
Journal of Classification 2:7-28 (1985)
Journal of

Classification
©1985 Springer-Verlag New York Inc.

Optimal Algorithms for Comparing Trees with Labeled Leaves

William H. E. Day

Memorial University of Newfoundland

Abstract: Let Rn denote the set of rooted trees with n leaves in which: the
leaves are labeled by the integers in {1 n}; and among interior vertices
only the root may have degree two. Associated with each interior vertex v in
such a tree is the subset, or cluster, of leaf labels in the subtree rooted at v.
Cluster {1 n} is called triviat Clusters are used in quantitative meas-
ures of similarity, dissimilarity and consensus among trees. For any k trees
in Rn, the strict consensus tree C(TI Tk) is that tree in R , containing
exactly those clusters common to every one of the k trees. Similarity
between trees 7'1 and T2 in Rn is measured by the number S (Tb T2) of non-
trivial clusters in both TI and T2; dissimilarity, by the number D(TI,T2) of
clusters in T1 or 7'2 but not in both. Algorithms are known to compute
C (Tl T k) in O (kn 2) time, and S (Tb T2) and D (Tb T2) in O (n 2) time.
I propose a special representation of the clusters of any tree T in Rn, one
that permits testing in constant time whether a given duster exists in T. I
describe algorithms that exploit this representation to compute
C(Tt Tk) in O(kn) time, and S(T1,T2) and D(T1,T2) in O(n) time.
These algorithms are optimal in a technical sense. They enable well-known
indices of consensus between two trees to be computed in O(n) time. All
these results apply as well to comparable problems involving unrooted trees
with labeled leaves.

Keywords: Algorithm complexity; Algorithm design; Comparing hierarchical
classifications; Comparing phylogenetic trees; Consensus index; Strict con-
s e n s u s tree.

1. Introduction

In recent years numerical taxonomists have become increasingly
interested in the theory and practice of comparing tree-like structures such
as cladograms, phenograms, dendrograms and phylogenetic trees. Fre-
quently the essential object can be modeled as an acyclic connected
undirected graph (i.e., a tree) in which the vertices of degree one (the
leaves) are each assigned unique labels. Of the vertices of degree greater

The Natural Sciences and Engineering Research Council of Canada partially supported
this work with grant A-4142.

Author's Address: William H. E. Day, Department of Computer Science, Memorial
University of Newfoundland, St. John's, Newfoundland, Canada A1C 5S7.

William H. E. Day

I 5 3 2 4 I 5

T 1

3 2 4

T 2

1 2 1 3

i i \ T \
6 3 4 5 6 4

T 3 T 4

Figure 1. TREES WITH LABELED LEAVES. TI and T2 are rooted trees drawn
with the root at the bottom. T 1 and T3 are binary trees. /'4 is neither rooted nor
binary.

than one (the interior vertices), one (the root) may be distinguished from
the others so that the tree becomes rooted Among interior vertices only the
root may have degree two; other interior vertices must have degree at least
three. A tree is called binary if all its vertices have degree at most three.
Figure 1 illustrates the various possibilities. Since it is convenient to sup-
pose that leaves are labeled by distinct integers, we denote by Rn (respec-
tively, (.In) the set of all such rooted (respectively, unrooted) trees with
leaves labeled by the integers in {1 n}. For further information con-
cerning trees, the reader can consult Harary (1969) or any standard graph
theory text.

Much of the interest in tree comparison concerns three central prob-
lems: to construct a consensus of a set of trees (Adams 1972; Margush and
McMorris 1981; Sokal and Rohlf 1981; McMorris, Meronk and Neumann
1983; Neumann 1983; Stinebrickner 1984); to measure the degree of con-
sensus among trees in a given set (Mickevich 1978; Colless 1980; Nelson
and Platnick 1981, pp. 238-257; Schuh and Farris 1981; Rohlf 1982; Stine-
brickner 1984); and' to measure dissimilarity between two trees (Robinson
1971; Waterman and Smith 1978; Robinson and Foulds 1981; Brown and
Day 1984; Hendy, Little and Penny 1984). In some respects these problems
are closely related. A consensus tree method may be based on the

Optimal Algorithms for Comparing Trees with Labeled Leaves

optimization of a consensus index. A consensus index method may meas-
ure consensus tree characteristics or relationships of consensus tree to origi-
nal trees. Measuring pairwise dissimilarity between trees may form the basis
of consensus tree or index methods. When consensus tree and index
methods are restricted to sets of two trees, significant interrelationships
among the three problems may exist (Day 1983).

Any tree comparison technique is not likely to be useful unless it is
based on analysis of meaningful features in the input data. For trees in R,,,
taxonomists associate with each interior vertex v the subset, or cluster, of
leaf labels in the subtree rooted at v. In Figure 1, for example, /'2 has clus-
ters {1,5}, {2,4} and {1,...,5} associated with its three interior vertices. The
set of all such clusters for T is called the cluster representation of T and is
denoted by 7 ¢. For the rooted trees in Figure 1, T;--
{{1,5},{2,4},{2,3,4},{1, 5}} and T~= {{1,5},{2,4},{1,...,5}}. Since
N=-{1 n} appears in the cluster representation of every T in R,,, it is
called the trivial cluster. Clusters can be introduced in several similar con-
texts. McMorris, Meronk and Neumann (1983) define an n-tree on N as a
set T of subsets of N satisfying N E T ,g ¢ T,{i} E T for every i in N, and
X n YE {O,X, Y} for every X and Y in T. They call the proper nonsingleton
elements of T its clusters and consider them the n-tree's important features.
Hen@, Little and Penny's hierarchical classifications are n-trees, their
directed phylogenetic trees are essentially rooted trees in Rn, and they use
clusters to establish the obvious bijection between the sets of hierarchical
classifications and directed phylogenetic trees (Hen@, Little and Penny
1984).

Cluster representations play a fundamental role in methods constructing
the consensus of a set of trees in Rn. If k is a positive integer and R~
denotes the k-fold Cartesian product, the strict consensus tree method is a
function C: R,Jc--'R, such that C(T1 Tk) ' = nl<<.i<k Ta' for all
I"1 Tg in R,. Sokal and Rohlf (1981) call C(T1 Tk) strict
because its cluster representation contains just those clusters that are com-
mon to all k trees being compared. Figure 2 exhibits the strict consensus
C (T1, 7'2) in an example where C (T1, T2) ' - - 7"1'N T2' ffi
{{8,11},{6,8,11},{1,...,14}}. McMorris, Meronk and Neumann (1983)
parameterize the strictness concept in a pleasing way: let l be an integer
such that [k/2] + l<~l<<.kqx] denoting the greatest integer not exceeding
x), and define the function Mj: Rn~"R, by placing a cluster in
341 (7'1 Te)' if and only if it is in at least l of I"1' Tk'. If l = k,
ACt is strict consensus C; while if l ffi Ik/7~ + 1, hart is the majority rule con-
sensus tree method of Margush and McMorris (1981). McMorris and Neu-
mann (1983) characterize Mt methods axiomatically.

Cluster representations play a fundamental role in methods measuring
similarity or dissimilarity between two trees in R,,. To measure similarity,
define the function S: R~--.Z~" such that S(T1, T2) -- [Tl'n/'2'1 - 1 for all

10 Wi~am H.E . D ~

10 7 8 11 6 12 4 2

2 4 5 0 12 13 4 8 . 1 1 . 3

 11,o120 ,

C(TI 'T2)

Figure 2. A STRICT CONSENSUS TREE, T1 and T 2 are modified from pheno-
grams 1.2 and 1.3 in Nelson's Figure 1 (1979), Interior vertices are labeled to facili-
tate each tree's representation as a postorder sequence with weights.

Optimal Algorithms for Comparing Trees with Labeled Leaves 11

TI, T2 in Rn. Since S(Tb/'2) counts the nontrivial clusters common to both
trees, it has maximum value (n -2) when /'1 = T2 for binary trees, and
minimum value (0) when 7'1' and /'2' have only the trivial cluster N in com-
mon. In terms of strict consensus, S(TI,T2) = IC(T1, T2)'I-1;
equivalently, S counts the nontrivial branch points (informative components)
in C(Tb/'2) and is the unnormalized version of Nelson's measure of com-
ponent information (1979). Although Rohlf (1982) describes S, it usually
appears in normalized form (Nelson 1979, Colless 1980, Sokal and Rohlf
1981). To measure dissimilarity between trees, let A denote the symmetric
difference operator on sets and define the function D: R~---.Z~ such that
D(TI, T2) = ITI'AT2'I for all TbT2 in Rn. Since D(TI, T2) counts the clus-
ters in /'1' or I"2' but not in both, it has minimum value (0) when 7'i = T2
and maximum value (2 n -4) when /'1 and T2 are binary and have only the
trivial cluster in common. In terms of strict consensus,
D(TI,T2) =~ ITI't + IT~'I-2"1 C(ZbT2)'l (Day 1983). D is a metric meas-
ure of dissimilarity (Resfle 1959; Margush 1982; Day 1983) and has been
given axiomatic characterizations (Margush 1982; Day 1983). Tateno, Nei
and Tajima (1982) call it the distortion index.

Any tree comparison technique is not likely to be useful unless an algo-
rithm for its computation exists that makes efficient use of time and space
resources. To evaluate time and space complexities of such algorithms, let
n be a measure of problem size and describe an algorithm's time (respec-
tively, space) complexity by a function f expressing for each n the largest
amount of time (respectively, space) the algorithm needs to solve any prob-
lem instance of size n. In describing the asymptotic behavior of such
positive-valued functions, we say that f (n) is O(g(n)) whenever there
exists a positive constant c such that f(n)<~ c'g(n) for all large positive n;
f (n) is fl (g(n)) if g(n) is O(f(n)) . An algorithm is called efficient if its
time complexity function is O(p(n)) for some polynomial function p(n).
An algorithm is called optimal if its time complexity is O(g(n)) for a lower
bound g(n) on the time complexities of all algorithms solving the given
problem. When comparing two trees in R,,, it is reasonable to use n itself
to measure problem size; but when computing the consensus of k trees in
Rn, one must use both k and n. For general information on the analysis of
algorithm complexity, the reader can consult the classic textbook by Aho,
Hopcroft and Ullman (1974) or the fine survey by Weide (1977).

Very little has been published concerning the design and analysis of
algorithms to solve tree comparison problems. In one sentence Robinson
and Foulds (1981, p. 146) sketch an algorithm that can be used for D; they
conclude that " the calculation of distance therefore presents no difficulties
for practical-sized problems." Tateno, Nei and Tajima (1982, p. 391)
remark that the computation of D "is straightforward and simple." In a few
sentences Hendy, Little and Penny (1984) sketch an algorithm applicable to
the computation of D, one apparently requiring O(n 3) time for trees in Rn.

12 William H. E. Day

Recently F. J. Rohlf (personal communication) outlined for trees in R~ an
algorithm strategy enabling C(T1 Tk) to be computed in O(kn 2) time
and S(T1,T2) and D(TbT2), in O(n 2) time. I have since investigated
whether improved algorithms exist for C, D and S. As a main result I
describe in Section 2 an optimal algorithm computing for trees in R, the
strict consensus C(TI Tk) in O(kn) time. In Section 3 I extend this
result to the domain U, of unrooted trees with labeled leaves. In Section 4
I explain how to compute D(TbT2), S(TbT2) and other consensus indices
in O(n) time. In Section 5 I use the new algorithms to examine distribu-
tions of dissimilarities for normalized versions of D. I conclude by describ-
ing several research problems suggested by this investigation.

2. Computing Strict Consensus Trees in R.

The time and space complexities of tree comparison algorithms are sen-
sitive to the data structure adopted as the external representation of trees in
Rn. To be efficient in its use of space, this representation must occupy
O(n) space for a tree in Rn; to foster the design of efficient algorithms, it
must provide tree information in a form that is natural and convenient for
both users and implementers of tree comparison algorithms. Sequential tree
representations incorporating a postorder enumeration of vertices (Standish
1980, pp. 67-73) meet these requirements, and so I adopt the postorder
sequence with weights (PSW) as the external representation of trees in R, .

This representation requires for each tree in Rn that interior vertices be
assigned arbitrary distinct integer labels and that subtrees above each vertex
be ordered in the plane from left to right. The trees in Figure 2 satisfy
these requirements. If such a tree has m interior vertices and n leaves, its
PSW is a sequence < u l urn+n> of ordered pairs uj--- <vj, wj> in
which vj is a vertex label and wj is the weight of the subtree rooted at vj,
i.e. the number of vertices in this subtree, excluding vj. In /'1 of Figure 2,
the weight of vertex 19 is 4 since it counts vertices 6, 8, 11 and 16; the
weight of every leaf is 0. A tree's vertices appear in its PSW in the order in
which they are visited during a postorder traversal (Standish 1980, pp. 60,
72) from its root. Table 1 exhibits the PSWs for the trees in Figure 2.

Since tree comparison algorithms operate on PSWs in standard ways, it
is convenient to isolate these elementary operations as separate procedures.
Table 2 describes procedures to build a PSW for a tree (PREPARE,
ENTER, TEND), to measure a tree's size (M, N), to traverse a tree
(TRESET, NVERTEX) and to obtain structural information during traversal
(LEFTLEAF). Each procedure can be implemented in Pidgin ALGOL
(Abe, Hopcroft and Ullman 1974, Section 1.8) so that it executes in O(1)
time; each is straightforward in design and requires no further comment.

Recall that the strict consensus of 7'1 Tk in Rn is a tree
T ffi C(T1 Tk) with cluster representation T'-- N l<~.<.<k T/. Table 3

Optimal Algorithms for Comparing Trees with Labeled Leaves 13

T A B L E 1

Trees Represented as Postorder Sequences With Weights

T1 C (T1, T~) T2

__J ..E. wj ..E. wj _E_

1 10 0 10 0 2 0
2 7 0 7 0 4 0
3 15 2 8 0 5 0
4 8 0 11 0 7 0
5 11 0 16 2 9 0
6 16 2 6 0 10 0
7 6 0 19 4 12 0
8 19 4 12 0 13 0
9 12 0 4 0 17 $

10 4 0 2 0 1 0
11 2 0 1 0 14 0
12 1 0 14 0 18 11
13 17 2 5 0 6 0
14 20 4 9 0 8 0
15 21 6 13 0 11 0
16 14 0 3 0 15 2
17 5 0 22 16 16 4
18 9 0 3 0
19 13 0 19 18
20 18 3
21 3 0
22 22 21

exhibits a high-level Pidgin ALGOL procedure, called COMCLUSTER, to
compute T' in this case. Initially 7'1' is taken as an approximation T' to the
final result (line 1). Each remaining Tt' is compared to T' (lines 3-8).
Boolean switches associated with clusters in T' are cleared to indicate that no
clusters have yet been found in T/ (lines 3-4). Each cluster in T / i s tested
for membership in T'; if present in T', the corresponding switch is set (lines
5-6). The switches are used to delete from T' clusters that are not in T/
(lines 7-8). The bottleneck computation occurs at line 6. Any straightfor-
ward implementation of the cluster membership test looks at each cluster
element and requires fl (n) time; since line 6 is executed fl (kn) times,
straightforward implementations of COMCLUSTER have 12 (kn 2) time com-
plexity. This asymptotic behavior improves only if one designs a more
efficient cluster membership test. The solution to this design problem
involves two complementary ideas: to relabel the tree leaves so that each
cluster is completely described by two integers; and to encode these descrip-
tions in a table in such a way that the cluster membership test requires O(1)

14 William H. E. Day

TABLE 2

Procedures to Manipulate Trees Represented
as Postorder Sequences with Weights

PREPARE(T)
This procedure prepares to construct a postorder sequence T with weights. Initially T is the
empty sequence.

ENTER(T,v,w)
This procedure appends to the end of T an entry <v ,w> associating weight w with vertex v.

TEND(T)
This function procedure returns the index of the last entry in T.

M(T)
This function procedure returns as its value the number of interior vertices in T.

N(T)
This function procedure returns as its value the number of leaves in T.

TRESET(T)
This procedure prepares T for an enumeration of its entries, beginning with the first entry.

NVERTEX(T,v,w)
This procedure returns the next entry <v ,w> in the current enumeration of T. Valid entries
are returned by the first M(T) + N(T) invocations of NVERTEX after initialization by
TRESET; thereafter NVERTEX returns the invalid entry <0,0>.

LEFTLEAF(T)
If NVERTEX has returned entry < vj,wj> in T, the leftmost leaf in the subtree rooted at vj
has entry < vk,wk> where k = j - wj. This function procedure returns Vk as its value.

time. With this data structure design, line 6 requires O(1) time so that
COMCLUSTER has O (kn) time complexity.

Leaf relabeling is accomplished during a postorder traversal of any tree
T in/{n. Extract from T's PSW the subsequence < x l xn> of leaves
in the order in which they are visited during traversal. Define the function
e: N ~ N such that for each j in N, e (j) = i when j ~ x~, i.e. when j is the
ith leaf visited during traversal. Clearly e is a bijection on N. Informally,
the encoding function e enables one to pass back and forth between leaf
labeling conventions convenient to user (external labels) and implementer
(internal labels). When any interior vertex v is visited during traversal, the
leaves < XL xR > in its subtree have been relabeled with integers in
the contiguous subsequence < e (XL) e (xR) > ~= < L,

Optimal Algorithms for Comparing Trees with Labeled Leaves t5

TABLE 3

The C O M C L U S T E R Procedure

procedure COMCLUSTER(k,T1 Tk,T):
begin

I T ' - - T ' I ;
2. fo_.~r i *-- 2 until k do

begin
3. ~ f o r j - - lunt i l] T' I d_9_o
4. switch[il *-- false;
5. fo_.~r each cluster Z in T ' i d...oo
6. i f Z = 7 5 in T ' then switch[i] - - true;
7. fo~rj .-- 1 u n m l T ' l do
8. "_ff switch[j] = false then T' ~ T' - {Zj}

en___dd
en__dd

L + 1 R >. Thus in the relabeled tree the cluster associated with v is
described concisely by the ordered pair < L , R >. By extension, the cluster
representation of T can be described concisely by e and the ordered-pair
descriptions of T's clusters. Figure 3 exhibits the tree 7"1 in Figure 2 with
its leaves relabeled after a traversal of vertices in the order shown in Table
1. The encoding function e has mapped the user's leaf labels < 1,...,14>
into the internal labels <9,8,14,7,11,5,2,3,12,1,4,6,13,10>. After relabel-
ing, the cluster representation of/ '1 can be described by the ordered pairs in
{< 1 ,2>,< 1 , 1 4 > , < 3 , 4 > , < 3 , 5 > , < 6 , 9 > , < 7 , 9 > , < 8 , 9 > , < 11,13>}.

It remains to design a data structure for e and the encoded cluster
representation of T that enables cluster membership to be determined in
O(1) time. One solution associates with T an array X-- (Xe), called the
cluster table for T, that has n rows and four columns. Column 4 contains
cluster switches of the type used by the COMCLUSTER procedure.
Column 3 describes the encoding function e. Columns 1 and 2 contain the
ordered-pair descriptions of T's clusters. Figure 3 exhibits the cluster table
for T1 in Figure 2. Each cluster < L,R > is assigned a row of X where L is
placed in column 1 and R, in column 2. Assignment of cluster to row is
specified by a function g defined as follows. Let < ul Um+,z > be T's
PSW, where uj = < vj, wj>, and extract the subsequence <Yl y,,,> of
interior vertices in the order in which they are visited by a postorder traver-
sal. Associated with each yj is the cluster <L j ,R j> . Let f :
{1 m}---*{1 m+n} be the function mapping each yj to its
corresponding PSW position, i.e. yj = vf~).

16 William H. E. Day

i 2 3 4 5 6 7 8 9 1 0 I ~ N ~ I / ~ / 1 4 ,

22

I 2

I

2 I 2

3 0 0

4 3 4

5 3 5

6 0 0

7 7 9

8 8 9

9 6 9

i0 0 0

I I 0 0

12 0 O.

13 11 13

14 I 14

3 4

I 9
I 8

I 14
1 7
1 ii
I
I 5

I 2
I 3
I
I I 12
I 1

I 4

13

] lo

Figure 3. A CLUSTER TABLE. TI of Figure 2 is shown with leaves relabeled to
permit the description of its clusters by ordered pairs of integers. In the cluster
table, columns t and 2 describe clusters; column 3 describes the leaf retabeling.

Define the function g : {1 m}---*{2 n} such that for each j ,

Lj i f j < m and wf(/)+l> 0,

g(j) = Rj i f j < m and wf(j)+l =~ 0 ,

n if j---- m.

(1)

Optimal Algorithms for Comparing Trees with Labeled Leaves 17

Theorem g is an injection.

Proof. Let j and k be integers in {1 m_.} such that g(j) ffi g (k) . If
g (j) ffi n then immediately j == k. Let g (j') < n and suppose without loss of
generality that Lk<~Lj and Rj<~Rk. Either g(./)ffi Lj or g (j) - - -R j . If
g (j) --- Lj and j ; ~ k , then wfcj)+l>0 so that L k < L j ffi g(j) ffi g (k) ffi Lk, a
contradiction. If g(j) = R~ and j~ek , then wf~i)+1 ffi 0 so that
R k > R j = g(j) = g(k) = Rk, a contradication. Thus j -- k. •

Corollary g is a bUection i f and on~ if T is binary.

Proof. T is binary if and only if m - n - 1 ; the result follows by the
pigeon-hole principle. •

The placement of cluster ~< L j , R j > in X is determined by the rule that
Xg(j),l = Lj and Xg(/),2 = Rj;/~he definition of g guarantees that < L j , R j >
appears in exactly one of twg' possible rows. Any arbitrary cluster < L , R >
may or may not be in X; but if it is, its description must appear in either
row L or row R. Thus by using X the duster membership tes t can be
implemented to execute in O (1) time.

Since tree comparison algorithms operate on cluster tables in standard
ways, it is convenient to isolate these operations as separate procedures.
Table 4 describes procedures to build a cluster table (BUILD), to establish
the correspondence between external and internal labels (ENCODE), to test
for cluster membership (ISCLUST), to manipulate switches associated with
clusters (CLEAR, SETSW, UPDATE), and to enumerate clusters
(XRESET, NCLUS). These procedures can be implemented in Pidgin
ALGOL so that BUILD, CLEAR and UPDATE execute in O(n) time and
the others, i n O(1) time. Of them, only BUILD warrents further discus-
sion.

Table 5 exhibits a Pidgin ALGOL version of the BUILD procedure.
The cluster table X is initialized (lines 2-3) and tree T in Rn is prepared for
a postorder traversal (line 1). The traversal determines whether the vertex
v being visited is a leaf (lines 8-10) or an interior vertex (lines 11-15). If v
is a leaf, the encoding function value e (v) is stored in column 3 of X (line
9). Otherwise the cluster < L , R > associated with v is identified (lines
9,11), its placement in X is determined (lines 12-13), and it is stored in
columns 1 and 2 of X (lines 14-15). In the placement calculation at line 13,
variables w and loc correspond to Wyti)+l and g(j) in equation (1). Since
initialization (lines 1-5) and traversaI (lines 6-15) each require O(n) time,
BUILD has O(n) time complexity.

Recall that the strict consensus of 7'1 Tk in Rn is a tree
T ffi C(T1 Tk) with cluster representation T 'ffi Nl<~i<~kTi'. Table 6
exhibits a Pidgin ALGOL procedure, called COMCLUST, that computes T'

18 William H. E. Day

TABLE 4

Procedures to Manipulate Cluster Tables

BUILD(T,X)
This procedure constructs in X descriptions of the clusters in a rooted tree described by the
postorder sequence T with weights, BUILD assigns each leaf an internal label so that every
cluster is a set {i : L ~ i ~ R] of internal labels; thus each cluster is simply described by a pair
<L,R> of internal labels,

ENCODE(X,v)
This function procedure returns as its value the internal label assigned to leaf v.

ISCLUST(X,L,R)
This function procedure returns value true if cluster <L,R> is in X; otherwise it returns value
fals~

CLEAR(X)
Each cluster in X has an associated switch that is either cleared or seL This procedure clears
every cluster switch in X.

SETSW(X,L,R)
If <L,R> is a cluster in X, this procedure sets the cluster switch for <L,R>.

UPDATE(X)
This procadure inspects every cluster switch in X. If the switch for cluster <L,R> is cleared,
UPDATE deletes <L,R> from X; thereafter ISCLUST(X,L,R) will return the value false.

XRESET(X)
This procedure prepares X for an enumeration of its clusters.

NCLUS (X,L,R)
This procedure returns the next cluster <L,R> in the current enumeration of clusters in X. tf
m clusters are in X, they are returned by the first m invocations of NCLUS after initialization
by XRESET; thereafter NCLUS returns the invalid cluster <0,0>.

by incorporating a cluster table in the COMCLUSTER design. That COM-
CLUST reflects C O M C L U S T E R ' s structure is shown by mapping COM-
C L U S T E R statements to comparable COMCLUST statements: 1 - .1 ; 2--*2;
3 - 4 - * 4 ; 5- - -6-14; 6 - . 15 ; 7 - 8 - . 1 8 . COMCLUST builds the cluster table X
f rom 7'1 (line 1) and then traverses each remaining Ti to identify and pro-
cess its clusters (lines 2-18). The increased complexity in C O M C L U S T ' s
design (lines 6-14) involves constructing for each cluster Z in ~ ' a descrip-
tion < L , R , N > where L = n f in{e (v) :vEZ} , R -- m a x { e (v) : v E Z } ,
N - - t ZI and e is the encoding funct ion defined in column 3 of X. I f
N = R - L + 1, Z ' s internal labels fo rm a contiguous sequence

Optimal Algorithms for Comparing Trees with Labeled Leaves 19

TABLE 5

The BUILD Procedure

procedure BUILD (T,X):
begin

1. ~ TRESET(T);
2. fo..Ar i "-- 2 until N(T) do
3. X[i , l] *-- X[i,2] ' -- 0;
4. leafcode - - 0;
5. NVERTEX(T,v ,w) ;
6. while v ;~ 0 d o
7. "_ff v is a leaf then

begin
8. "' leafcode ,--- leafcode + I;
9. X[v,3] ,- R '-- leafcode;
I0. NVERTEX(T,v,w)

en...Ad

e!S~
begin

11. ~ L " - X[LEFTLEAF(T) ,3] ;
12. N V ER TEX (T,v, w);
13. i f w - 0 then loc - - R e!se loc " - L;
14. X[loc,1] " - L;
15. X[loc,2] ' -- R

en_Ad
end

< L,L + 1 R > so that membership of Z in X must be tested (line
15); otherwise Z cannot be-a cluster in X.

For example, suppose cluster table X in Figure 3 is built from 7"1 in
Figure 2 and consider clusters of T2 in Figure 2. Since cluster {6,8,11} has
internal labels {5,3,4}, <L,R,N> = <3,5 ,3>; since N = R - L + 1, the
internal labels form a contiguous sequence < 3,4,5> so that membership of
< 3 , 5 > in X must be tested. On the other hand, cluster
{2,4,5,7,9,10,12,13] has <L,R,N> = <1,13,8>; the cluster cannot be in
X since N;~R-L + 1.

To derive COMCLUST's time complexity, consider first the tree traver-
sal loop (lines 3-18). Initialization (lines 3-4), leaf processing (lines 6-7)
and postprocessing (line 18) each require O(n) time. Since O(n) entries
are pushed on stack S (lines 7, 14), O(n) entries are popped (line 10) so
that interior vertex processing (lines 8-15) requires O(n) time. Thus each
tree T~., 2~i~k , is processed in O(n) time; since T1 processing also
requires O(n) time (line 1), COMCLUST has time complexity O(kn).

20 William H. E. Day

TABLE 6

The COMCLUST Procedure

procedure COMCLUST (k,T1 ,...,Tk,X):
begin

1. BUILD (T1,X);
2. for i '-- 2 until k do

begin
3. ~ Empty the stack S;
4. CLEAR(X); TRESET(Ti); NVERTEX(Ti,v,w);
5. repeat
6. .~ v is a leaf then
7. push(< ENCODE (v), ENCODE (v), t, 1 >,S);

els_ee
begin

8. ~ <L,R,N,W> ' - <~o,0,0,1>;
9. repeat
10. ~ < L * , R * , N * , W * > ' - pop(S);
11. <L,R,N,W> '--- < min(L,L*),

max(R,R*), N + N*, W + W*>;
12. w*- w - W*
13. until w ~ 0;
14. push(<L,R,N,W>,S);
15. .~N - R - L + I the__.fin SETSW(X,L,R)

end
16. NVERTEX (Ti,v,w)
17. until v =, 0;
18. UPDATE(X)

en__dd
en__dd

NOTE: push(r,S) inserts r as the top entry of stack S; pop(S) deletes the top entry r from
stack S and returns r as the procedure value.

When COMCLUST terminates execution, cluster table X describes the
cluster representat ion T' of the strict consensus C(Tt Tk). It remains
to construct a PSW T corresponding to T'. Al though computing T directly
f rom X seems difficult, comput ing T f rom X and 7"1 is straightforward. In
Table 1, for example, a PSW for C(Tb T2) can be obtained f rom Tl'S PSW
by removing entries for interior vertices 15, 17, 20, 21 and 18. Table 7
exhibits a Pidgin A L G O L procedure, called CONTREE, that computes a
PSW T for C(T1 T~) using this strategy. COMCLUST is invoked, T
is prepared for PSW construction, and T~ is prepared for postorder traversal
(lines 1-2). Entries for Tl 's leaves are copied to T (lines 5-7). Entries for
Tl ' s interior vert ices are copied to T if their associated clusters are still
recorded in X (lines 8-10). Since Tl 's traversal (lines 3-12) requires O(n)

Optimal Algorithms for Comparing Trees with Labeled Leaves 21

TABLE 7

The CONTREE Procedure

procedure CONTREE (k,T1,...,Tk,X,T):
begin

1. COMCLUST (k,T1,...,Tk,X);
2. PREPARE(T); TRESET(T1); NVERTEX(Tbv,w);
3. repeat
4. if v is a leaf then

begin
5. ' R ~ ENCODE(X,v);
6. ENTER(T,v,w);
7. FA [v] ,-- TEND (T)

end
ets._..~e

begin
8. L *-- ENCODE(X,LEFTLEAF(TI));
9. if ISCLUST(X,L,R) then
10. ENTER(T,v,TEND(T) + 1 - FA[LEFTLEAF(T1)])

end
11. NVERTEX(TI,v,w)
12. until v -- 0

end

NOTE: Array FA can be equivalenced to the fourth column of X.

time, COMCLUST dominates execution (line 1) so that CONTREE has
O(kn) time complexity.

To establish a lower bound on the time complexities of strict consensus
algorithms, recall Cavalli-Sforza and Edwards' result (1967) that Rn contains
II2~i¢~(2i-3) binary trees so that ~R,,I >/2 n for n>~5. Therefore it seems
reasonable that general-purpose representations of trees in R~ require 12 (n)
bits. Since strict consensus algorithms then require 12 (kn) time just to
identify the problem, and since CON-TREE solves the problem in O(kn)
time, CONTREE is an optimal algorithm for the strict consensus tree prob-
lem.

3. Computing Strict Consensus Trees in Un

The strict consensus concept can be developed for Un as well as for Rn.
Let an edge of any tree T in Un be called interior if it is not incident with a
leaf. Deleting an interior edge separates T into two components and yields
a corresponding bipartition of leaf labels into two subsets. The set of all
such partitions is called the partition representation of T and is denoted by T'.
The partition representation of T3 in Figure 1 is T3'--{{{1,5},{2,3,4,6}},

22 William H. E. Day

{{2,3,4},{1,5,6}},{{2,4},{1,3,5,6}}}. Partition representations play in U, the
role of cluster representations in Rn. Thus for k a positive integer, the strict
consensus tree method is a function C: U~ k---'U, such that
C (T1 Tk) ' ffi N l ~ t <~ k T/ for all T1 Tk in Un .

Although C(T1 Tk) can be computed using partition representa-
tions in U,, it also can be computed using cluster representations in Rn-1.
To see this, define function ep: U,---'Rn-1 such that if T in U, has edge
{v,n} incident with leaf n, ep(T) is obtained from T by deleting {v,n} and
n, and taking v as the root. In Figure 1, • (T3) ffi 7'i and • (7'4) ffi T2. The
function • is a bijection (Rohlf 1983; Hendy, Little and Penny 1984) so
that ~ - I (T 1) - 7"3 and ~ - l (T2) - - T4 in Figure 1. Using ~ , strict con-
sensus in Un can be solved as a consensus problem in Rn-1 by computing

C(T1 Tk) f f i • (2)

If each T in U, is represented by a PSW (the traversal being from leaf n),
the PSW for • (T) is simply the PSW for T without its last entry. As a
result, the strict consensus of k trees in Un can be computed in O(kn) time
using equation (2) and the CONTREE procedure for trees in R, .

4. Computing Consensus Indices

Consensus indices measure degree of agreement among objects in a set.
Taxonomists often define consensus indices on trees /'1 and T2 in R, or in
Un. Table 8 exhibits eleven such indices, each computable in O(n) time
from information in the cluster tables for 7"i, 7'2 and their strict consensus.
For further information the reader can consult: Bourque (I978), Robinson
and Foulds (1981), Margush (1982) and Hendy, Little and Penny (1984)
for D; Nelson (1979), Colless (I980) and Sokal and Rohlf (1981) for CIc;
Mickevich (1978) and Rohlf (1982) for CI~; Nelson (1979) and Nelson and
Platnick (1981) for term information (TERM) and total information
(TOTAL); and Schuh and Farris (1981) for levels sum (LSUM). Day
(1983) describes a comparison model relevant to CIc, TERM, TOTAL and
LSUM. Shao (1983) investigates interrelationships among many of these
consensus indices.

D and S are basic unnormalized indices of dissimilarity and similarity
between two trees. D is an unnormalized metric based on the symmetric
difference of sets (Restle 1959; Margush 1982). Essentially S(T ,T) counts
interior vertices in 7'; taxonomists say that it measures the resolution of T.
In Table 8 the pairs (d,s) and (d',s') represent alternative strategies for nor-
malizing the pair (D,S), where d(T1,T2) + s(TI, T2)= d'(TbT2) +
sI(T1,T2) " -~ 1. Notice that s'(TI, T.2)ffi 2s(T1,T2)/ (l + s (T b T2)) and
d (7"1, I"2) ffi d(T1, 7'2) / (2-d(T1,T2)). The index d is a normalized metric

Optimal Algorithms for Comparing Trees with Labeled Leaves

TABLE 8

Indices of Consensus Between Two Trees

23

Index Domain

D (TI, 7"2) Rn, Un

S(T~,T2) R., t:.

a(T.T2) R., U.

s(TI,T2) R., U.

a'(Tl, 7'2) R n, U.

s'(TI, T 2) R n , U.

C[¢(Th T2) Rn

u.

ClM (Tb T2) Rn

or.

TERM(T~, T:) R.

TOTAL (Tb 7'2) Rn

LSUM(T1, T 2) Rn

Expression

M(TI)+M(T2)-2 • M(T)

M (T) - I

D(TbT2)/ [D(Tb T2)+S(TbT2)I

S(Tb T2)[[D(TI, T2)+S(Th rg]

D (rh T2)/[D (rh 7'2)+2 " S (rl,/'2)I

2. S(TbT2)/ [D(ThT2)+2" S(TbT2)I

S(TI, T2)/ [n-2l

S(TbT2)/ In-31

tmin[n~-l,n-nl}/[l(n-I)/21 • [n/2lt

~tmin{ni-l,n-ni-1}/[1(.-t)/21 • [(n-2)/211

l~.,l ni-n-S(TbT2)]/ [(n-1)(n-2)/21

[~~ nj-nl/ [(n+l)(n-2)/2]

nj n] IE,[2i-I2i / I.,.-1,,.-2,/61

NOTE: T=C(ThT2). M(T) is the number of interior vertices in T. In Rn each ni is the
cardinality of the ith cluster in T'; in U, each n t is the cardinality of a block in the
ith bipartition in T'.

based on the symmetric difference of sets (Marczewski and Steinhaus 1958).
Since s' (TbT2) -- S (TbT2) / [(S (T1,T1) + S (7'2,7'2)) / 2], it is the
ratio of the strict consensus tree's resolution to the average resolution of Ti
and T2. For binary trees, the denominator in the d' and s' definitions is
independent of /'1 and T2 and depends only on n; in this case d' is a metric
and s' equals CIc.

24 William H. E. Day

T A B L E 9

The TERM Procedure

procedure TERM (TI,T2,X,T):
begin

1. ~ CONTREE(2,TbT2,X,T);
2. hum '-- 1 - M(T) - N(T);
3. XRESET(X); NCLUS(X,L,R);
4. repeat
5. hum,--- hum + R - L + 1;
6. NCLUS (X,L,R)
7. until L -- O;
8. return 2 • hUm/((N(T) - I)(N(T) - 2))

end

O3
Q
Z
0
0
LO
O3

Z

W

• 250

• 200

• 150

• 1130

.050

• 000

/
/

t t I I I | I 1

o 50 I00 15o 2OO

NUMBER OF L E R V E S

Figure 4. TIME REQUIRED TO CALCULATE D AND S CONSENSUS INDICES
BETWEEN RANDOMLY SELECTED UNROOTED BINARY TREES WITH n
LABELED LEAVES. Each point is the average of 10,000 computations on a DEC
VAX 11/780 computer. The least-squares line is f (n) =, .001202n -.002786.

Optimal Algorithms for Comparing Trees with Labeled Leaves 25

TABLE 10

Statistics for Empirical Distributions of 10,000 d and d' Distances
Between Randomly Selected Binary Trees with n Leaves

n Mean Std. Dev. Skewness Kurtosis 5% C.V. C.N.

d
20 .99489 .013 -2.735 I2.831 .93750 5
40 .99803 .005 -2.742 11.238 .97222 4
60 .99879 .003 -2.808 11.235 .98214 4
80 .99914 .002 -2,724 10.438 .98684 4

100 .99928 .002 -2.703 10.309 .98958 4
120 .99944 .002 -2.755 10.417 .99138 4
140 .99954 .001 -2.830 10.888 .99265 4
160 .99959 .001 -2.678 9.835 .99359 4
180 .99962 .001 -2.749 10.474 .99432 4
200 .99966 .001 -2.815 11.019 .99490 4

d s

20 .99014 .024 -2.596 10.931 .88235 5
40 .99612 .010 -2.701 10.785 .94595 4
60 .99761 .007 -2.786 10.990 .96491 4
80 .99828 .005 -2.710 10.283 .97403 4

100 .99858 .004 -2.692 10.190 .97938 4
120 .99888 .003 -2.747 10.330 .98291 4
140 .99908 .003 -2.823 10.811 .98540 4
t60 .99918 .002 -2.673 9.775 .98726 4
180 .99925 .002 -2.743 10.412 .98870 4
200 .99932 .002 r2.809 10.957 .98985 4

NOTE: The 5%
between
between

critical value can be used to test whether a distance
given trees is statistically less than a distance

randomly generated trees. C.N. = class number.

Table 9 exhibits a Pidgin ALGOL procedure computing in O(n) time
the term information (TERM) between two trees. Procedures for other
indices are equally straightforward.

5. Empirical Studies

H. T. Wareham has written computer programs (available from Day) to
compute consensus indices using the algorithms and ideas described herein.
One program accepts trees in U. as input and is written in PASCAL; the
other accepts only binary trees in U. as input and is written in the C pro-
gramming language. Both programs run on a DEC VAX 11/780 computer
equipped with the UNIX 4.2 BSD operating system. The C program

26 William H. E. Day

Z
(i~
ILl

l.OOO

.888

• 996

• 994

• 992

• 990

+.r.+++++++++++++4 :: ++++
.+,~.÷+++ ~ a . , ~ . , ~ ' ~

/ /
f 1
: 2 s/

p

r

, j
' t i •

.f I
, I

i

l
I
4,

!

0

' "1 t I I I I I ' '

50 tO0 150 200

NUI ' IBER OF L E F I V E S

Figure 5. MEANS OF SAMPLES OF 10,000 d AND d' DISTANCES BETWEEN
RANDOMLY SELECTED UNROOTED BINARY TREES WITH LABELED
LEAVES. Triangles represent d' means.

requires about .24 seconds to compute values of D and S for trees with 200
leaves. Figure 4 displays average times the C program requires to compute
these indices between trees of various sizes; these data exhibit the program's
linear expected time complexity.

For binary trees T1 and 7'2 in U,, Hendy, Little and Penny (1984) con-
jecture that the probability that d'(Tb 7'2)-- 1 approaches 1 as n ---,oo. To
investigate this conjecture, Wareham computed d and d' distances between
10,000 pairs of randomly selected binary trees in Un for each n = 5(5)200.
Table 10 exhibits summary statistics for the empirical distributions. Figure 5
displays d and d' means for the distributions; these data support the conjec-
ture.

6. Conclusion

I described an optimal algorithm to compute in O(kn) fu'ne the strict
consensus of k trees with n labeled leaves. It can be used to compute in
O(n) time well-known indices of consensus between trees with labeled

Optimal Algorithms for Comparing Trees with Labeled Leaves 27

leaves. It can be employed to investigate sampling distributions of con-
sensus indices based on the strict consensus tree. It is based on two com-
plementary design ideas: to relabel tree leaves so that every tree cluster has
a concise description; and to encode these descriptions in a cluster table so
that cluster membership can be tested in constant time. This design sug-
gests several problems for research. Can the PSW representation of a tree
be constructed in O(n) time from its cluster table? If so, it may be possible
to compute M/consensus trees in O(k2n) time; is this result then optimal?
Can the two design ideas lead to improved algorithms for consensus tree or
index methods other than those already mentioned? The leaf relabeling
idea may lead to an efficient algorithm for a quartet distance measure
recently proposed by G. F. Estabrook, F. R. McMorris and C. A. Meacham
(personal communication).

References

ADAMS, E. N., HI (1972), "Consensus Techniques and the Comparison of Taxonomic
Trees," Systematic Zoology, 21, 390-397.

AHO, A. V., HOPCROFT, J. E., and ULLMAN, J. D. (1974), The Design andAna~sis of Com-
puter Algorithms, Reading, Massachusetts: Addison-Wesley.

BOURQUE, M. (1978), "Arbres de Steiner et R6seaux dont Certains Sommets sont ~ Locali-
sation Variable," Ph.D. dissertation, Universit~ de Montr6al, Quebec, Canada.

BROWN, E. K., and DAY, W. H. E. (1984), "A Computationally Efficient Approximation to
the Nearest Neighbor Interchange Metric," Journal of Class~cation, i, 93-124.

CAVALLI-SFORZA, L. L., and EDWARDS, A. W. F. (1967), "Phylogenetic Analysis Models
and Estimation Procedures," American Journal of Human Genetics, 19, 233-257.

COLLESS, D. H. (1980), "Congruence between Morphometric and Allozyme Data for Menidia
Species: A Reappraisal," Systematic Zoology, 29, 288-299.

DAY, W. H. E. (1983), "The Role of Complexity in Comparing Classifications," Mathematical
Biosciences, 66, 97-114.

HARARY, F. (1969), Graph Theory, Reading, Massachusetts: Addison-Wesley.
HENDY, M. D., LITTLE, C. H. C., and PENNY, D. (1984), "Comparing Trees with Pendant

Vertices Labelled," SIAM Journal on Applied Mathematics Theory, 44, 1054-1065.
MARCZEWSKI, E., and STEINHAUS, H. (1958), "On a Certain Distance of Sets and the

Corresponding Distance of Functions," Colloquium Mathematicum, 6, 319-327.
MARGUSH, T. (1982), "Distances Between Trees," Discrete Applied Mathematics, 4, 281-290.
MARGUSH, T., and McMORRIS, F.R. (1981), "Consensus n-Trees," Bulletin of Mathematical

Biology, 43, 239-244.
McMORRIS, F.R., MERONK, D.B., and NEUMANN, D.A. (1983), "A View of some Con-

sensus Methods for Trees," in Numerical Taxonomy: Proceedings of a NATO Advanced
Study Institute, ed. J. Felsenstein, Berlin: Springer-Verlag, 122-126.

McMORRIS, F.R., and NEUMANN, D. (1983), "Consensus Functions Defined on Trees,"
Mathematical Social Sciences, 4, 131-136.

MICKEVICH, M.F. (1978), "Taxonomic Congruence," Systematic Zoology, 27, 143-158.
NELSON, G. (1979), "Cladistic Analysis and Synthesis: Principles and Definitions, with a His-

torical Note on Adanson's Families des Plantes (1763-1764)," Systematic Zoology, 28, 1-21.

28 William H. E. Day

NELSON, G., and PLATNICK, N. (1981), Systematics and Biogeography: Cladistics and Vicari-
ance, New York: Columbia University Press.

NEUMANN, D.A. (1983), "Faithful Consensus Methods for n-Trees," Mathematical Biosci-
ences, 63, 271-287.

RESTLE, F. (1959), "A Metric and an Ordering on Sets," Psychometrika, 24, 207-220.
ROBINSON, D.F. (1971), "Comparison of Labeled Trees with Valency Three," Journal of

Combinatorial Theory, 11, 105-119.
ROBINSON, D.F., and FOULDS, LR. (1981), "Comparison of Phylogenetic Trees,"

Mathematical Biosciences, 53, 131-147.
ROHLF, F.J. (1982), "Consensus Indices for Comparing Classifications," Mathematical Biosci-

_¢nces, 59, 131-144.
ROHLF, F.J. (1983), "Numbering Binary Trees with Labeled Terminal Vertices," Bulletin of

Mathematical Biology, 45, 33-40.
SCHUH, R.T., and FARRIS, J.S. (1981), "'Methods for Investigating Taxonomic Congruence

and Their Application to the Leptopodomorpha," Systematic Zoology, 30, 331-351.
SHAO, K. (t983), "Consensus Methods in Numerical Taxonomy," Ph.D. dissertation, State

University of New York, Stony Brook, New York.
SOKAL, R.R., and ROHLF, F.J. (1981), "Taxonomic Congruence in the Leptopodomorpha

Re-examined," Systematic Zoology, 30, 309-325.
STANDISH, T.A. (1950), Data Strucwre Techniques, Reading, Massachusetts: Addison-Wesley.
STINEBRICKNER, R. (1984), "s-Consensus Trees and Indices," Bulletin of Mathematical Biol-

ogy, 46, 923-935.
TATENO, Y., NEI, M., and TAJIMA, F. (1982), "Accuracy of Estimated Phylogenetic Trees

from Molecular Data I. Distantly Related Species," Journal of Molecular Evolution, 18,
387-404.

WATERMAN, M.S., and SMITH, T.F. (1978), "On the Similarity of Dendrograms," Journal
of Theoretical Biology, 73, 789-800.

WEIDE, B. (1977), "A Survey of Analysis Techniques for Discrete Algorithms," Computing
Surveys, 9, 291-313.

