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Uniformities describing the distinguishability of  states and of  observables are 
discussed in the context of general statistical theories and are shown to be 
related to distinguished subspaces of  continuous observables and states, respec- 
tively. The usual formalism of quantum mechanics contains no such physical 
uniformity for states. Using recently developed tools of  quantum harmonic 
analysis, a natural one-to-one correspondence between continuous subspaces of 
nonrelativistic quantum and classical mechanics is established, thus exhibiting a 
close interrelation between physical uniformities for  quantum states and eompac- 
lifications of  phase space. General properties of the completions of  the quantum 
state space with respect to these uniformities are discussed. 

1. INTRODUCTION 

It is a trivial observation that hardly any measurement in physics is 
absolutely precise. Yet the consequences of this fact for the philosophy of 
science, the formal methodology of physics, or the construction of particular 
physical theories are far from being fully understood. For example, what 
does it mean to say that one theory approximates another, or is a limiting 
case? Which parts of a theory can be tested by finitely many experiments of 
finite accuracy? What is the physical content of the frequently used 
idealization that measurements can in principle be refined indefinitely? 

In a first step towards making such questions precise, Ludwig m has 
singled out uniform structures, or "physical uniformities", as the appropriate 
tool for describing imprecision in physics. In the present article this concept 
will be applied to statistical theories. It has been noted by Ludwig long ago 
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that each physical uniformity on the state space of a statistical theory can be 
characterized by the space of observables, or affine functionals on the state 
space, which are continuous with respect to this uniformity. In this sense the 
usual quantum mechanical formalism contains no physical uniformity on the 
state space, which would correspond to a distinguished subspace c2 c ~(~,~) 
of observables. (This deficiency is shared by any purely W*-algebraic, and 
dually by any C*-algebraic description of physical systems.) 

In the attempt to construct such uniformities, one may took for 
guidance in the more transparent analogous problem for classical mechanics 
on phase space. Surprisingly, this already solves the problem, since there is a 
natural one-to-one correspondence between the sets of physical uniformities 
on the state spaces of quantum and of classical mechanics (Theorem 5.6). 

2. STATISTICAL THEORIES 

Very often in science one encounters the phenomenon that "the same 
measurement" applied to "the same situation" produces varying results, 
which, however, appear at a reproducible rate as the experiment is repeated 
many times. The theoretical tool for describing such repeated experiments 
are statistical theories, which therefore need to contain three basic 
ingredients: First, there has to be a description of the "situations" to which 
the measurements are applied or, more precisely, of the procedures according 
to which "systems" are prepared or selected. Second, there must be a 
description of the procedures for setting up the measuring devices and for 
determining which result out of some preassigned outcome set has occurred 
in each individual experiment. (For our present purposes it suffices to 
consider measuring devices with only two different outcomes, say " + "  and 

" - " . )  The third basic ingredient is the statistical function, assigning to each 
type of individual experiments (defined by some preparing procedure and 
some measuring procedure) the asymptotic rate or "probability" with which 
the outcome " + "  occurs. 

Different preparing procedures may induce the same rates on all 
available measuring devices. Such procedures are called statistically 
equivalent and the equivalence classes are called states. Similarly a class of 
statistically equivalent measuring procedures is called an effect. In the sequel 
the sets of states and effects are usually denoted by K and L. It is very 
convenient to embed these sets into linear spaces (in the sequel called B ~ K 
and D ~ L )  such that the statistical function becomes a bilinear map (-, .): 
B × D ~  ~. The typical structure resulting from this construction is 
described in the following definition. (For a more complete derivation, see 
Ludwig, (2) Neumann, ~3) and Werner. t4)) 
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Definit ion 2.1. A statistical duality (B, D) consists of a Banach space 
B, base-normed by a base K c B, an order-unit Banach space D with order 
unit 1 and unit order interval L := [0, 1] c D ,  and a bitinear form ( . , - ) :  
B × D -~ ~, placing B and D in norm and order duality. Thus the following 
relations hold: (x @ B, f C D) 

K = { p C B I p ) O , ( p ,  1)=I}; L = I f ~ D t O < ~ f  < l  } 

I}xft = inf{2, + ~2 t x = 2~p, -- 2zP2 ; .~ ) 0, p~ ~ K t = sup - -  
f ~ D  

NfH = inf{21-21 ~ < f < 2 t }  = sup l(x'f)-----~ 
l!xil 

x>/O ~ x@IIx[].K ¢*. Yf>~o(x,f))O 

f>/O e:> f E I [ f l  [ .L  ~ V~>o(x,f)>/O 

i(x,f)t 
lifll 

It is often convenient to work with the (canonical) complexifications of B 
and D, which satisfy analogous relations and wilt be denoted by the same 
letters. Familiar examples for D are ~(X), S m, .~@P'), C*-algebras d and 
W*-algebras ~f", and for B: ~ ' (X) ,  f ~ ,  g-(JK), ~ *  and J{,  together with 
the obvious dualities. 

In the above discussion we have defined the equality of states as 
statistical equivalence (pl=p2:c, V i~t(p~, f)=(p2, f)) .  Therefore the 
experimental verification of "P~=P2" requires a series of "monitoring 
experiments ''~5) with different effects f E L. However, it is only possible to 
perform finitely many such experiments (say, with effects f~ ... fN) of finite 
accuracy (say e). Thus one can only verify operationally statements like 

The sets U~.I~...~ (e > 0, f l  C L) generate a uniform structure on K, which 
will be denoted by e(K, L). (e(K, L) is the restriction to K of the uniformity 
on B induced by the weak vector space topology a(B,D).) The smnae 
remarks apply to the possibility of distinguishing effects, which is described 
by the uniformity e(L, K) on L. We shall emphasize the close relationship of 
e(K, L)  and a(L, K) to the operational identification of states and effects by 
calling them physical uniformities in contrast to other uniformities defined on 
K and L (e.g., by the norms) but lacking such interpretation. 

Suppose now that the space D is given together with two families K~ 
and K 2 of states on D (positive normalized linear functionals on D) and that 
K~ and K 2 are e(D',L)-dense in each other (i.e., "Vol~ VVEoW, L ~ 
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~o2eK(/01,P2 ) ~ U and vice versa.) Then it is clear that no experiment is 
capable of distinguishing elements of K1 from elements of K 2. Thus KI and 
K 2 can be called physically equivalent. This definition goes back to Haag 
and Kastler. (5) (In their set-up D is the C*-algebra of quasilocal observables 
and K i = K~i are the sets of normal states associated with the two represen- 
tations ~r i of X.) This type of physical equivalence is a universal phenomenon 
in axiomatically minded mathematical physics. For example, two geometries 
in which all points have rational coordinates or can be constructed with ruler 
and compass are physically equivalent with respect to the uniformity induced 
by the euclidean metric. Usually each equivalence class of theories contains 
one canonical "maximal" representative, which in the cases considered so far 
is simply the Hausdorff completion (6) of any member of the class: Two 
uniform spaces are "dense in each other" iff their completions are identical. 
In the case of geometry one arrives in this way at the usual analytic 
geometry in N2. The purpose of the following proposition is to identify the 
completions of K and L for the physical uniformities ~r(K, L) and a(L, K). 

Proposition 2.2. Let (B, D) be a statistical duality. Then: 

(1) B'  is an order unit space, whose unit order interval L can be iden- 
tified with the a(L, K)-completion of L. L is a(L, K)-compact. 

(2) D'  is a base-normed space, whose base K can be identified with 
the a(K, L)-completion of K . / ~  is a(K, L)-compact. 

(3) B coincides with the set of a(L,K)-uniformly continuous affine 
functions on L, vanishing at 0 E L. 

(4) D coincides with the set of a(K,L)-uniformly continuous affine 
functions on K. 

(5) By a(D,B) and a(B,D)-continuity, (., .) extends from B × D  to 
the canonical bilinear forms on B × B'  and D ' X  D, but not in general to 
D '  × B'. 

Proof (1) The dual of a base-normed space is an order unit space 
(Nagel ~7~, 3.1). L is a a(B',B)-closed subset of the unit sphere of B'  and 
hence compact and complete by the Banach-Alaoglu theorem. Since the 
a(B', B) and a(B', K) uniformities coincide on bounded sets, L must be the 
completion of L, if L is a(B', B)-dense in L. This follows readily from the 
bipolar theorem in (B, B') ,  applied to the unit sphere 2L - 1 ~ D: 

( 2 L -  1)° = {x C B  I f C D ,  IIfll ~ 1 :~ ( x , f )  <~ 1} 

= {x~BIl lxt l< 1} = (2L--  1) ° 

(3) By definition of a(L,K) and since B = l i n K ,  every x ~ B  is 
uniformly continuous. Suppose (p: L ~ r~ is affine and uniformly continuous. 
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Then by continuity, (0 extends to a o(L, K)-continuous function 05: L ~ N and 
by linearity to a linear functional on B'. Let N = {f E B ' J  05(f)= 0}. Since 
.6 is a(L, K)-continuous and hence g(L, B)-continuous on L, the intersection 
of N with the unit sphere of B' is a(B', B)-closed. By the Banach-Dieudonn6 
theorem, N is e(B', B)-closed. Hence 05 is a(B', B)-continuous and can be 
represented by a unique element of B. 

(2) and (4) are completely analogous (compare Nagel, (7~ 3.1 and 1.3). 

(5) The extensions to B × B' and D' × D are trivial. Examples for the 
last statement will be evident from the further discussion. | 

Proposition 2.2.2 amounts to the statement, that the state spaces K(B1) 
and K(B2) of two statistical theories {B 1, D), (B 2, D) are always physically 
equivalent, since both are dense in /~ in the physical uniformity, and /~ 
depends only on D. From this point of view (favored by Haag and 
Kastler (5)) it is natural to work directly with the statistical duality {D', D), 
or in the algebraic framework, with the duality ( J * , d )  for a C*- 
algebra J .  

By Proposition 2.2.1, the dual arguments apply to theories (B, D i), and 
(B, O2) over a given state space, and the physical equivalence of L(DI) and 
L(Dz). We are thus led to consider theories (B,B'), which under the 
assumption that B' is a C*-algebra must be of the form (Jr,  , J r )  for a W*- 
algebra J / a n d  its unique predual Jg, .  

There are obvious technical advantages in working with the asymmetric 
dualities (D', D) and {B, B'): Since/~ and L are compact, they contain an 
abundance of extreme points, so that one may use suitable variants of 
Choquet theory to decompose arbitrary elements into "simpler" constituents. 
In the algebraic framework the various decompositions into pure states in 
5g* and the spectral theorem in o~'f are of this type. However, the normal 
state space of ~ need not contain any pure states and d need not contain 
any projections, so that analogous decompositions in ~/ ,  and d are in 
general not possible. Yet some structural information is always lost in the 
transition from (B,D) to an asymmetric duality {B,B') or {D',D): 
Although the elements of K and/£ cannot be separated from each other by a 
finite application of the measurements from L, the new idealized states in 
/ ( \K formally admit much finer discrimination among the elements of L, i.e., 
a(L,/~) is generally finer than a(L, K). Proposition 2.2.3 shows that it is 
indeed precisely the description of physical distinguishability of effects that 
is forgotten by passing from (B,D) to (D',D): if only {D',D) and the 
uniformity a(L,K) are known, B can be reconstructed. Proposition 2.2.4 is 
the dual result for (B,B') and Proposition 2.2.5 further emphasizes this 
point: If p~ ~ p and J~ ~ f converge in a(K, L) and a(L, K), respectively, the 
limits (p, f~) = lim~(p~, J~) and (p~, f )  = lim~(p~,, f~) are well-defined, but 
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in general (p , - )  is no longer e(L, K)-continuous, so that lim~(p,s~) need not 
exist. Thus, one may either consider idealized states in K or idealized effects 
in L, but these two idealizations are in general not compatible. 

In the above discussion we were led to consider asymmetric dualities by 
a notion of physical equivalence referring only to one side of the symmetrical 
structure (B,D). It is possible to restore this symmetry and to define a 
notion of physical equivalence of arbitrary statistical theories, each given in 
terms of measuring and preparing procedures. The "canonical represen- 
tative" of each equivalence class can be characterized and under mild 
assumptions these representatives are precisely the statistical dualities 
defined above. The sets of preparing and measuring procedures then 
correspond to norm-dense subsets of K and L. (For details see Werner(~l.) In 
particular, when one assumes that for some members of the equivalence class 
the sets of procedures are countable (the text describing a procedure has 
finite length), B and D must both be norm-separable. Since a W*-algebra is 
norm separable iff it is finite-dimensional, this property usually does not hold 
in asymmetric dualities. 

Very often in mathematical physics only one side of the duality (B, D) 
is given. For example, a space D of observables may have been constructed 
or else assumed to be given, but not the physical uniformity for the obser- 
vables or, equivalently, the state space K c B. Restoring the symmetry 
between states and effects, i.e., choosing a dense subspace B ~ D  r is not 
merely a mathematical problem: It requires the solution of the physical 
problem, which subclass of states in / ~ c D '  can actually be repared. This 
last statement is of course to be taken with grain of salt: so many idealizing 
assumptions usually enter the construction of a physical theory, that the 
identification of a linear functional in D '  with certain "real" physica! 
processes is rather naive. With these reservations the above statement should 
be taken as "the choice of B requires a characterization of those states. 
which can reasonably be expected to be preparable in a relatively simple 
way." By choosing B, we take back the extreme idealization that "essen- 
tially" all states in /~  can be prepared. At the same time we gain a physical 
uniformity on D, which relativizes the idealizations made in the construction 
of D by providing a measure of the "imprecision'up to which mathematical 
points in D are to be taken seriously as the theoretical images of "real" 
measuring devices. To concern oneself with the choice of B is more than a 
topological fancy, and in a different guise this problem is well-known in 
mathematical physics: If D = ~ is a C*-algebra, it can be formulated as the 
choice of "physically relevant" representations n of d .  (B is then the set of 
normal states associated with n, and the dual B'  is the yon Neumann algebra 
7r(.C)'q) For example, in statistical mechanics the representation of the 
quasilocal algebra determines the temperature at infinity, and in quantum 
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field theory, the choice of z~ for a certain algebra (C*-inductive limit of local 
factors) distinguishes interacting from free theories. 

This paper is concerned with the case of ordinary quantum mechanics, 
where the usual duality (g'(JK), ~5~(J2"~)) is of the asymmetric type (B, B'}. 
But before studying the possible choices of D c B' here, it is useful to 
develop a better understanding of the classical case. 

3. C L A S S I C A L  T H E O R I E S  

For classical theories, the interplay between the space B and D is 
especially transparent. As the distinguishing feature of classical state spaces 
I shall take the property that any two convex decompositions of the same 
state have a common refinement. Equivalently, we may say that B has the 
Riesz decomposition property: {U i}, { Vj} c B; Ui, Vj ) 0 and 
v,n ~i=lUi=Y~7__ 1 Vj imply the existence of positive W / jEB  such that 
Ui- - -~j~l  Wij and V i = ~ =  ~ Wij. This property is known {s~ to imply that 
B and its dual B '  are vector lattices. Together with a corresponding property 
for D this is formalized in the following definition and proposition: 

Definition 3.1. A statistical duality (B, D) is called classical, if B has 
the Riesz decomposition property and D is a sublattice of B'. 

We then have the following representation theorem: 

Proposition 3.2. Let (B,D> be a classical statistical duality such that 
B and D are separable. Then there is a unique compact metrizable space/2 
and a Borel measure/l on /2  with support/2, unique up to quasi-equivalence, 
such that 

B~SI( ,c2,cz) ;  D ~ g g ( O )  and (p,f)=f.u(dco)p(m)f(w) 

Outline of proof. (For details see Werner. ~4)) D m ~(12) is Kakutani's 
representation theorem for AM-spaces{9); metrizability o f /2  is equivalent to 
the separability of D. Thus B is a space of measures on /2. Since D 
determines order and norm on B, B must be a sublattice of D'.  Since B is 
separable, one may pick a norm-dense sequence {/l,} in the base K of B. 
Then all measures in B must be absolutely continuous with respect to 
~t = 2 7 2 - ~ .  Thus B can be identified with a sublattice of d 1 (£2,/1), which is 
necessarily of the form Y1(12, 2;o,/z) for a suitable sub-e-algebra 270 of the 
Boret algebra 22. Then the condition that D is a sublattice of B'  and not 
merely a lattice in its own ordering implies 27 = 22 o. Since B determines the 
order on D, the support of / l  has to be/2.  | 

It is easy now to construct examples for Proposition 2.2.5: let /2 be the 
unit interval with its usual topology and let/l be the Lebesgue measure. Then 
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for any point c o ~  one may find a sequence {p,} c K c S t ( 1 2 , / j )  and an 
element f E L c 1°°(12,/j) such that p~ converges in o(/(, L)  to the point 
measure % on co and the sequence ( p , , f ) i s  not convergent. Thus e~o ~ k 
has no extension by continuity from L to L, although there are of course 
many Hahn-Banach extensions of this functional. 

Suppose now that only a measure space (12, X,/j) and thus an asym- 
metric duality (B, B ' )  = ( t  1, 54 ~ )  is given. Then from the point of view of 
(B,B') it makes no sense to talk about individual points co E f2. In fact one 
may add to 12 or delete from it any number of points without changing the 
structure of B as long as these modifications are of/J-measure zero: the 
structure of B depends only X/mad/j ,  i.e., the extreme points of L c B ' .  
Moreover all separable spaces S~(g2, Z , / j )over  atomless measure spaces are 
isomorphic. Thus from the measure theoretic point of view ~ere  is no 
difference between (N, dx) and ( ~ n  d=x). On the other hand, the difference 
between two theories in which systems are described by one and n real 
parameters respectively is intuitively quite clear and lies in the different 
topologies of t:7 and ~". Under an isomorphism of SJ(~",d=x) with 
f l ( ~ , d x )  "points" will end up "close" to each other, which may 
nevertheless be distinguished clearly from each other by the measurement of 
one of the n real parameters. The above Proposition shows that the selection 
of a distinguished class of measurements D c S ~ ( 1 2 ,  X,/J) is indeed 
tantamount to the introduction of a topology for 12(2 and by Proposition 2.2, 
to the introduction of a topology for the set K c_ B of statistical states. 

Analogous remarks apply to the dual situation where only a topological 
space 12 and thus an asymmetric duality (D', D) = (~(.O)',  ~(12)) is given. 
The points e) ~ 12 are intrinsic to this structure: they may be identified with 
the pure statistical states, i,e., the extreme points of the b a s e / ( c  D'.  On the 
other hand, there is no notion of '°almost sure equality" of Borel subsets 
which could be used to define a (reasonably small) a-algebra of "events", 
constituting a "logic" of the system. These structures depend on the choice of 
a distinguished measure/2 E c~(.c2), or equivalently of a physical uniformity 
on D, induced by 2 / 1 ( ~ , / j ) ~ B  c D '  in the manner described in Section 2. 

It was demonstrated in Section 2 that the main problem of this paper, 
the construction of physical uniformities for the state space of quantum 
mechanics, amounts to the choice of a subspace D c , ~ ( ~ ) = B '  of 
"continuous" observables. By the above remarks the analogous problem for 
classical theories can be understood as the introduction of topologies for a 
given measure space. It will turn out that in the nonrelativistic case the 
solutions to the quantum mechanical and the classical problem are in one-to- 
one correspondence. Therefore the following observations will also be of 
direct importance to the quantum mechanical problem. 

For any given measure space (12, X,/J), S~(s9~ Z,/J) is a commutative 
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W*-algebra and hence isomorphic to ~ (X)  for some compact, totally 
disconnected space X. The topology of X hardly describes any notion of 
"physical distinguishability", and it will indeed be irrelevant for the 
following considerations except for the fact that the choice of a subspace 
D c f~(Y2,  22, p) amounts to the choice of a subset of ~ (X) ,  the lattice of 
all bounded real valued functions on X. 

Let X be any set. Then any subset D c 57(X) defines an initial uniform 
structure a(X, D) on X, generated by the entourages 

u~.i1-..s. := t (x , ,  x2) 1 v7=11 f , (x , )  - f~(x~)l 4 e t 

for e > 0 and f~ . . . fn ~ D. Again, if the elements of X are interpreted as 
physical states or objects and the functions f E D describe the response of 
certain measurement devices, a(X,D) may be called a physical uniformity. 
The Hausdorff completion (6) of (X, a(X, D)) will be called the D-completion 
of X and denoted by J~o or, more precisely by iD: X ~ J(v. Since every 
function in D is bounded, )~o is a compact space. The canonical map i o 
identifies indistinguishable objects and the unique uniformity on j?o 
compatible with its topology describes the distinguishability of the 
equivalence classes of such objects. In particular i D is injective iff a(X, D) is 
Hausdorff and iff D separates points of X. The set of all a(X, D)-uniformly 
continuous real valued functions on X is naturally isomorphic to ~(3(~)). By 
an application of the Stone-Weierstrass theorem to ~()?D) we conclude that 
two subsets Dl ,  D~ c ~ ( X )  induce the same uniformity a(X, D1) = o(X, D2) 
iff D 1 L) {1 } and D 2 L.) {1 } generate the same norm-closed subalgebra (or 
linear sublattice) of ~ (X) .  We arrive thus at a one-to-one correspondence 
between norm-closed subalgebras of ~ (X) ,  precompact uniform structures 
on X and mappings i: X-~ Y with dense range in a compact space Y. Under 
this correspondence Y = ~ D  is metrizable iff a(X, D) has a countable base 
and iff D is norm-separable. 

In the case considered above the space X was already equipped with a 
topology. It is easy to see that in this case the mapping i D is continuous iff 
every f ~ D is continuous. If D is the algebra of all bounded continuous 
functions, j~D is known as the Stone-Cech compactification. More generally, 
i ,  : X ~  )~D is called a compactification if i o is a homeomorphism onto io(X ). 
Clearly it is necessary for this that X is a completely regular space and D 
consists of continuous functions. Then (i D. )?D) is a compactification iff D 
separates points from closed sets. °°) Moreover, if X is locally compact we 
may replace this condition either by the requirement that iD(X ) is open in )~D 
or that the algebra generated by D contains all functions going to a constant 
outside of compact sets. C~) (These results will later be applied to phase 
space.) 

825/13/8-8 
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In general there are many different compactifications of a given 
topological space. The following example shows how the choice between 
different compactifications can be related to different classes of measuring 
procedures: Let X =  N3 with its usual topology be interpreted as the set of 
spatial points. Consider first the method of distinguishing points by means of 
measuring rods of finite accuracy, applied during finite expeditions into 
space. A typical entourage of the associated uniformity jt'~ consists of the set 
of pairs (x~, x2) which remain undistinguishable for some given expedition. 
Note that in each case most of the universe remains uncharted. These 
uncharted regions form a Cauchy filter for the uniformity ~4~, whose unique 
limit point in the completion of (X,~4~) may be denoted by "oo". It is easy 
to see that this completion is equal to X U  {o~}, the Alexandroff one-point 
eompaetifieation of X. As an alternative method consider optical 
measurements of finite angular resolution, carried out from finitely many 
observatories. Apart from the filters converging to an ordinary point in X, 
obtained by observing this point from two different angles with increasing 
accuracy, the typical Cauchy filters of this uniformity are finite intersections 
of cones with common axis and nonzero opening angle, based at arbitrary 
points in space. The corresponding compactification is homeomorphic to a 
closed ball in N 3, whose boundary is just the celestial sphere. In Section 6 we 
shall be led to consider the analogous ball compaetifieation of FR ". A 
convenient metrization of the associated uniformity is given by d(x, y):= 
tx/(1 + i x l ) -  3'/(1 + tYf)I, where Ixl denotes the euclidean norm in ~". 
Translations and nonsingular linear transformations are Lipshitz-continuous 
with respect to this metric and hence extend by continuity to the compac- 
tification. Important properties of this compactification are that the affine 
group of N" acts on it continuously and  that the sphere at infinity is 
pointwise invariant under translations. 

4. CRITERIA FOR THE CHOICE OF PHYSICAL UNIFORMITIES 
ON STATES 

The examples at the end of the preceding section show that each 
"physical" uniformity is closely related to a class of measuring devices by 
means of which the objects in question are to be tested and thereby 
distinguished. For constructing the uniformities in these examples, we did not 
make use of an explicit physical description of the measuring instruments. 
Only qualitative features, particularly those related to the resolution of very 
distant points, entered the construction. 

Since for quantum mechanical measuring processes detailed theoretical 
descriptions are usually not available, we need to rely on similar qualitative 
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ideas concerning measurement in our endeavor to construct physical unifor- 
mities for quantum states. The following list of criteria for the choice of a 
subspace D c B ' ,  and hence of a physical uniformity on states, is due to 
Ludwig. Since the parallels between classical and quantum theories will play 
a crucial role in the sequel, these criteria will be formulated for arbitrary 
statistical theories, and are hence applicable to both cases. Thus we shall 
assume throughout that B is a base-normed Banach space and that D c B'  is 
a norm-closed subspace containing 1 ~ B'.  

Condition 1. D N [0, 1 ] is a(B', B)-dense in [0, 1 ] ~ B. 

Condition 2. D is a(B',B)-dense in B. 
Condition 1 is equivalent to the requirement that (B, D) is a statistical 

duality in the sense of Definition 2.1 and obviously implies Condition 2. 
However, it is often easier to check Condition 2, which only means that the 
functionals in D separate points in B. If B'  is a W*-algebra and D is a 
subalgebra, both conditions are equivalent by virtue of Kaptansky's density 
theorem. The following condition has also been discussed in Section 2 and is 
equivalent to the metrizability of the physical uniformity: 

Condition 3. D is norm separable. 
These conditions together still admit an immense variety of different 

spaces D. Further restrictions can be formulated with respect to further 
structures given on B. As an additional structure we shall consider only a 
symmetry group G, which will be taken later as the Galilei group (or some 
group related to it). If G is a topological group and fl: G - ,  Aut(B) is a 
representation of G by positive normalized linear maps, we may formulate: 

Condition 4. For each g E G, the adjoint fig : B'  --, B '  of fig satisfies: 
B'gD c D. 

Condition 5. For each p C B and f ~ D the function g-~ (flgp, f )  is 
continuous. 

Condition 6. For f ~ D the function g -  flgf is norm continuous. 
Condition 4 postulates that the class of measurements corresponding to 

D is closed under the symmetry operations described by G. Condition 5 is 
automatically satisfied if/3g is strongly continuous on B (i.e., satisfies the 
analogue of Condition 6) and is implied by Condition 6. Surprisingly, the 
strong continuity condition Condition 6 already follows from Conditions 3, 4 
and 5. This was proven by Ludwig (z), Theorem VI.t.2.1, using a category 
argument for G and we include the relevant result here for reference: 
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Lemma 4.1. Let D be a Banach space and fl': "G-~ f ( D )  a represen- 
tation of a locally compact group by linear operators on D. Let M be a 
a(D',  D)-dense subset of the unit sphere of D '  and U c G a neighborhood of 
the identity, on which Ilfl~t] is uniformly bounded. Then for any f C  D the 
function g ~ flgf is norm continuous on G if and only if for all p E M the 
function g~(p ,  fl'gf) is continuous on U, and {fl '~ftg~g} is norm 
separable. 

Condition 5 may also be replaced by the stronger condition, that all 
functions g ~  (flgp, f )  are uniformly continuous with respect to some 
"physical uniformity" on G, which is coarser than the group-uniformity. In 
this way we can postulate that fl'gf becomes less and less sensitive when 
g E G becomes "large." (Compare the examples of Section 3.) Thus we shall 
consider conditions of the following type: 

Condition 7. For each p E B and f E D the function g-,  (flgp, f )  
belongs to some suitably specified subspace of ~(G) .  

It will turn out later that for nonrelativistic classical or quantum 
theories a condition of this type characterizes D completely: If Conditions 4 
and 6 are satisfied, D may be reconstructed from the norm-closed span of 

{(B.P,f) IPCB, f ED}. 

5. CORRESPONDING SPACES OF OBSERVABLES 

The natural symmetry group for a system of n free distinguishable 
nonrelativistic particles is the nth direct power of the Gatilei group. The 
subgroup of this group generated by translations and boosts will be denoted 
by X and is isomorphic to N2x ( N =  3n). X can also be viewed as the phase 
space of the system and carries a sym]~lectic from t ' ,  • }: X × X ~  ~ given in 
the usual way by {x, x'} {(P, q), (P', q')} = }~N=I (Piq[ Pi t)" The Haar 
measure on X will always be normalized as dx = (27~)N dpN dqU. Our main 
results will only refer to this group X of kinematical transformations, which 
will remain a part of the symmetry group also when the free Hamiltonian is 
replaced by an interacting one. Without much additional effort we shall 
obtain results also for (arbitrary subgroups of) the group of linear symplectic 
transformations on X, which will be denoted by G in the sequel. 

For classical systems the statistical states are represented by elements of 
= f l ( X ,  dx) =-- L# 1 and the symmetry groups X and G are represented by 

( a x f ) ( y ) = f ( x - - y )  and ( f lg f ) (y)=f(g- ly)  for fC~Yc,  x , y ~ X  and 
g E G. Physical uniformities on classical states correspond to subspaces 

= 3 ; =  f (X, dx). 
The states of quantum systems are represented by elements of ~o  = 
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U ( ~ )  =_ U, the Banach space of trace class operators on a Hilbert space ~g~. 
The trace norm on U and the norm o r s  ~ will both be denoted by I{ " I!1. The 
group X is represented by ax(A) = E(x) AE(-x) for x ~ X, A ~ U, where 
x -+ E(x) is an irreducible representation of the Weyl commutation relations 
E(x) E(y) = e i~x" s'l/2E(x + y). By von Neumann's uniqueness theorem there 
is a family {Ug}g~G of unitaries o f ~  satisfying UgE(X)U* =E(gx). Since 
Ug represents G up to a factor, we may define a representation fi of G on U 
by fig(A)= UgA U*. Physical uniformities on quantum states correspond to 
subspaces ~q c ~ q  = ~(~-~), 

Before proceeding further we have to describe an extended notion of 
convolutions needed to establish some close interrelations between the 
classical and the quantum mechanical representations of X. This notion has 
been introduced in Werner {~2) and the reader is referred to that paper for 
further details and for proofs. Note that the convolution in Y~ can be 
rewritten as ( f ,  g)(x) = [j" dyf(y)  ay g](x) = f dyf(y)(aJ3 g)(y), where 
t _  represents the phase space inversion x-~ -x.Replacing integrals by traces 
we arrive at the following definitions: 

Definition 5.1. 
are defined by: 

Let A,B ~ U and f ,  g C -9 al. Then their convolutions 

(S * g)(x) = ~ ds f ( s )  g(x - y)  

(A * B)(x) = tr(A(axfl B)) 

A * f = f * A  =~dy f (y )  ay(A) 

and their Fourier transforms are defined by: 

(~f)(x)  = .f dy f (y)  e i~x" ,t 

(JA)(x)  = tr(XE(x)) 

Convolution is defined by the same formulae if e i ther f  C f o o  or A E ~ (a7  -~) 
(but not both). Note that f • g, A • B, ~-fi  and J A  are functions on X, 
whereas f * A  is an operator. Basic properties are summarized in the 
following propositions: 

Proposition 5.2. (1) Convolution is associative and commutative. 
The convolution of positive elements is positive. 

For T ~ f l U ~  a n d A c E S l U g  " o r A C f ° ° U ~ ( ~ ) :  

(2) It T *  a Ih ~ II ~t1~ IIA I1~ and II T ,  A It < tl ~t1~ IIA II; 
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(3) a~(T , A ) =  (a=T) , A and flg(T , A ) =  (flgT) , (fl=A); 

(4) For A, E S '  U • B)  = 

Of the many analogues of classical results that may be proven for these 
extended convolutions and Fourier transforms, the following will be the most 
important for our purposes: 

Proposition 5.3. (Wiener's approximation theorem) For T E U the 
following conditions are equivalent: 

(1) V~x(~'-T)(x)~O; 
(2) T ,  g- is norm-dense in Y~; 

(3) T ,  S ~ is norm-dense in U; 

(4) A E ~ ( J Y ) ,  T , A  = 0 ~ A  = 0 ;  

(5) f E Y ~ ,  T ,  f = 0 => f = 0. If these conditions are satisfied, T is 
said to be regular. 

As a first step towards the characterization of physical uniformities, we 
single out those spaces of quantum and classical observables, which satisfy 
Conditions 4 and 6 with respect to the group X: 

Definition 5.4. A subspace ~c c - ' S ~  (respectively, ~q c~ ( J?~) )  is 
called continuous, if it is norm-closed, invariant under a x, and 
lira=. 0 tlaxA -AI I  = 0 for all A E ~c (respectively, A E ~q). The largest 
continuous subspaces will be denoted by ~c c S °~ and cgq c ~(~W). 

Note that ~.  is simply the space of bounded uniformly continuous 
functions. Since f E ~. may be uniformly approximated by functions of the 
form p * f with p E S ~, it is easy to see that a continuous subspace ~c 
coincides with the norm-closed linear hull of the set of functions x ~ (axp, f )  
for p E d ~ , f E  go and is hence completely determined by a condition of the 
form of Condition 7. However, the x-dependence of expectation values and 
hence Condition7 may be formulated equally well in the quantum 
mechanical setting and hence we may use each continuous subspace ~ to 
formulate a constraint on subspaces ~q by postulating that all functions 
x--, tr((ax W)A) lie in ~2 c for WE ~ ,  A E ~2, r This is equivalent to the 
condition g- * ffq ~ ffc and the above definition of convolutions allows us to 
formulate the "reverse" condition. Thus we arrive at: 

Definition 5.5. Two continuous subspaces ~c c Y ~  and ~q c ~ ' ( ~ )  
are said to be corresponding, if ~ " ,  ffc c ~_~q and ~" • ffq c ~c. 

Theorem 5.6: (1) For any continuous subspace ~q c 3 ( ~ )  there is 
a unique corresponding continuous subspace ~c ~ Y ~  and conversely. 
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(2) If T E U is regular, T* ~c is norm-dense in @q and T* ~q is 
norm-dense in @~. 

(3) (Tauberian theorem) If T C U is regular: 

(4) @~ is an order unit subspace or is separable or separates points of 
L~ ¢~ if and only if ~q has the analogous property. 

By virtue of this theorem the problem of constructing physical unifor- 
mities on the state space of nonrelativistic quantum mechanics is completely 
reduced to the analogous problem for classical mechanics. In particular, we 
may associate with each continuous subspace ~;~q a completion J~e~ of phase 
space as described in Section 3. Often the properties of the compact space 
J ~  will help to make intuitive the type of "closeness" described by the 
physical uniformity a(g', ~q) in much the same way as the properties of the 
compactifications of N3 discussed in Section 3 reflected the sensitivity of 
certain classes of measuring procedures, This connection will be studied in 
more detail in the next section. 

The following result shows that correspondence also preserves the 
Conditions 4 and 6 when formulated with respect to subgroups of G such as 
rotations, spatial dilations, particle permutations, and the time evolutions of 
free or harmonically bound systems. 

Proposition 5.7. Let ~'c and ~q be corresponding continuous 
subspaces and i: X ~ ) ~  the ~;2re-completion of X. Let H ~  G be a subgroup 
equipped with its left invariant uniformity. Then: 

(1) f lH~qC~q iff fl~@cc2~ c iff for each g ~ H  the map rg: x -~gx  
extends by continuity to a homeomorphism re: J [ ~  j(. 

(2) {flg}gen is, in addition, strongly continuous on ~2~q iff this is valid 
on ~c iff the map f: H × J ( ~ ) (  is uniformly continuous, 

A basic example of a pair of corresponding continuous spaces is given 
by the space .Y~q ~ ~(~ 'Q of compact operators and the space ~ c Y ~  of 
continuous functions on X vanishing at infinity. By adjoining units we obtain 
the corresponding order unit space , ~  @ C1 and ~Z~ @ (21. Both spaces 
satisfy Conditions 1, 3, 4, and 6 for the whole symplectic affine group on X. 
Accordingly, this group acts continuously on the associated completion of 
phase space, which is the one-point compactification. Not only the 
symplectic group is strongly continuous on ~ @ C l: This space can be 
characterized as the largest subspace ~q c ~ ( ~ )  such that, for any strongly 
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continuous representation /~: G--* Aut(~)  of any topological group G, all 
functions g~flgA (A ~ ~q) are norm continuous. Thus the uniformity 
a(g',~Uq@ C1) is a candidate for a physical uniformity on quantum states 
independently of the symmetry group under consideration. We have seen in 
Section 2 how the elements of the a(~,~qq ® C 1)-completion R of the 
ordinary state space can be considered as idealized states. In the present case 
Propostion 2.2 makes it easy to calculate this space: since the dual of ~/q is 
the trace class g- itself, we have (.~.~ ® C 1 ) ' =  ~ @ C0~ o, where ~oo is the 
functional (~oo, C + ,t 1) = ,L Consequently the space / (  = 
{W@(1-trW)O~oiW~U,W>/O, t r W ~ l }  is obtained from the 
ordinary state space by adjoining a single new extreme point .0oo. The state 
0~o has the property that for any A E ~ ' ~ @ C I ,  W C U  and any one- 
parameter group Ut whose generator has absolutely cominuous spectrum 
limt_.~o tr(b~ WUi*A) = tr W.  (¢oo,A). (The existence of all these limits 
again characterizes J~q@Cl. )  For other subspaces gq~¢3~(~ "~') the 
a(g-, ~q)-completion of state space will contain more than one "state at 
infinity". The following section is devoted to a study of this structure. 

6. COMPLETIONS OF THE QUANTUM MECHANICAL 
STATE SPACE 

Throughout this section g ~  and go denote corresponding continuous 
order unit subspaces and i: X ~  X denotes the ~c-completion of phase space. 
K =  {WE g-IW>~ 0, tr W =  1} will be the usual state space of quantum 
mechanics, whose a(g', gq)-Completion/~ will be identified with the base in 
~ .  

The classical counterpart of k is easily characterized: If ~c is a C*- 
algebra, we have ~c = ~ ( X )  so that the base of ~£ is the set of Radon 
probability measures on ~'. In the quantum case many new problems arise. 
For example: will the pure states in K, given by one-dimensional projections 
on ~ ,  remain pure in the larger s e t / f  or will some admit a further convex 
decomposition? The following two results show that under fairly general 
circumstances such a decomposition is impossible. 

ProposRion 6.1. (Lebesgue decomposition) Let B '  be a W*-algebra 
and D c B'  a a(B ~, B)-dense C*-subalgebra. Then there is a projection P: 
D' -~ D'  such that P and 1 - - P  are both positive and PD is the canonical 
image of B in D'. Consequently D'  ~ B @ (1 - P ) D q  

Proof Identify B with a norm-closed subspace of D '  and consider the 
a(D", D')-closed subspace B ± = {a @ D" I V~(fp ,  a) = 0}. Since B is 
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invariant under the maps R~ and L~ (defined on D '  by (R~0, b} = (~0, ba) 
and (L~0, b) = (~0, ab) for ~0 E D',  a, b ~ D) B ± is closed under left and right 
multiplication by elements of D. By the o(D",D')-continuity of 
multiplication, B l is a a(D", D')-closed two sided ideal in D" and hence of 
the form B a =  ZD"= D"Z for a unique central projection Z ~ D". Define 
(P~o, a) = ((0, (1 -- Z)a) = (09, (1 -- Z) a(1 -- Z))  for (p ~ D' ,  a ~ D. Clearly 
P and 1 - P are positive and PD = B al is the bipolar of B in (D',  D") .  Since 
B was norm-closed, we have B ±_L = B. I 

We may also express this result by saying that the "old" states K c ~U 
and the "new" states k \ K c g ' q  can be combined only by statistical 
mixtures but not by "coherent superpositions" of any kind. As in the 
classical case (B =f~(12,Ct),  D---c~(O))P can be understood as splitting 
each state into a "singular" and an "absolutely continuous" part. In the 
classical case a different splitting is also suggestive, namely into a "finite" 
part supported by X c )( and a state "at infinity" supported by J ~ .  In this 
case the "finite" part may contain singular constituents like point measures 
on X. The second part of the following proposition shows that this cannot 
hapen in the quantum case: the states at infinity are then precisely the 
singular states. Since g - ,  9~ c 9~ and g - ,  9 o c 9~, we shall extend the 
convolution operation to g- × ~ q - + 9 ;  and ~ × 9 ' ~ 9 q  by setting 
(T*O,A):=(O,(fl T)*A ) for T C g -  and O E ~ ,  A ~ 9 ~  or 0 ~ c . ~  ' ,  

Propos i t ion  6.2. Let @c, 9q ,  and i: X-~ )? be as above. Then: 

(1) The following conditions are equivalent: (a) i is a compac- 
tification, i.e., a homeomorphism of X onto i(X). (b) i is injeetive and X\i(X) 
is closed. (c) The C*-algebra generated by 9c  contains one nonzero function 
(and hence all functions) vanishing at infinity. 

(2) Suppose the equivalent conditions ~ c ~c and J?'q c ~ q  are 
satisfed. Then for i = c and i =  q there are projections Pi: 9 [  ~ 9 [  such 
that Pi and 1 - P  t are positive, Pig~=~[ and ( 1 - P i ) 9 [ = ~ ' , . z ~  
(@i/J/~)'. For any TC g-: T ,  (P~4)=Pq(T* ~) for @ E 9~ and T ,  (Pq¢)= 
Pc( T* O) for 0 E 9 ; .  If 9q  is a C*-algebra, Pq is the projection of the 
Lebesgue decomposition with respect to J:'~ = g-. 

Proof. Proposition 6.2.1. was already noted in Section 3, except for 
the statement implicit in Proposition 6.2.1 (c) that ~ is minimal in the lattice 
of ax-invariant C*-subalgebras of S °~. This was proven by Werner. (12) In 
Proposition 6.2.2 the crucial observation is that in both cases ~Y'I may be 
identified in a canonical way with a subspace of 9 : :  ~f~ is the space of 
finite measures on the locally compact space X and J{'~ is the trace class. 
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Thus we may define PiO as the element of 9 [  identified with the restriction 
of ~ to @'. With this construction the relations stated in the proposition are 
straightforward with the exception of 1 - P~. ) 0. Let ~ ~ 9 "  be positive. ~c 
is an order unit subspace of ~ ~ c~(l~), the C*-algebra generated by ~ .  
Hence ~ has a positive extension CE ~ ' .  We may apply our construction to 
~ ,  obtaining a projection ff on ~ .  Since ~ and ~ are equal on .,,g~, the 
restrictions o f / ~  and (1 - /~ )0  to ~ are equal to PO and (1 - P)0, and we 
only need to show that (1 - f i )  is positive. This is clear since (1 - i f )  acts on 
the measures in ~ '  ~ f ( , f ) '  like multiplication with the characteristic 
function of the compact G~X~X. In the quantum case we may argue 
similarly, using an extension ~ of ~ to c~(~) .  Since the singular states on 
~(d7 ~') are precisely those annihilating JUq, the projection /~ obtained as 
above coincides with the Lebesgue decomposition and 1 - P  is positive. | 

Intuitively the conditions ~ ~ ~ mean that each point of X can be 
distinguished from very distant points: The measurements described by the 
elements of ~ @  C I are practically insensitive to systems of exceedingly 
high momentum as well as to systems which are very far away spatially. An 
important example of a continuous subspace ~q c .~(~¢ -~) violating the 
conditions , ~  c ~q is the CCR-algebra, i.e., the C*-algebra generated by 
{E(x) I x C X}. Its corresponding space ~c c L/'m is the space of almost 
periodic functions (~2) on X and the ~-completion i: X--, Jf is distinguished 
by the property that J( is itself a topological group, and i is an injective 
homomorphism. X is sometimes called the Bohr compactification ~l~ of X, 
but it is plain by the above result that (i, l() is not a compactification of JL 
The topology induced on X by the almost periodic functions is indeed rather 
strange: each neighborhood of each point contains infinitely many points 
outside of an arbitrarily large sphere. Almost periodicity is hardly to be 
expected of the response function of a real apparatus, so that in spite of its 
usefulness for discussing representations we shall have to discard the CCR- 
algebra as a set of "realistic" observables inducing a physical uniformity on 
K. 

It is easy to see that no state in K c U = ~ or in J~"~ can be invariant 
under any phase space translation. In constrast, ~q  and ~ ;  always contain 
invariant states, which are related in the following simple manner: 

Proposition 6.3. For i = c  or i = q ,  let S i : = { 4 C ~ t ~ O ,  
(4, I ) =  1, Vx~xax~ = 4}- Then S i is a nonempty a(~'~, c2i)-compact convex 
set. There is a canonical isomorphism j :  S c -~ S~ given by J4c = T ,  ~ and 
j - l ~  = T , ~ q  for all 4, C S t  and T @ ~  with t r T = t .  S c and Sq are 
simplices. 

Proof S t is nonempty, since for any T E g" with T ~ 0 and tr T = 1, 



Physical Uniformities on the State Space of Nonrelativistic Quantum Mechanics 877 

and every invariant mean q on X the functional ~ C ~ [  given by (4, A) := 
q((T, a.A)) is in Si, Let ~ C S~, A E @,., and p C S ~. Since a x is strongly 
continuous on @i, f l_p*A can be approximated in norm by linear 
combinations of translates of A, so that (p * 0, A } := (¢, (fl_ p) * A } = 
<O,A}. fdxp(x).  Hence for V,, T2C g :  T, • r 2 • O - -0"  fdx(Tl  * T2)(x) = 

• tr T~ • tr T 2. Thus ] and j - ~ are inverses of each other and independent of 
T. S~ is a simplex by a standard result of classical ergodic theory. 1 

Note that in the sense of the decomposition 6.2 invariant states are 
necessarily "states at infinity". Thus we may expect a complete charac- 
terization o f /£  in the case that, conversely, all states at infinity are invariant. 
The following considerations are intended to make this assumption plausible 
on physical grounds. 

Suppose that A ~cCqc~CY(~". ) describes a measurement apparatus, 
which has a regular behavior a t  infinity in the sense that for T E g- and 
certain sequences {x, } c  X with I xnl-~ oo, the limit of expectation values 
lim,_,~(T, a~A) exists. {x,} describes a sequence of operations on A, taking 
the apparatus further and further away from the preparing apparatus 
described by T or to larger and larger velocities relative to it. We may expect 
that for large n the expectation values will not change significantly if A is 
shifted by another small amount, say x ~ X ,  and that the limits of 
(T, a~,+~A} and (T, axA } will be equal. Thus limn(T, ax , (A -a~A)}=0  
and if this holds for all such sequences {x~}, y ~ (T, ay(A - % A ) }  will be a 
continuous function vanishing at infinity. Then by the Tauberian 
Theorem 5.6.3, A - a~A is a compact operator. This motivates the following: 

Definition 6.4. Let A C ,~(~P~) (respectively, A E S ~ ) .  Then A is 
called invariant at infinity, if lbr all x C X: (A - a x A ) ~  Y~ (respectively, 
( A -  axA ) C J/~c). The space of all such elements will be denoted by ffq 
(respectively, g~c). 

Proposition 6.5: (1) g~c and ~ are corresponding continuous 
subspaces. Both are nonseparable C*-algebras. 

(2) There are canonical maps n~: ~ -~  ~ ( , ~ )  (i= e, q) with the 
following properties: (a) n i is a surjective ,-homomorphism with kernel .~i,  
(b) For T ~  U, tr T= 1, A ~ ~ q , f C  fie: nc(T,A)=nq(A ) and n q ( T * f ) =  
7to(f). 

(3) Spaces @c and ~'q with . ~ . i c ~ i c  ~ are corresponding iff 
7tc(@c) = 7~q(~q). @i is a C*-algebra iff 7t~(~i) is a C*-algebra, and in this 
case Proposition 6.5.2 is valid with F being replaced by 9 .  Moreover the 

' ~ ° '  decomposition 6.2 takes the form D e --~z~c Q and 
® '. 
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Proof (I) Since for A E ~ . : { a ~ A t x ~ X } c A + ~ ,  , and "~i is 
separable, Lemma 4.1 implies that g~ is a continuous subspace. For A, B C 
we have AB - a~(AB) = A ( B  - axB ) + (,4 - axA ) axB ~ since ~q is a 
two sided ideal in , ~ ( ~ ) ,  and J~c is an ideal in ~ .  Hence ~. is a C*-algebra. 
g'c and gq are corresponding since ~ and ~ are corresponding, thus T E U 
and A ~ ge U fYq imply T , A - a~(T , A ) = T ,  (,4. - a~A ) ~ ~c  ~Y.//q. We 
shall show that ~ is not separable only in the case d i m X =  2. Consider the 
function f ( p ,  q) := tanh(q3(1 + p2 + q2)-~). T h e n f  C gc and for (p, q) ~ 0: 
lima_~o f(2p, 2q) ----- sign(q). Thus if R c G denotes the group of rotations in 
phase space, g E R ~ f l g f  is not norm continuous and hence 
tflgfl g ~ R } c ~. is not separable by Lemma 4.1. 

(2) g'e is isomorphic to cf()?~) and we shall define )zc: Zc "4 ~ ( X ~ X )  
to be the restriction map. Then Proposition 6.5.2(a) for i =  e is trivial. 
Moreover, the evaluation functionals ~¢~, f )  : -  (~z0f)(2) for >2 C J['g\X are 
invariant states on g~. We now define ~rq(A):= z~(T,  A) for some T E g- 
with tr T =  1. Then Proposition 6.3 shows that this definition is independent 
of the choice of T and that ~r~(T , f )=~q( f ) .  If 7rq(A)=- 0 then for any 
regular T@ U ~re(T*A)=0, hence T , A  C.3/e and A C~'q by 
Theorem 5.6.3. It remains to be shown that 7rq is a homomorphism, For this 
we shall use the fact that A ~ T , A  for T C U ,  T/>0, t r T = l  is a 
completely positive map on 2~ °~ and on ~ ( ~ )  so that Kadison's inequality 
T * I A I 2 ~ I T * A t  2 is valid] 12) Let f C ~  and T , S ~ U  be positive and 
normalized. Then ~zq(I T ,  f t  2) ~< 7r~(T • !fI 2) = ~r~(tft 2) = t rr,.fi 2 = 
17rq(T*f)I 2 and on the other hand, ~zq(1T*fI2)=Tr~(S,lT*fl2)>~ 
rc~(lS * T*  f l  2) = lnc(S * T*  f ) l  2 = !nq(T* f)I  z. Since T ,  ~c is dense in ~eq 
we conclude that rcq(IAlZ)=Izrq(A)t 2 and by polarization nq(AB)= 

(3) is trivial. | 

For a typical application of this result consider the ball compac- 
tification of X discussed at the end of Section 3. Take ~ to be the set of 
functions with continuous extensions to this compactification and ~q its 
unique corresponding space. Combining our results to this point, we 
conclude that ~q c ~ ( ~ )  is a separable C*-algebra on which the whole 
affine symplectic group acts as a strongly continuous symmetry group. 

All states on ~q are of the form ~ = W@ # where W ~ ~ ,  and W >~ O, 
/~ is a positive measure on the sphere )tT-~'~\X=S ~'-~ at infinity and 
tr W + f / ~  = 1. The above proposition defines an exact sequence 0 ~  
~q ~%c~(S~N-~)~0 of C*-algebras, so that ~q is an extension of._~Z~ by 
~(S:U-~). There is an extensive classification theory of such extensions {~4), 
which in the case N =  1 ( d i m X = 2 )  suggests the following independent 
characterization of the algebra @o: Let {ln)},,~0 be the eigenbasis of the 
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oscillator Hamiltonian ½(pZ + Q2) and consider the partial isometry V on JF  
given by Vln)= tn + 1). Then for T o = t0)(01, To * V can be calculated 
explicitly and, in polar coordinates (r,o) for X, is of the form 
(T o • V)(r, o ) = f ( r ) e  io with limr_,o~ f ( r  ) = 1. Consequently T O • V~ ~c and 
VE ~q with ~zq(V)(~p) = e ~'. Evidently, 2~q is generated by .~/; and Ix, (Since 
the index of V is equal to -1,  this extension of , ~  is nontrivial.) However, 
since ~ is generated by the elements Vn(V*V - VV*) V *m (n, m >/0), ~q is 
a already generated by the single element V satisfying V* V = 1 4= VV*. 

There is not enough space here to apply the general program outlined 
above to more concrete quantum systems. For systems composed of many 
particles it is natural to use compactifications of the form 2(= l-[~,)~r, with 
X,, being a suitable compactification of the phase space of the vth particle, 
and the associated spaces gc and ~q. The proper (anti-)symmetrizations 
introduce nontrivial problems here, since there will no longer be a natural 
action of the entire group X = I~ X,. Further problems with much of the 
flavor of geometric scattering theory arise from the introduction of nontrivial 
interactions and the corresponding continuity requirements. 

I shall conclude by giving an alternate motivation for the ball (or rather 
the circle) compactification for one of the simplest quantum systems: the free 
particle in one-dimensional space. We shall adopt the view that the only 
possible observations of our system are measurements of position, performed 
at different times. Thus momenta are measured only indirectly by means of 
flight time detectors. Classical position measurements at time zero are 
described by functions of the form f (p ,  q)=f(q),  where f is a continuous 
function on ~ such tha t f (+oo) :=  limq.~+~ f(q) a n d f ( - o o ) : =  limq~_o3f(q) 
exist. The corresponding space of quantum mechanical position 
measurements consists of all operators J~(Q), where Q denotes the position 
operator.~2) These subspaces, say ~ e  and ~ q ,  are isomorphic, although the 
isomorphism is not given by any of the maps A ~ T , A  (TC g'). The 
evaluation functions f -~f(qo) can be interpreted as states with sharp 
position and can also be extended by the Hahn-Banach theorem to any 
space ~ q ~ q .  Clearly such states cannot be given by trace class 
operators, so that in the sense of Proposition 6.2 they must be "states at 
infinity", in this case states of infinite momentum in accordance with the 
uncertainty relation. 

Position measurements at other times are described by the set ~2e of 
functions fitf with f @ ~ ,  i.e., by functions of the form f (p ,  q) = f~pt + q). 
A subbase for the uniformity a(X, ~2c) is given by the entourages V t = 
{((P,q), (P ' ,q ' ) ) l (p t+q,  p ' t + q ' ) C V }  with t C N  and V being an 
entourage of the two-point compactification of ~. We shall now calculate 
explicitly the set of points in the induced compactification ~e2~ of X: Let 
{(P~, G.)} be a Cauchy net for a(X, ~2e). Then for any t C ~ tp~,t + G,} 



880 Werner 

must be Cauchy in N U { + o o , - o o }  and we may define 0_~:= 
{ t E  ~ I p v t + q v ~  ±co} and 0 0 := {tE ~ I p ~ t + q v ~ q ~  ~1. It is easy to 
see that if O o contains at least two different times, O0 = ~ and the nets {p~,} 
and {q~,} converge separately. The resulting limit points in J f ~  will be 
denoted by (p, q ) :=  (tim p,,, lira q~)EX. The points for which O+ = ~ or 
O = N will be denoted by (0, +oo) and (0 , -oo) ,  and correspond to 
systems located at ±~z and staying there forever. In all other cases O+ and 
O are nonempty convex sets, and since O o = N\(O+ U O_) consists of at 
most one point, define a Dedekind section of a unique r ~ [~, The resulting 
limit points in ~ c  describe systems of infinite momentum (±oo depending 
on whether O+ is to the right or left of r), which traverse configuration space 
in no time at all, and at the very moment r of passage hit some point 
q := lim~(p,r + q~,) @ ~ l.J {+m, - ~  }. These points will be denoted by 
triples (r, +oo, q). 

The space j~2~ is not metrizable and the action of the time translations 
on 2 e~ is not continuous. Hence/~t is not strongly continuous on the algebra 
generated by ffzc. This discontinuity is easily traced back to the idealization 
that measurements of position can be carried out at one precise instant of 
time: the function t ~ f l t  f is not norm continuous for any (nonconstant) 
function f depending on q alone. Thus it is natural to consider the space flu. 
of those functions in the C*-algebra generated by ~2~ for which t ~ f l t f  is 
norm continuous. Then all nets {(p~, q,)} convergent in 2 z~ will remain 
convergent in .~3~, but in addition the nets {(p~,, q~, + t~p~.)} with t,, ~ 0 will 
also he convergent. Consider the sequence p~ = v • p~ ; q~, = vq~ + qo (v ~ N) 
with p~ v~ 0. Then lim~(p,, q,) = ( -q f fp~,  ~x~ • sign p~, q0) and 
lim(p~,q, ± v-~/Zp~)= ( - q f f P l ,  oo • signp~, ±oo • sign p0.  In 2 ~ ,  these 
limits must be equal so that the points (r, ±oo, q) for different q will 
coincide. It is easy to see that ~3~. is indeed precisely the circle compac- 
tification of X, where the asymtotic ratios - q / p  for points on the circle at 
infinity can now be interpreted as the passage times of systems with infinite 
momentum. This interpretation can be taken over immediately to the states 
on ~3q, the algebra corresponding to ff3~. Of course it would have been 
possible to motivate the choice of ~3q as a natural algebra of quantum 
observables by an analogous construction, carried out entirely in the 
quantum mechanical setting. But this would be difficult without invoking the 
above correspondence results and the derivation would certainly lose much 
of the descriptiveness of phase space geometry. 
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