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A comprehensive formal system is developed that amalgamates the operational 
and the realistic approaches to quantum mechanics. In this formalism, ,['or 
example, a sharp distinction is made between events, operational propositions, 
and the properties of physical systems. 

1. INTRODUCTION 

The purpose of this paper is to introduce a comprehensive mathematical 
formalism that has been developed as a consequence of the authors' recent 
collaboration at Amherst and Geneva. This formalism consolidates the 
operational approach to quantum mechanics, developed by C. Randall and 
D. Foutis, ~6"7'19) and the realistic approach developed by C. Piron. ~17"~8) In 
the present paper, we concentrate on the basic mathematical structure of our 
formalism; a more expository article is forthcoming. 

It is our contention that the realistic view implicit in classical physics 
need not be abandoned to accomodate the contemporary conceptions of 
quantum physics. All that must be abandoned is the presumption that each 
set of experiments possesses a common refinement (that is, the experiments 
are compatible). As we shall argue, this in no way excludes the notion of 
physical systems existing exterior to an observer, nor does it imply that the 
properties of such systems depend on the knowledge of the observer. 
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2. QUASIMANUALS 

The familiar notion that an experiment, measurement, or operation can 
be represented by a corresponding sample space E of mutually exclusive and 
exhaustive possible outcomes is routinely used in contemporary lectures on 
probability and statistics. In what follows, we shall also adopt this represen- 
tation. Consequently, a set of (possibly incompatible) experiments can be 
represented by a set 6g of sample spaces, 

6~ = {E,F, G,...} 

Since distinct experiments can share common outcomes, we do allow the sets 
E, t7, G .... to overlap. This motivates the following definition. 

Definition 1. A quasimanuat is a nonempty set of nonempty sets. 
Henceforth, the symbol ~ will denote a quasimanual. 

Definition 2. 

(i) A set E C 6~ is called an C[-operation. 

(ii) X = X ( ~ )  = U / E IE  ~ 5}  is called the set of 6Louteomes. 

(iii) A subset A of X is called an 6g-event if there exists an E ~ Cd with 
A c E .  

(iv) N = N(6g) denotes the set of all C~-events. 

As usual, if operation E C 6'/' is executed and an outcome x 6 E is 
secured as a consequence, then an event A c E is said to have occurred 
(nonoeeurred) if x E A  ( x ~ A ) .  Accordingly, if A ~ ~, then an operation 
E 6 (7/for which A _c E is called a test operation for A. Notice that an event 
A can occur or nonoccur only as a consequence of an execution of a test 
operation for A. Furthermore, it is essential to understand that an occurrence 
or nonoccurrence of A is to be regarded as being independent of the test 
operation for A that was actually executed. 

Definition 3. 

(i) A family of events (Ai) is said to be compatible if there exists an 
operation E 6 6g such that U i A i ___ E. 

(ii) A family of events (Ai) is said to be jointly orthogonat if it is 
compatible and the sets (Ai) are pairwise disjoined. 

(iii) If  the events A and B form a jointly orthogonal family, we say that A 
and B are orthogonal and write A ± B. If  x and y are n-outcomes and 
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{x} L {y~, we simply write x_L y. If M is a set of outcomes (not 
necessarily an event) we define 

M ~ = {x ~ X l x _i J' for every y E M} 

(iv) If  A and C are orthogonal events for which A U C = E E O', then A 
and C are said to be operational complements, and we write A o c C. 

(v) If A and B are events for which there exists an event C with A o c C 
and C o c B, we say that A and B are operationally perspective and we 
write A o p B .  Here we refer to the event C as the axis of the 
perspectivity. 

Most quasimanuals that arise in practice satisfy certain reasonable 
normative conditions, among which are the following: 

Definition 4. 

(i) The quasimanual (7{ is said to be irredundant if E, F C (g, and E ~ F 
implies E = F. 

(ii) The quasimanual ~ is said to be eoherent if A, B ~ ge, and A c B ± 
implies A 5_ B. 

(iii) The quasimanual ~ is said to be orthocoherent if every triple of 
pairwise orthogonal events are jointly orthogonal. 

(iv) The quasimanual ,~" is said to be regular if A, B ~ go, and A o p B 
impliesA L B l . 

(v) The quasimanual ~ is said to be a manual if A, B, C ~ 8 ,  A o~ B, and 
A 2_ C implies B 2_ C. 

It is not difficult to show that every manual is irredundant, as is every 
regular quasimanual, and that every coherent manual is orthocoherent. 
Moreover, a coherent quasimanual is regular if and only if it is a manual. 

If ~ is a manual, then o_p is an equivalence relation on g". Thus, it is 
natural to introduce the following definition: 

Definition 5. Let ~ be a manual. 

(i) For every A ~ g', we define p(A) = {B C 8" tA o__p_p B}. 

(ii) z r ( ~ ) =  {p(A)IA C N}. 

It can be shown that the relations introduced in the following definition are 
well-defined. 

Definition 6. Let O7 be a manual and let A, B, and C E 8.  

(i) p ( A ) ±  p(B) if and only i fA J_B. 
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(ii) I fp(A) A_ p(B), we define p(A)® P(B)= p(A kJ B). 
(iii) If A c E ~ ~ ,  we define p(A)' = p(E -- A ). 
(iv) p(A) ~ p(B) if and only if there exists p(C) with p(A)_ p(C) and 

p(A) @ p(C) = p(B). 

If ~ is a manual and A C g~, we call p(A) an operational proposition 
and we say that p(A) is confirmed if an event B E p(A) occurs. If an event 
C E p(A)' occurs, we say that p(A) is refuted. We refer to n(C¢), equipped 
with the relations of Definition 6, as the operational logic of the manual 5 .  
Note that (n(6g), ~<) is orthocomplemented by p(A) ~ p(A)', but it need not 
be a lattice. Indeed, p(A)@ p(B) need not be the least upper bound ofp(A)  
and p(B), although it is a minimal upper bound. In fact, the manual G~ is 
orthocoherent if and only i f p ( A ) ®  p(B) is always the least upper bound of 
p(A) and p(B), in which case, 7r(~) is an orthomodular poset (OMP). 

Definition 7. Let ~ be a manual and let E, F C ~ .  We say that the 
operation F refines the operation E if for every A ~ E, there exists B c F 
such that p(A) = p(B). If G ~ is an orthocoherent manual in which every pair 
of operations has a common refinement, then 7r(6~) is a Boolean algebra. 
When we abandon the classical supposition that operations are always 
compatible (possess a common refinement), then, in general, we lose the 
classical (Boolean) characteristics of the operational logic zc(~'). 

In this paper, we are primarily concerned with the realistic approach to 
quantum mechanics. In other places (for example, Refs. 8, 9, 20, and 21) we 
have considered a statistical approach. In the latter, the basic tool is the 
notion of a "global stochastic model" or weight function. 

Definition 8. Let 0 / b e  a quasimanual with outcome set X. 

(i) An C~-weight is a function co: X-~ [0, 1] such that, for every E C ( g ,  
~x~E co(x)= I, (where the summation is understood in the unordered 
sense). 

(ii) If co is an ~-weight, we define the support of co, in symbols, supp(co), 
by supp(co) = {x @ X i co(x) 4= 0}. 

(iii) If co is an ~-weight and A is an 6g-event, we define co(A)= ~xeA ~(x)- 

If A E g,  then co(A) is interpreted as the long-run relative frequency with 
which A occurs when tested (according to the model co). If A and B are 
operationally perspective events, it is easy to see that co(A) = co(B); hence, ,if 

is a manual, we can, and do, define eo(p(A))= co(A). Naturally, we 
interpret co(p(A)) as the long-run relative frequency with which p(A) is 
confirmed when tested. 
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At the end of this paper is a bibliography in which the details of these 
matters can be found. 

3. EXAMPLES 

In this section we shall introduce a number of pertinent examples of 
manuals. 

Example 9. ~ = {E}, where E is a nonempty set. We refer to such an 
as a classical manual. Here the events are arbitrary subsets of E. The 

operational logic ~(~)  is isomorphic to the Boolean algebra of all subsets of 
E. 

Example 10. ~ = {Ei l iC  I}, where (Ei)i~ x is a family of pairwise 
disjoint nonempty sets, We refer to such an 6~ as a semiclassical manual. 
Here the operational logic is a complete atomic orthomodular lattice, but is 
Boolean only if 6~ is classical. 

Example 11. Let ( S , S / )  be a Borel space; that is, a nonempty set S 
and a a-field J !  of subsets of S. Let ..~(S, ~ )  denote the set of all countable 
partitions of S into nonempty sets in .~/. We refer to ~ ( S , . ~ )  as a Borel 
manual. Here the events are countable families of pairwise disjoint nonempty 
sets in ~ / .  The operational logic 7 r ( .~ (S ,~ ) )  is isomorphic to Jr/, and 
consequently is a a-complete Boolean algebra. There is a natural 1-1 
correspondence between ~(S ,d / ) -we igh t s  and probability measures on the 
Borel space (S,._~f/). 

Example 12. Let ~ be a Hilbert space and let J - ( ~ )  denote the 
collection of all maximal orthonormal subsets of :7:. We refer to ~ ' - ( ~ )  as a 

frame manual. Here the events are the orthonormal subsets of ~ and the 
operational logic n(J-(~U)) is isomorphic to the complete atomic 
orthomodutar lattice of all projection operators on ~ .  If ~7 ~ has three- 
dimensions or more, there is a natural 1-1 correspondence between the 
J - (~ ) -we igh t s  and the yon Neurrmnn density operators (statistical 
operators) on ~ .  

Example 13. Let A be a v o n  Neumann algebra and let 2~(A) denote 
the collection of all maximal sets of pairwise orthogonal nonzero projections 
in A. We refer to ~ ( A )  as the projection manual of A. The operational logic 
n (3 (A) )  is isomorphic to the complete orthomodular lattice of all 
projections in A (the projection geometry of A). In the favorable cases 
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covered by Lodkin's theorem, 113) the ,~(/A)-weights are again in a natura! 
1-1 correspondence with statistical operators, 

Our remaining examples, which are all finite, provide simple counterex- 
amples to a variety of conjectures. They are so-called Greechie manuals. ~5) 

Definition 14. A quasimanual (Y is called a Greechie manual if it 
satisfies the following conditions: 

(i) If E and F are distinct 6~-operations, then E ~ F  consists of at most 
one outcome. 

(ii) If E, F, and G are three distinct ~t-operations and F consists of exactly 
two outcomes, then F ~ E kJ G. 

(iii) ~ is irredundant. 

It can be shown that any Greechie manual is in fact a manual. 

Example 15. The Wright Triangle: 

Y/={{a ,z ,  b},{b,x,e},la, y,c}} 

This is an example of a manual that is regular, but not orthocoherent. The 
operational logic ~(~)  is not an orthomodular poset. The set of all G ~- 
weights forms a three-dimensional polytope. 

Example 16. The Window Manual: 

(7{= {{a,b,c,d}, {e,f, g, h}, {j,k, l,m}, {a,e,j  t, {b,f, kt, te, g, [}, {d,h,m}i 

This is a coherent manual, and consequently, its operational logic n(6g) is an 
orthomodular poset (which is not a lattice). Here there are no n-weights. 
Nevertheless, as we shall see, it is possible to define realistic states for this 
manual. 

Example 17. The Collar Manual: 

(7[= {la, b,c,d}, {a,e,j}, {b,f , j},  {c, g, kf, {d,h, kl} 

This is a regular manual, but it is not orthocoherent. 

3. SUPPORTS 

In their famous 1935 paper, Einstein, PodoIsky, and Rosen '~4j wrote: 

"If, without in any way disturbing a system, we can predict with 
certainty (i.e., with probability equal to unity) the value of a physical 
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quantity, then there exists an element of physical reality corresponding 
to this physical quantity." 

We shall also adopt this reasonable criterion and introduce an appropriate 
mathematical representation for such elements of physical reality. Thus, let 

be a quasimanual with outcome set X. Suppose that cg c_ ge(~) consists of 
all of the events that are certain to occur (in the sense of EPR) if tested. 
Then, an event is certain to nonoccur if and only if it is £c  to some event in 
~ .  Let I be the set-theoretic union of all events certain to nonoccur. Clearly 
I is the set of impossible outcomes and P = X - I  is the set of possible 
outcomes. We claim that P should satisfy the condition in the following 
definition: 

Definition 18. A set P of C/-outcomes is called an C[-support provided 
that it satisfies the following exchange condition: if E, F E (~" and E N P c F, 
then F n P ~ E. The collection of all ~-supports is denoted by y( tY) .  

The argument that the set P of possible outcomes satisfies the exchange 
condition is as follows: Suppose E, F E ~ and E n P ~ F. Let A = E N P. 
Since all outcomes in E --A are impossible, A is certain to occur if the test 
operation E is executed. By hypothesis, A ~ F, and consequently, A is certain 
to occur if F is executed. Thus, F - -  A consists of impossible outcomes, and 
it follows that (F - A) n P is empty. Therefore, P N F c E. 

The following definition formalizes the notions of certainty of 
occurrence and nonoccurrence utilized in the argument above. 

Definition 19. Let P C Y((Y) and A C g'(Ct). 

(i) A is P-true if there exists E C (2 such that P n E _ A ~ E. 

(ii) A is P-false i f P N A  is empty. 

Because of the exchange condition, if F is any test operation for an 
event A, then A is P-true if and only if PC~FcA.  Also, if C is an 
operational complement of A, then A is P-true if and only if C is P-false. As 
a consequence, if A and B are operationally perspective events, then A is P- 
true if and only if B is P-true, and A is P-false if and only if B is P-false. The 
following Lemma is obvious: 

L e m m a  20. Y(C/') is closed under arbitrary set-theoretic unions, and 
therefore forms a complete lattice with respect to set-theoretic inclusion. It is 
evident that the empty set is always an C/-support. It is equally clear that the 
set X of all R-outcomes is a support if and only if the quasimanual ~ is 
irredundant. 
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As the following lemma shows, the condition of  regularity provides a 
lavish supply of  supports:  

L e m m a  21. The following conditions are equivalent: 

(i) C/ i s  regular. 

(ii) For  every 6g-outcome x, X - x ± E Y(6g) .  

P r o o f  Suppose 6g is regular and that  x is an C/-outcome. That  X - -  x -  
satisfies the exchange condition is equivalent to E - x ± ~ _ F  implies 
F - x± C_ E for E, F E Cg. Thus, suppose E - xZ c_ F, and let A = E N x ~, 

C = E -  x a, B = F -  C. Then A o_pp B with axis C, so, since C{ is regular, 
A ± =  B ±. Because x E A-~, it follows that x C B a. To  prove that F -  x-L~ E, 
select any outcome y E F - x z. Then y ff x ±, so, because x C B ~, we have 
y ~ B. Thus, y E F -  B = C c E. This completes the proof  that  (i) implies 
(ii). Conversely,  suppose that  condition (ii) holds and assume that A and B 
are operationally perspective events with axis C. Let E = A U C, F = B U C. 
We need to prove A ± = B  I. By symmetry,  it will suffice to prove A L ~ B  - 

To this end, select x ~ A ±, and suppose that x ~ B i. Then, there exists an 
outcome b E B with b ff x ±. Hence, b C F - x ±. Now, since x 6 A ±, we have 
A ~_ x ±, and it follows that  E -- x z ~_ C _~ F. By condition (ii), we therefore 
have F - x z _ E. Since b C F -- x ±, it follows that b E E. Thus, either b C A 

C or else b E C. Because A _ x -~ and b ~ x ±, we cannot have b 6 A; hence, we 
must have b C C .  Therefore, b 6 B A C .  But B N C  is empty,  and this 
contradiction completes the proof. | 

Corol lary 22. If  ~ is regular, then, for every set of  outcomes M ~ X, 
x -  M ± ¢ y ( ~ ) .  

The following lemma establishes the connection between stochastic 
models and supports. 

L e m m a  23.  

(i) If  co is any n-weight ,  then supp(co)C Y(C/ ) .  

(ii) I f  an C~-weight ~o is a proper convex combinat ion of  a family of  ~7~'- 
weights (o)i), then supp(o~) = Us supp(co~). 

Notice that, although the manual  in Example 16 carries no statisticai 
weights, it is regular, and thus, according to Corol lary 22, it actually has 
many  supports. 

A deterministic or dispersion f ree  6g-weight is one that takes on only the 
values 0 and 1. The support  P of  such a deterministic weight is characterized 
by the fact that  it meets every operation in exactly one outcome. Evidently, 
for such a deterministic support P, every 6g-event is either P-true or P-false. 
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Clearly, for a semicalssical manual, every support is a union of deterministic 
supports. However, for a Hilbert space ~ of dimension three or more, the 
frame manual J ' ( ~ )  admits no deterministic supports. 

4. ENTITLES 

We are now able to provide a mathematical representation for a 
physical system, object, or entity. Following Aerts, (1) we prefer to use the 
neutral term "entity." 

Definition 24. An entity is a pair (~ ,  27) such that 

(i) ~ is a quasimanual with outcome set X. 

(ii) X is a set of nonempty (y-supports. 

(iii) U (Y = X = (.] 27. 

We refer to 27 as the set of states of the entity. It is to be understood 
that, at any given moment, the entity is in exactly one state S in Z. This, of 
course, entails that the S-true (y-events will occur with certainty if tested 
and, likewise, the S-false (Y-events will surely nonoccur if tested. Unless S is 
deterministic, there will exist ~-events whose occurrence, if tested, is 
possible, but not certain. The uncertainty associated with such events must 
be regarded as intrinsic or ontological--and not a consequence of a lack of 
knowledge. In other words, by definition, the state provides the realistic 
description of the entity in so far as the operations in (Y are concerned. 
Naturally, the state of the entity can change, either spontaneously, under a 
dynamic law, or as a result of an observation. 

Definition 25. Let ((Y, Z)  be an entity. 

(i) By a property of the entity ((Y,Z), we mean a set P of ~-outcomes 
such that P is a set-theoretic union of states in Z. 

(ii) S = f ( ( y ,  2;') is defined to be the set of all properties of the entity 
((y, x). 

Since every state is an (y-support, it follows from Lemma 20 that every 
property is an (y-support. Evidently, the set-theoretic union of properties is 
again a property; consequently, f is a complete lattice with respect to set 
inclusion. Thus, we refer to t as the property lattice of the entity ((Y, X). If 
(Pi) is a family of elements of S ,  we denote the infimum (greatest lower 
bound) of the family by /~; P; and the supremum (least upper bound) of the 
family by V i P  i. Of course, we have V i P  i = 0iPi .  

A nonempty set F of states can be regarded as representing an assertion 
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that the entity is in some state S C F, although we may not know which one. 
The property P =  0 F then consists of all the outcomes that could be 
possible under these circumstances. Thus, whereas the states can only reflect 
ontological uncertainties, the properties may also describe epistemic uncer- 
tainties. A property P is said to be actual if the entity is in a state S such 
that S G P; otherwise P is said to be potential. Notice that, if P and Q are 
properties, then P ___ Q holds if and only if whenever P is actual, so is Q. As 
the state of the entity changes, some of the actual properties may become 
potential, and some of the potential properties may become actual. 

Of course, every state is a property and, if the entity is in state S, then 
S, as a property, is actual. However, one must be careful because a state S, 
regarded as a property, may be actual even though the entity is not in state 
S, but is in some state properly contained in S. If desired, this can be ruled 
out by invoking the following condition: 

Definition 26. The set of states Z of an entity (5 ,  27) is said to be 
irredundant if, for S, T E  Z, and To_ S implies T =  S. If 27 is irredundant, 
then I is an atomistic (fully atomic) lattice, with Z as its set of atoms. 

The following lemma is easy to verify: 

Lemma 27. Let ( ~ , Z )  be an entity. 

(i) I f P C f ,  t h e n P = V { S ~ Z I S G P  }. 

(ii) I f S C Z ,  t h e n S = A { P C f I S c _ P } .  

Suppose (Pi) is a family of properties and P = A i Pi. Since P _c p~ for 
every i, it follows that, if P is actual, so is every Pi. Conversely, suppose 
every Pi is actual. Then the entity is in a state S with S G Pi for every i. 
Because P is the greatest lower bound of all the properties P;, it follows that 
S _c p, so P is actual. In brief, P is actual if and only if every P~ is actual. In 
this sense, the infimum in f serves as a logical conjunction. In particular 
then, part (ii) of Lemma 27 is an assertion of the classical Aristotelian prin- 
ciple that the state of an entity corresponds to the collection of all its actual 
properties. 

Again suppose (Pi) is a family of properties, but now let Q = V i P~. 
Evidently, Q is the smallest property that is actual when at least one of hhe 
Pi is actual. However, it can happen that Q is actual, whereas no Pg is actual. 
Thus, in general, the supremum in S cannot be interpreted as a logical 
disjunction. As a consequence, following Aerts, ~1) we introduce the following 
definition: 

Definition 28. A family (Pi) of properties is said to be separated by a 
supersetection rule (ssr) if, whenever S ~ Z is such that S G Vi P~, it follows 
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that S c p: for some i. In other words, (Pi) is ssr if and only if V i P  i serves 
as a logical disjunction of the properties in the family (Pi). 

Definltion 29. Let F c_ 22. 

(i) The superposition closure F sp of F is F S~ = {S C S I S ~ U F}. 

(ii) S is said to be a superposition of states in F if S E FsL If S C F sp, but 
S ~ F, we call S a proper superposition of states in F. 

(iii) F is sp-elosed if F = F Sp. 

(iv) Let ~ ( Z ,  sp) denote the set of all sp-closed subsets of 22. 

It is easy to see that the set-theoretic intersection of sp-closed sets is again 
sp-closed, hence, c~(,Z, sp) is a complete lattice under set-theoretic inclusion. 

The customary quantum mechanical entity in the following example in 
part justifies the superposition terminology in Definition 29. 

Example 30. Let J-(d7") be a Hilbert space frame manual as in 
Example 12. For each normalized vector ~ in ~ ,  let S o = {0 C ~ t  I[¢!I = t 
and I@!0)  2 v~ 0}. Such an S o is an ~- (~) - suppor t .  Let 22 = {Sol ~ ~ 
and Ij~'II = 1}. Then 22 is an irredundant set of states for the quantum 
mechanical entity (~-(~,7 O, 22), and the complete atomistic property lattice f 
is naturally isomorphic to the lattice of closed linear subspaces of ~ under 
the correspondence 

P ~ closed linear span of {~, [ S o ~_ P} 

Therefore, if ~', 4, and ~ are normalized vectors in ~ ,  then S o is a super- 
position of states S o and S~ if and only if 9' is a superposition of 0 and ~ in 
the usual sense. 

It is interesting to constrast the quantum mechanical entity in 
Example 30 with the following more classical example: 

Example 31. Let B be a Boolean algebra (a complemented 
distributive lattice). Each element b E ~3 has a unique complement b'. If 
a ~< b',  say that a is orthogonal to b. Let 3~ denote the collection of all 
maximal finite sets of pairwise orthogonal nonzero elements of ~ .  Then 
is a coherent manual for which n(3~) is isomorphic to B. Let 22 be the set of 
all deterministic supports for .~. Again, 22 forms an irredundant set of states 
for the entity (.~, S). In this case, the complete atomistic property lattice S 
coincides with ~Y(~),  and in fact, is a dual Brouwerian lattice. ~ Of course, 
Z can be identified with the usual Stone space dual to B~I~); in fact, the 
closed sets of the Stone topology are precisely the sp-closed sets of 22. Thus, 

825/13f8 5 
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no finite set of states admits a proper superposition, although--even in this 
classical situation--there do exist proper superpositions of infinite sets of 
states. 

The simple connection between properties and sp-closed sets of states is 
effected by the so-called Cartan map. 

Definition 32. For P C d ,  define S e = {S ~ S I S c PI- We refer to 
P ~ S e as the Cartan map. 

Lemma 33. The Caftan map P~-~ 22 e establishes an isomorphism of 
the property lattice f onto the lattice ~ ( S ,  sp) of sp-closed sets of states. 

Corollary 34. 

(i) Let (Pi) be any family of properties and let (Fi) be the corresponding 
family of sp-closed sets of states, so that F~ = 2;ei. Then (Pi) is ssr if 
and only if UiFi is sp-closed. 

(ii) If every pair of properties is ssr, then 2 / i s  a dual Brouwerian lattice. 

(iii) If Z" is irredundant and every family of properties is ssr, then f is 
isomorphic to the complete atomistic Boolean algebra of all subsets of 
S. 

In general, the lattice Y of properties of an entity enjoys no special 
features---other than being complete and containing at least two elements. In 
fact, we have the following: 

Lemma 35. Given any complete lattice L with at least two elements, 
there exists an entity (67, 22) whose property lattice S is isomorphic to L. 

Proof Let 67={L}. For x E L ,  x :~0 ,  define S x = ! y C L i  
x ~ y} U { 1 t. Let 22 = {Sx t x @ L and x 4= 0}. Then the property lattice S of 
the entity (67, 22) is given by S = 22 U {~}. The desired isomorphism L--~ S 
is x ~ - ~  if x = O ,  x~-~S x if x4: O. | 

A natural connection between events and properties is established by 
the following concepts: 

Definition 36. Let (67, 22) be an entity with property lattice f ,  and let 
A ~ g(67). 

(i) SA= { S C S I A  is S-true}. 

(ii) [ A ] = U S A C f .  
(iii) A property of the form [A] is called a principal property. 

(iv) (67, S) is a principal entity if every property P C f is principal 
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The quantum mechanical entity in Example 30 is always principal, whereas 
the entity in Example 31 is principle if and only if the Boolean algebra B is 
finite. 

It is easy to see that ~r A =22~A1, since A _~E E ~ implies [A] NE~_A. 
One might expect the latter inclusion to be an equality; however, this is so 
only if the following condition holds: 

Definitlon 37. The entity ((Y, 22) is unitaI if, for every Q-outcome x, 
Ix] ~ 0. Notice that (sd, ~r) is unital if and only if A ~_ [A ] holds for every 
A 

Whereas the states are join dense in f (every property is a least upper 
bound of states), the following lemma shows that the principal properties are 
meet dense in t (every property is a greatest lower bound of principal 
properties). 

Lemma 38. I f P C S ,  t h e n P = A { [ E A P l i E C ~ } .  

Proof. We begin by showing that P is a lower bound for the set of all 
properties of the form [E n P], E C ~ .  Thus, if S C 22 with S _ P, then 
SAE~_EyhP, and so S~_ [EChP]. Since S was arbitrary, PC_ l E A P ] .  
Conversely, to show that P is the greatest lower bound for all properties of 
the form [E n P], E C Cg, suppose that Q is a lower bound in S for all such 
properties, so that Q ~_ [E n P] holds for all E ~ ~ .  We must prove that 
Q _ P. To this end, let S C 2; with S c Q. Then S c [ E  ~ P] holds for all 
E C ~Tz'. It follows that E ~ S c_ E Ch P; hence that 

S =  u {EASIEC(Y}c_ u t E N P [ E C ~ } = P  

Since S was arbitrary, Q ~ P, and the proof is complete. 

Corollary 39. I fA ~ N, then [A] = N {[[A] NE]tE C Cg}. 

Proof. Since the greatest lower bound of a family of properties is 
always contained in its set-theoretic intersection, [A]cN{[[A]nE][ 
E ~ 6~} follows from Lemma 38. The opposite inclusion follows from the 
fact that, if we select E ~ 07 with A _ E ,  then [A] N E~A,  so that 
[ [ A l n E ]  ~ [A I. 1 

Finally, suppose ~ is a manual. Since A o p B implies that A is S-true if 
and only if B is S-true, ['1 can be lifted to ~z(~',) by defining [p(A)] = [A]. 
As the following obvious lemma asserts, this canonical map [. ]: 7r(6g) ~ S is 
order preserving. 

Lemma 40. If ~ is a manual andp(A) ~< p(B) in ~r(6g), then [p(A)] 
[p(B)]. 
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5. ORTHOCOMPLEMENTATION 

Many of the "property lattices" that have been proposed are not 
orthocomplemented--for example, the complete lattice of faces of a 
statistical figure (convex set) introduced by Mielnik. ~14-~6' ~) In fact, we have 
seen that 54 need not be orthocomplemented for the essentially classical 
entity in Example 31. Nevertheless, for an orthodox quantum mechanical 
entity (Example30), d is not only orthocomplemented, it is even 
orthomodular. This suggests that we seek conditions on a more general entity 
(G t, S)  that will provide d with a natural orthocomplementation. 

It is tempting to begin by considering an entity (5,  27) for which (Y/, is a 
manual; in this case, 7~(G') is orthocomplemented and the canonical map[. ] 
might be used to transfer this orthocomplementation to 54. In other words, 
we are looking for an orthocomplementation ': 54-~ 54 such that [p(A)']= 
[p(A)]'. Thus, ifA ___EE G t, we must require that [A] '=  [E-A]. Since an 
orthocomplementation must satisfy the De Morgan laws, there is now only 
one possible extension of ' from the meet dense principal properties to all of 
54. 

Definition 41. If P @ d ,  let P ' = U I [ E - P ] ] E E S } .  Notice that 
this definition does not require 6~ to be a manual; hence, for the remainder of 
this section, we assume only that (F/, 2:) is an entity. 

The following easily verified lemmas are encouraging: 

Lemma 42, If P_~ Q in f ,  then Q' c_ p'. 

Proof If P c Q, then E -- Q _..q E - P holds for every E C 5 ;  hence, 
[E - Q] __, [E - P]. Therefore, Q' c p,. | 

Lemma 43. I f A ~ E C 6 ~ , t h e n  [ E - A ]  c_ [A]'. 

Proof Let S E N  with S c_ [E-A]. Then S fhA =¢i and, since 
[A]~E___A, we have S A [ A ] A E = ¢ .  Thus, S c [ E - - [ A ] ] ~ [ A ] ' .  
Because S was arbitrary, it follows that [E -- A ] c [A ]'. il 

In general, there will be events A ~_ E C ~ for which [A ]' g~ [E -- A ]. I11 
fact, this is even possible when ': t ~ 54 is an orthocomplementation. Thus, 
if we wish ' to behave properly on the principal supports, we must impose 
the following condition: 

Definition 44. An entity ((7/, S)  is said to be strongly unitat (SU) if, 
for every A __, E C 5 ,  [A ]' c [E -- A ]. As we shall see, SU does indeed imply 
unital. 
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Theorem 45. 
are equivalent: 

(i) 

(ii) 

(iii) 

(i) 

(ii) 

(iii) 

Let flY, Z) be an entity. Then, the following conditions 

((g, Z) is SU. 

I f A _ E ~ , B ~ F E ~ , a n d  [A ] c [B ], then [ F - B ] c [ E - - A j .  

if S ~ Z, F ~ ( Y ,  A C g ,  and S N  [.4] N F = ~ ,  then S N A  =0. 

Proof 

implies (ii): Assume (i) and the hypothesis of (ii). Since [A] _c [B], we 
have [ B ] ' c [ A ] '  by Lemma42. By (i) and Lemma43, [ F - B ] =  
l < ' = _  [A]' = [ E - a ] .  

implies (iii): Assume (ii) and the hypothesis of (iii). By Lemma 38, 
[A]=__ [ [ A ] n F ] .  Let A c E ~ 6 ~ .  Then, by (ii), [ r - - [ A ] ] c  [E-AI. 
Since S n [A ] n F = 0, we have S ~_ [F - [A ]], and so S c [E - A ], 
from which it follows that S n A = ~. 

implies (i): Assume (iii) and let A~EEU{ .  Suppose that x ~  [A]'. 
Then x C IF -- [A ] ] for some F C ~t  Thus, for some S ~ Z, x C S and 
S A F c _ F - [ A ] ,  so S A [ A ] A F = 0 .  By (iii), it follows that 
S N A  = 0; hence, x C S ~_ [E --A]. 

Corollary 46. If ((Y, Z) is SU, then it is unital. 

Proof Assume ((2{, Z) is SU and let x C X. Because U z = X, there 
exists S E Z with x E S. By part (iii) of Theorem 45, S N Ix] 4: ~b; hence, 
Ix] ~ 0- I 

Moreover, we have the following results: 

Lemma 47. If ((Y, Z) is unital and P C f ,  then P U P '  = X. 

Proof Let x C X and suppose x ~ P. Select E C Cg with x E E. Thus, 
x CE- -P ,  which implies x E [E--P] because (~g,X) is unital. Conse- 
quently, x C P' .  | 

Lemma 48. If ((2, Z) is SU, then, for P E f ,  P" c p. 

Proof Let x~P" .  Then, there exists F C 6 ~  such that x C  [ F - P ' ] ;  
Hence, there exists S C Z  with x E  S and S N F ~ P ' = ( ~ .  Since P ' =  
U { [ E - P ]  t E C  ~}, it follows that SAFCh [E--P] =~ for every E ~  ~.  
Hence, by part (iii) of Theorem 45, S ~ ( E -  P ) =  O holds for all E E ~ .  
Because S ~ X = U 6~, it follows that S c p;  hence, x ~ P. | 

In the presence of SU, it is now clear that ': t ~ S  is an ortho- 
complementation if and only if, for all P C d ,  P c p,,. Unfortunately, this is 
seldom the case, and we are therefore led to the following condition: 
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Definition 49. An entity (C/, L') is said to be symmetric if for every 
P, Q c S ,  P ~ Q' implies Q ~ P' .  

Lemma 50. 
are equivalent: 

(i) 
(ii) 

(iii) 

Let (6g, 22) be an entity. Then, the following conditions 

(C/, X) is symmetric. 

For every S C Z, S ~ S". 

For every P C f ,  P __. P". 

In summary, we have the following theorem: 

Theorem 51. An entity (C/,X) is SU and symmetric if and only if ': 
! ~ t is an orthocomplementation for which the condition [A ] ' =  fE--A t 
holds whenever A ~_ E C ~'. 

The conditions SU, and symmetry in particular, are quite strong and 
indeed may prove to be far too restrictive for many physical situations. In 
fact we have: 

Theorem 52. Let (~', S )  be an SU entity. 

(i) If every state is principal, then (C/, S) is symmetric. 

(ii) If (C/, S) is symmetric and X is irredundant, then every state in S is of 
the form [x] for some x ~ X. 

Proof. 
(i) If S = [A ] for A ~ E ~ C/, then S"  = [E - A ]' = [A ] = S. Therefore, if 

every state is principal, (C(, X) is symmetric by part (ii) of Lemma 50. 

(ii) Suppose (5,  S) is symmetric. Then, by Theorem 51, ': f ~ L- ~ is an 
orthocomplementation. Let S E 22. By Lemma 38, S '  = A { [E ~ S '  1 I 
Ec~ E C~}, and it follows that 

S - S "  = v {[EAS']'IECC[}= v {[E-S']tEC~} 

Because S¢: ¢~, there exists E C C /  such that ¢i:# [E-S'] ~S. Select 
x ~ E - S ' .  By Corollary 46, (C/,X) is unital; hence, ~4: [x]~_ 
[E -- S'] ~ S. Now, if S is irredundant, we have [x] = S. | 

According to the Wigner-von Neumann projection postulate [Ref. 2, 
p. 77 ], if a measurement of' the first kind is executed twice in succession, the 
same outcome will be secured each time. If an outcome x 6 X is secured in 
the first execution of such a measurement, then the entity must be left in a 
state S for which S ~ Ix]. Now, if [x] is a state, and in addition, if S is 
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irredundant, then S = [x]. In this sense, [x] is an "observable" state. Thus, 
the preceding theorem asserts that all states are observable for an SU 
symmetric entity with a irredundant set of states (provided, of course, that 
every outcome x for which [x] is a state is contained in some operation E of 
the first kind). 

6. ORTHOGONALITY 

It is always possible to introduce reasonable orthogonality relations on 
f ,  even when orthocomplementation is not possible. Some of the candidates 
are as follows: 

Definition 53. 

0) 

(ii) 

(iii) 

Let P, Q C Y .  

If there exists an operation E C ~ for which P n Q n E = 0, we say 
that P and Q are uniformly orthogonal and write P u_oo Q. 

If, for every S ~ L ' p  and every T~22Q, Su__qo T, we say that P is 
orthogonal to Q and write P L Q. 

If P ___ Q', we say that P is weakly orthogonat to Q and write P wo Q. 

The fact that the same symbol L is used for orthogonality of events on the 
one hand and orthogonality of properties on the other causes no 
confusion--one can always tell from the context what is intended. Notice 
that 2_ agrees with uniform orthogonality on Z. Whereas uniform 
orthogonality and 2_ are automatically symmetric, weak orthogonality is 
symmetric if and only if the entity is symmetric. Although a nonempty 
property cannot be orthogonal or uniformly orthogonal to itself, it can be 
weakly orthogonal to itself. Uniformly orthogonal properties are 
automatically both orthogonal and weakly orthogonal. 

The following two lemmas are useful and easily verified: 

Lemma 54. Let P C f ,  A, B C ~"(6g), and S E Z. Then: 

(i) P ' = U  I r e Z l T u o P } .  

(ii) A L B  implies that [A] uo [B]. 

(iii) A ~ S = 0 implies that [A ] uo S. 

Lemma 55. For an entity (~ ,Z ) ,  
equivalent: 

(i) (g(, X) i s  SU. 
(ii) 

(iii) 

the following conditions are 

If A ~ g~(6g) and S C Z with [A ] u qo S, then A n S = 0- 

If x ~ X and S E 2," with [x] u o S, then x ~ S. 
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If P uo Q in y ,  then there exists an operation E E ~' for which the 
event P n E is orthogonal to the event Q n E. Because P N E is P-true and 
Q n E is Q-true, E "separates" the properties P and Q. Indeed, if we knew 
that either P or Q is actual, then we could tell which by executing E and 
observing whether P n E or Q n E occurs. However, when P L Q, there may 
not exist a single operation E that uniformly separates P and Q; although, 
for each S C 22e and each T C S o, there will exist an operation E (depending 
on S and T) that separates S and 7". 

For an orthogonatity space such as (22, L), a complete ortho- 
complemented lattice is always naturally available. For F~22,  let F ± =  
{ T E S t  T L S  for all S@F} and define F±L=(FZ) ±. The set ~(22, L ) =  
{F~_22tF=F ±±} of all L-closed subsets of 22 is a complete lattice with 
respect to the order relation of set inclusion and it is orthocomplemented by 
the map F ~ F I. For the quantum mechanical entity of Example 30, S ,  L S~ 
in 22 if and only if ~ L ~, in ~ (that is, (4 t ~') = 0). Moreover, ~(22, L) is 
isomorphic to the complete orthomodular lattice of closed linear subspaces 
of ~ and therefore it is isomorphic to the property lattice _IS. This is a 
consequence of Lemma 33 and the fact that, in this case, ~(22, sp) = c~(22, 2). 

In general, ~(X, sp)aa~(22,2),  and it seems reasonable to seek 
conditions under which the equality holds, In Ref. 1, Acrts considers the 
following physically plausible axioms and finds that they do force the desired 
equality. 

Definition 56. Let (6~, 22) be an entity. 

(i) (6g, 2Z) satisfies A 1 if S E 2;, A C g(6~), and S N A 4: ~ implies that 
there exists T E 22~ such that T is not orthogonal to S. 

(ii) (6g, 22) satisfies A2 if, for every S E 22, there exists P C - ~  such that 
tT~S ,  I T L S}-- 22p. 

In condition A2, the P ~ L# is in fact equal to S'. Moreover, we have a 
number of conditions equivalent to A 1 : 

Lemma 57. 
are equivalent: 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

Let (5,  22) be an entity. Then, the following conditions 

(5,  22) satisfies A I. 

For A E ge(~) and S ~ 22, [A] _1_ S implies S NA = 0- 

For x C X = U 6g and S ~ S, [x] L S implies x ~ S. 

For x C X and S C 22, x E S implies that there exists T C Sx 
T is not orthogonal to S. 

IfA _ E  E 6f, (22A)z ~ XE_A. 

for which 
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Proof. 
(i) implies (ii): Evidently, condition (ii) is just the contrapositive of con- 

dition (i). 

(ii) implies (iii): Put A = {x} in (ii). 

(iii) implies (iv): Evidently, condition (iv) is just the contrapositive of 
condition (iii). 

(iv) implies (i): Assume (iv) and suppose S ~ Z, A E g'(02), S N A 4: 4. 
Now let x C S N A .  By (iv), there exists T C Z  x such that T is not 
orthogonal to S. But x E A, so T ~  L ' , _  Z a , and (i) holds. 

(ii) implies (v): Suppose S C  (Sa) 1-. Then S L  [A], so S ~ A  = #  by (ii), 
and it follows that S ~ 27v_ a . 

(v) implies (ii); Assume (v). Then [A] & S implies S ~ (ZA)S_C ZE_ A, from 
which it follows that S n A = ~. II 

Notice that ZE_ a ___ (SA) s whenever A g E ~ (Y; thus (v) asserts that L'u_ A = 
(Z'A) *. 

L e m m a  58. Let (6g, Z) be an entity. 

(i) (02, Z) satisfies A2 if and only if ~ (Z ,  L) ~ ~(22, sp). 

(ii) If (G t, Z) satisfies A 1, then c~(Z, sp) c_ ~ (Z ,  2). 

Proof. 
(i) Suppose A2 is satisfied. If F E  ~(2;, A_), then for some A _c Z. we have 

F = A ±. Thus, 

V=Al=N {{S}LI SeA}=N {Zs, I S ~ A }  

by A2. But, by Lemma 33, 

n {Xs, I S@A } = x e c w ( x ,  sp) 

where P = A {S' I S E A }, and it follows that F C  W(X, sp). Conversely, 
suppose W(X, L) _c ~(X,  sp). Then, if S @ Z, it follows that {S} ± ~ ~ (Z ,  L), 
so {S }± E ga(Z', sp). Thus, by Lemma 33, {S} ± = X v for some P C S .  

(ii) Suppose A 1 is satisfied and F C g;(Z, sp). Then Lemma 33 implies that 
F = Zp for some P E .C a. Since P = A {{E N P] [ E ~ 02} by Lemma 38, 
it follows from Lemma 33 and A1 that 

s e = n { z ' ~ c ~ [ E C ~ } = n { ( s ~ .  ~ , ) ± [ E ~ d g I C W ( Z , L )  II 
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Theorem 59. If an entity (CZ', 22) satisfies A I and A 2, then the Cartan 
map f ~ ( Z , ± )  is a lattice isomorphism for which 22p,= (22p)1 for all 
P C f .  

Proof By Lemma 58, c~(27, sp) = c~(22, L). By Lemma 33, the Cartan 
map is a lattice isomorphism. By Definition 4 1, P' = U t [E - P] [ E C 67 }. 
By A 1 and Lemma 33, this implies that 

27e, = V {22E-~ I E 6 5}  = V {(Z'En.,')z ] E ~ (7/} 

---- ( {27E(hP. ) i  \ N  1E e 67t = (z , )  ~ I 

In the presence of A 1 and A2, the orthocomptementation imposed on ~" 
by the Cartan map is, according to Theorem 59, precisely the map ': S ~ S 
provided by Definition 41. As a consequence, the next two lemmas should 
come as no surprise. 

Lemma 60. Let (67, 22) be an entity. 

(i) If (6~,22) satisfies A1, it is SU. 

(ii) If (~', 22) satisfies A 1 and A2, it is symmetric. 

Proof  

(i) Compare Lemmas55(ii) and 57(ii) and note that 
orthogonality implies orthogonatity. 

(ii) Symmetry follows immediately from the fact that, for 
S~, = (22~) L. 

uniform 

P C ~;, 
! 

Lemma 61. Let (5 ,  X) be an entity. 

(i) If (5 ,  22) is SU and symmetric, it satisfies A 1. 

(ii) If (5 ,  27) is SU and symmetric and 22 is irredundant, is satisfies A2. 

Proof 

(i) Suppose (67, X) is SU and symmetric, let S E X ,  x C E C  ~ ,  and 
assume that S L Ix]. By Lemma 55(iii) and Lemma 57(iii), it suffices 
to show that S u_qo [x]. Because S Z [x], it follows that S L T for every 
T E  Z x. But this implies by Lemma 54(0 that To_ S'  for every T E  X~. 
Therefore, [x] c_ S'.  As a consequence of symmetry and SU, it follows 
that S _ [x]' = [E - x], so x ~ S and, by Lemma 54(iii), S uo [x]. 

(ii) Assume that ((Y, 22) is SU and symmetric and that 27 is irredundant. By 
part (i), ( ~ , Z )  satisfies A 1. Let S E 22. By Theorem 52(ii), there 
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exists x C E C 6g such that S = [x]. Hence, by Lemma 57(v), {S}±= (Zx)- = 

,we_.. I 

Although it is rather attractive on physical grounds, the ortho- 
complementation ': f - , S  allowed by A1 and A2 (or by SU and 
symmetry) is not the only possibility. An entity (~,  Z)  can possess a more 
or less naturally orthocomplemented property lattice f and still satisfy none 
of the above conditions. Just let 67 be the regular collar manual of Exam- 
ple 17 and let Z =  { X - x ± t x E X } .  By Lemma 21, Z is a set of 6g-supports, 
and Z can be shown to be irredundant. Moreover, (07, Z)  is an entity that 
satisfies neither A 1 nor A2 and which is therefore neither SU nor symmetric. 
Nevertheless, the complete orthocomplemented lattice c~(X, L)  = 
{M c X I M = M l± } is isomorphic to f under the map M ~ X -  M ±. 

7. QUESTIONS A N D  MORPHISMS 

Property lattices (propositional systems) are developed by one of us in 
Ref. 17, in terms of yes-no questions. In our present formalism, this can be 
achieved simply by letting 6g be a semi-classical manual (Example 10) in 
which every operation consists of exactly two outcomes. Thus, if x is an o2- 
cmtcome, there exists exactly one operation E x C o2 such that x E E x. Here 
we regard the event {x} as corresponding to the following question: 

" I f  the apparatus for Ex is assembled and the operation E x is executed, 
is the outcome x C E~ secured?" 

The inverse of Ix} is then given by txl ~ = E x - x .  More generally, suppose a 
is a nonempty set of ~-outcomes such that a N E contains at most one 
outcome for every E C 6g. Then a corresponds in an obvious way to the 
product of questions 7tx~{x}, and a = U { E x - x [ x  E a} corresponds to 

(~x~o{x}) ~. 
Now suppose that the questions introduced above concern a particular 

physical system or entity. Then the states, as introduced in Ref. 17, 
correspond in an obvious way to certain supports S ~ .5~(~) and the set Z 
of all such supports is the state space of the entity (o~, Z). 

In this section, we are going to show that there is a close connection 
between general entities (~ ' ,  Z)  on the one hand, and entities (o2, Z)  for 
which OT is a semiclassieat manual of dichotomies, on the other. The 
following notion of a morphism is the tool used to effect this connection. 

Definition 62. Let ~ and ._~ be quasimanuals with outcome sets X 



834 Foulis, Piron~ and Randal! 

and Y, respectively. A morphism Cg ~ 2~ is a map ~: X ~  ge(c~) satisfying 
the following conditions: 

(i) For all A C ~(Ul), O(A) =a~f~ {0(x) I x C A  } C g'(~.~). 
(ii) A op B in ~e(~) implies d(A)o]~ O(B) in g( ,~) .  

In case ~ and ~ are manuals, the conditions in Definition 62 are precisely 
what is required to guarantee that 

O(P(A )) =aer P(f)(A )) 

defines an order preserving map ¢i: ~((2)--~ ~(,~) on the operational logics. 

Definition 63. 
If N _ Y, define 

Let ~ ~ be a morphism, X =  0 ~ ,  and Y= 0 ~ .  

(~+(N) = {x C X I (~(x)~N 4: O} 

Theorem 64. Let 6g- ,~ ,9  be a morphism. Then: 

(i) If Q c Y ( ~ ) ,  then ¢ + (Q) @ y(0~'). 

(ii) The map ~ + : Y ( ~ )  -~ Y(~7[) preserves arbitrary set-theoretic unions. 

Proof. 

(i) Let Q E Y ( ~ )  and E, F ~  5 .  We must show that O + ( Q ) ~ E ~ F  
implies that ~+(Q)C3F~E; and this is equivalent to showing that 
(E -- F) (3 ~ + (Q) = O implies that (F - E) ~ ~ + (Q) = ~. This, in turn, 
is equivalent to showing that ~ ( E - F ) ~ Q = ~  implies that 
~(F -- E) ~ Q = ~. In other words, we have to show that, if ¢(E -- F) is 
Q-false, then ~ (F- -E)  is Q-false. But the events E -  F and F -  E are 
operationally perspective with axis E ~ F; hence, ~(E - F) op 0(F -- E). 
By the remarks following Definition t9, ~(E - F) is Q-false if and only 
if ~ ( F -  E) is Q-false. 

(ii) x E 0 + (Ui Qi) if and only if O(x) f3 0 i  Qi 4:0 
if and only if Ui (0(x) ~ Qi) :/: 0 
if and only i fx COi  (~4(Qi). | 

Definition 65. A morphism ~ - ~  ~ is said to be: 

(i) positive if ~(x) 4: qt for all x C X = (,.) (Y. 

(ii) operation preserving if E ~ 6~ implies 4(E) C ~ .  

(iii) a conditioning ifA 2. B in ge(~) implies that ~(A) L ~(B) in f f (~) .  

(iv) an interpretation if it is an operation preserving conditioning. 
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(v) outcome-faithful if, for every y C Y = U 3 ,  there exists x E X = () 
such that O(x)= {y}. 

(vi) o_g_c-faithfut if C o_cc D in g ' ( 3 )  implies that there exists A o c B in g((X) 
for which ~(A)=  C and O(B)=D.  

It is not difficult to prove the following technically useful lemma: 

Lemma 66. Let 6~-~  3 be an o c-faithful morphism. Then: 

(i) ~ is outcome-faithful. 

(ii) If 3 is irredundant, then 0 is operation preserving. 

It is worth noting that the interpretations are precisely the morphisms 
that "pull back" our global stochastic models or weights. Specifically, if co is 
a 3-weight  and C/{~ ° 3 is an interpretation, then (~+co)(x)=de~co(Ci(x)) 
determines an 6g-weight ~ +co. Moreover, 

supp(O +co) = ~ +(supp co) 

Observe that O+(supp co) is an 6g-support even if the morphism 6g--, ~ ~ is 
not an interpretation. 

Lemma 67. Let ( 3 ,  27) be an entity and let 07 - ~  3 be a morphism. 
Define ~ +27 = {~ + (T) IT C 27}. Then (6~, ~ +27) is an entity if and only if ~ is 
15ositive. 

Proof. 

U o + s = ( , . )  { O + ( T ) I T c S } = O  + ( ( , . ) z ) = ~  + ( ( , . ) 3 ) = ~ + ( Y )  

= {x xlO(x)n Y O} = {xexl (x) O}. 

There, U 6 +27 = X if and only if 0 is positive. | 

For the remainder of this section, we assume that ( 3 ,  27) is an entity 
and ~ 3 is a positive morphism. The following results exhibit some of 
the relationships between the two entities (~, 0 +2;) and ( 3 ,  27). 

Lemma 68. If ~ - * *  3 is a positive morphism, then ~ +: f ( 3 ,  27) 
f (6~ ,  ¢i+Z) is a surjective union preserving map. 

Proof. Theorem 64. II 

Lemma 69. If ~ ~ 3 is a positive outcome-faithful morphism, then 
+ : S ( 3 '  2") ~ f ( ~ ,  0 +2;) is a lattice isomorphism. 

825/13/8-6 
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Proof. Given Lemma 68, all we need to prove is that 0 + ( P ) ~  ~ +(Q) 
implies that P _c Q for P, Q c L-P(~, 27). Thus, assume ¢ + (P) - 0 + (Q). 
Hence, qi(x) n P ¢ 0  implies that qt(x) nQ4:¢~. Let y C P .  Since 0 is 
outcome-faithful, there exists x E X such that O(x)= {Y/, and consequently, 
~(x) n P 4= 0. It follows that 0(x) N Q 4= 0; hence, y C Q. | 

Lemma 70. Let ~ t _ ~ , ~  be a positive morphism, T C Z ,  and 
A c_ E C 5 .  Then: 

(i) If, in addition, ¢ is operation preserving, then ¢ +(T) c_ [A] implies that 
T c  [0(A)]. 

(ii) If, in addition, ~ is an interpretation, then T~_ [0(A)] implies that 
0+(T)_ [AI. 

Proof First notice that, if ¢i is operation preserving, then T c [0(A)[ 
holds if and only if T A  O(E) ~_ ¢(A). 

(i) Suppose that O is operation preserving and 0 + ( T ) ~  [AJ. Then 
O~(T)AE~_A. Let y C  T A 0 ( E  ). By the remark above, it will be 
enough to prove that y E O(A). Since y C 0(E), there exists x C E such 
that y C 0(x). Therefore, y ~ ~(x) n T, so ~(x) n Tv  a 0, and it follows 
that x E O + (T) n E. Consequently, x C A, so y E 0(x) _~ O(A). 

(ii) Suppose that ~i is an interpretation and T_c [O(A)]. Again by our initial 
remark, TAO(E)~O(A ). To prove that 4+(T)~_ [A], it suffices to 
show that ~ + (T) N E _ A. To this end, select x E ~i + (T) N E. We must 
prove that xEA.  Because xCO+(T), there exists yETn¢(x)~_ 
T A  0(E) ~_ 0(A). Since y E 0(x) n 0(A), we cannot have O(x) 2_ 0(A); 
hence, because O is a conditioning, we cannot have x 2_ A. But x C E 
and A c E. It follows that x E A. | 

AC 
Corollary 71. If (Y-~  ~ is a positive interpretation, then, for every 
~(~), O+[O(A)] = [A]. 

Proof By Lemma 70, 

=0 + iO A ll) 

= U {O+(h I T 6 x ,  O+(T) c- [.4]} = [A} 

Lemma 72. Let ~ - ~  c~ be a positive morphism and suppose that P. 
Q E Y(~R' 27). Then: 

(i) If, in addition, ¢ is operation preserving, then ~+(P)uo  O-'(Q) implies 
Pu£ Q. 
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(ii) If, in addition, 0 is oc-faithful, then P uo Q implies 0 + (P) u_0q 4 + (Q). 

Proof 

(i) Suppose that 0 +(P) N 0  +(Q) r 3 E = 0 ,  where E C ( 2 .  It will be 
sufficient to prove that P n Q n 0 ( E ) =  4- Suppose, on the contrary, 
that y ~ P n Q and y E 0(x) for some x C E. Then 0(x) n P 4= ¢ and 
¢(x) n Q 4= ~i, so x E 4 + (P) N 0 + (Q) n E = 0, a contradiction. 

(ii) Suppose PAQNF= 4, where F ~ .  Since PNF oc F--P and 0 is 
o_c_-faithful, there exist A, B C e*((2) with A o£ B, 4(A)=PNF, and 
0(B) = F - P. Let E = A U B, noting that E E (2, so that it will suffice 
to prove that ¢ + (P) n 0 + (Q) n E = 4- Suppose, on the contrary, that 
x C E = A U B ,  0 ( x ) n P 4 : 0 ,  and 0 ( x ) n Q 4 : q .  If x~A ,  then 
0 ¢: 0(x) n Q _c 0(A) n Q = P N  F A  Q = 0, a contradiction. Therefore, 
x~B ,  and we have ¢¢¢(x)NPc_O(B)NP=(F--P)C3P= 4, 
another contradiction. I 

Corollary 73. If (2-~0 ~ '  is a positive o c-faithful morphism and P, 
O E S ( ~ ,  27), then P L Q if and only if 4 + (e) L 0 + (O). 

Theorem 74. 
morphism. Then: 

(U 
(ii) 

(iii) 

(i) 

Suppose that ( 2~*  c~ is a positive oc-faithful 

4+(Q ') = (0+(Q)) ' for all Q E S ( ~ ,  27). 

((2, 0+27) is symmetric if and only if (~,27) is symmetric. 

If 4 is also an interpretation, then (~, 4+Z) is SU if and only if (~.~, Z) 
is SU. 

Proof 

By Lemma54(i),  4+(Q')=O+(U{TEXtTuoQ}). Hence, by 
Lemma 72, 

¢+(Q ' ) =  U {4+(T)[ T E Z ,  0+(T) uo 4+(Q)} = (0+(Q)) ' 

(ii) 

(iii) 

This follows immediately from part (i) and the fact that O+: 
S(5~,  27) -~ 2/((2, 0 +X) is a lattice isomorphism (Lemma 69). 

Suppose that ((2, 0+27) is SU, T ~  2;, y E Y =  U -~, and Tuo  [y]. We 
must prove that y~_T. By Lemma72(ii), 0+(T)ugq0+([y]) .  By 
Lemma66, { y } = 0 ( x )  for some x ~ X = U ( 2 ;  hence, 0+([yl)= 
4+([0(x) ] )=  [x] by Corollary71. Therefore, 4+(T)uo  Ix], so 
x~20+(T) because ((2,0+27) is SU. It follows that 4 ( x ) n T = 4 ;  
hence, y ~ T. Conversely, suppose that (~', 22) is SU, T C Z, x C X 
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and O+(T)uo[x]. We must prove that xg£O*(T); that is, 
0 ( x ) N T = ~ .  By Corollary71, [x]=0+([,0(x)]), so 0~(T) ~ao 
O+([O(x)]). By Lemma 72, it follows that Tu_o_o [O(x)]. Since (._~, 22)is 
SU, we conclude that ~b(x) ~ T =  ~, as desired. | 

If (g __+o .5~ is a positive o c-faithful interpretation and 27 is irredundant, 
it follows from Theorem 74 and Lemma61 that (07,~t+X) satisfies A1 and 
A2 if and only if ( 9 ,  2;) does. In fact, with some additional effort, we could 
dispense with the irredundancy of 22 and prove: 

Theorem 75. If (Y ~ 3 is a positive o c-faithful interpretation, theri: 

(i) (6g, ~+27) satisfies A1 if and only if (3,22) satisfies A1. 

(ii) (6g, {b+~r) satisfies A2 if and only if (~.~, Z) satisfies A2. 

With the preceding results, it is now easy to establish the promised 
close connection between general entities (3 ,2 ; )  on the one hand, and 
entities (6g, X +) for which (g is a semiclassical manual of dichotomies, on 
the other. Thus, suppose ( 3 ,  2J) is a given entity. As a matter of technical 
convenience, we assume that every operation F E .~ contains at least two 
outcomes. (A tedious argument, which we omit here, shows that one can 
always reduce to such a case without loss of generality.) 

Let 

= {/(A, E), (E - A ,  E)f IA _=E ~ 9 ,  0 ~A ~E~ 

Naturally, to execute the 01-operation {(14, E), ( E -  A, E)}, one executes the 
3-operation E and records the outcome (,4, E) if the 3-event A occurs, and 
the outcome (E--A,E) otherwise. It is easy to check that the map 

O((A,e)) =A 

defines an o c-faithful positive interpretation 6g ~ ~ .  Thus, by Lemma 67, 
since (.5~, 27) is an entity, so is (6g, ~ +27). By Lemma 69, the property lattices 
f (6g ,  #+Z) and d(3~,22) are isomorphic; furthermore, by Theorem 74(i), 
Lemma72, and Corollary73, the isomorphism preserves ', uniform 
orthogonality, and L. Moreover, according to Theorems 74 and 75, these 
entities are indistinguishable with respect to SU, symmetry, A1, and A2. 
However, one must be careful--although it is clear that (G',~+S) and 
( 3 ,  2;) are essentially indistinguishable with respect to states and proper- 
ties--as we shall show in future papers, they combine differently. A 
significant hint of this state of affairs appears in the paper of Aerts (~ where 
operations containing more than two outcomes must be introduced in order 
to compose two entities. 
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8. CONCLUDING REMARKS 

The comprehensive formalism developed above makes a sharp 
distinction between the event calculus ~e(97)--or, in the case of a manual, the 
operational logic ~(~)---and the property lattice S .  To the best of our 
knowledge, no other formalism is able to discriminate between operational 
propositions and properties. Indeed, it is our contention that such 
distinctions are critical in the study of the foundations of quantum physics. 

As we have seen, f is a complete lattice, whereas, in general, 7r(~) 
may contain (even orthogonal) pairs of elements with no least upper bound. 
However, ~z(~) is always orthocomplemented--and even in a sense 
orthomodular--but,  in general, f is not. 

Furthermore, the C~'-weights introduced in Definition 8 naturally provide 
the event calculus g ( ~ ) - - a n d ,  in the case of a manual, the operational logic 
7r((,{()--of an entity (~,22) with a convex set of probability models. In 
general, there is no such collection that naturally arises for the property 
lattice S((2,22). Nevertheless, it is reasonable to inquire about the 
probability of certain events if an entity is known to be in a state S C £.  
What we do know is that every event in 

will occur with certainty if tested and every event in 

s o = IA c I S n A  = 0} 
def 

will not occur if tested. Thus, S defines a function cos: S ° U  $1-~ [0, 1] for 
which co s ~ 0 on S O and cos = 1 on SL It is natural to ask when cos admits 
an extension to an R-weight defined on all of ~'(~). Of course, when S is 
deterministic, then S ° U S ~ - - - ~ " ( ~ )  and cos--an R-weight--is its own 
(unique) extension. In general, there may be many extensions of cos--Or 
none at all. 

In Hilbert space, a "miracle" occurs! In Example 30, to begin with, the 
canonical map [-]: 7 r ( J - ( ~ ) ) ~  L~ is a lattice isomorphism. It follows that 

~ ( ~ - ( ~ ) )  --~ f ~ c~(Z, L) ~ c~(Z, sp) ~ ~(X,  5_) 

and all of these are isomorphic to the lattice of closed linear subspaces o f ~ .  
Moreover, no S in 22 is deterministic; nevertheless, the partial map cos: 
S ° U  S 1-~ [0, 1] always admits an extension to an J - (~ ) -we igh t ,  which by 
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G l e a s o n ' s  theorem I1°1 is unique.  W h o  is to say tha t  phys ica l  enti t ies should 

en joy  all o f  these r e m a r k a b l e  proper t ies?  
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