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On the summability of Fourier series with the method
of lacunary arithmetic means

E. S. BELINSKII

Let f be a 2x-periodic summable function with Fourier series

(x) 2’ ¢ elkx

and let S,(f; x) denote the partial sum of order ». It is known (see e.g. [12]) that the
Fejér means

N+1 ZSk(fa x)

converge at every Lebesgue point, and, if f is continuous, they converge even uni-
formly.

We are concerned with the following problem: for which monotone sequences
{n,} do the means

1 XN
® 7 2 Sl

converge to f? Starting with the paper [11] of ZALCWASSER, several mathematicians
dealt with this question [2—7, 10]. A complete answer has been obtained only for the
case of strong summability. Namely, for the uniform convergence

(2) Zl nk(f; x)_f(x)l -0

for every continuous f it is necessary (SALEM [7]) and, if {n,} is convex, also sufficient
(TriGuB—ZAGoORODNK [10]) that

sup k=Y%In n; <eo.

The same result was independently obtained by CARLESON (announced in [4}).

As for the uniform convergence of (1) on the class of continuous functions, it
is clear that the above condition remains sufficient. About necessity the following is
known. It is easy to check that, if 7.,/m— <, then there is a continuous function
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for which we do not have uniform convergence. NEwMAN [6] showed that uniform
convergence fails also for the sequence n,=2% Thus, for the model sequence of the
given problem 7,=[2*"] we have: if 0<f=1/2 then (1) converges uniformly for
every continuous function; on the other hand, if f=1 then, in general, there is no
convergence.

In the present paper we are going to prove a general statement, which implies
in particular that there is no convergence in the case 1/2<pf<1, either (cf. Corol-

lary).
Let Ly be the linear operator on the space of continuous functions defined by

.1 X
LN: f.).— ZSnk(.f)
N &
If the sequence {n} is convex, we have according to [10]

(3) “LN”C(—R,‘!E]-’C(—‘E,%] = 140(JVM1/2 In nN+ 1)

Here and in the sequel A; denotes different positive constants. Similar lower
estimation cannot be obtained in the general case; put e.g. n,=22". Using the Fejér
polynomials it is not difficult to show that

”LNI|C(—1z,7r]->C(—1t,1t] = N-12N’

The following assertion holds true.

Theorem. Suppose that the convex sequence of positive integers {n} satisfies
the weak lacunarity condition n, . fm>1+ck™% c is a constant, 0=0=1/2. Then
there exists a positive integer S depending on ¢ and o such that

| Lyl ¢, m1~c(—n,21 = A1 N7H21n npys-3;.
Proof. Using the Dirichlet formula, simple transformations give

1 N+M
IS, Suli 9| =

Ly +mllc(=r, m1oc(~m,m1 =

sup
nriest

NIM sin (m+3) x ~
- ||f|| L. ?-TC f /&) N+M 2 2 sin x/2 =

z— f ‘EM smnkxl———O[V__l___]
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By the triangle inequality we have

T N+M

1 . dx
—‘_—N-i-M(,f'ké; smnkxl-;—%

1 TONM dx 1 T oM I
= N+M6/'lk=%’+151nnkx|?— N+Mﬁ[|k§Slnnkx'—)-c—.

In virtue of (3), the second integral does not exceed

A M(N+M)"Y(M-Y21n ny+1).

In order to obtain a lower bound for the first integral, we represent it in the form

1 g T oNiM dx 1 g ™7 NEM dx
sin n x| — = sinnx|— =
N+-M pg(; n2—p—1|k=%'+1 k | N+M pg:) 1;2—[—1|k=%+1 k l x
C)) .
1 2P x. N+M .
= — sin ny x| dx,
N+M pé; T 2.‘{_1]k=2M+1 k |

where Q is a positive integer to be defined later. Further, we use the inequality
1AM = 1 A2 1 A1 22
which can be easily obtained from the Holder inequality. We get

2P N+M 2 3/2 2P N+M 4 -1/2
z{ f | > sinm, x| dx} { f I 2 sinnkxl dx} .
+1 x

ng-p-1 k=M o-p-1 k=M+1

To estimate the integral of the square of a polynomial from below we make use
of the following result due to WienNer (cf. [12], p. 355):

Wiener’s Theorem. Consider the finite sum

N Py
P9 = k_}_J'N cee™®  (no=—n)

where
o~ =g>0 (k=0,1,..),

and let I be an interval of length |I|=2n(1+406)q™%, 6=>0. Then there is a positive
constant A; depending only on & such that

2lelr= RES [1P®)2d9.
P 1] ;

1%
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To obtain an upper bund for the integral of the polynomial of fourth degree we
shall use the following lemma (to be proved later):

Lemma. Suppose that the convex sequence of positive integers {n,} satisfies the
weak lacunarity condition with an exponent 0€{0, 1)2), i.e. m.fm>1+ck™". Let us
assume, furthermore, that

Ma1i—M=>qg=>0 (k=M+1,..), ny>q,
and let us consider an interval I of length |I)>2nq~'. Then

1 N+M .
T f\ > cke'"k‘9[4d8§A2N(N—I—M)ml?x lexl®,
bi k=M+1

where A, depends only on c.

Now choose @ in (4) such that the conditions of the above assertions be fulfilled.
In consequence of convexity and weak lacunarity we have

Mer1 =My Z Mpg oy — My = My (yg i1/ —1) = np(L+cM™*~1) = enyy M

Hence the condition
7272 = AnM ¢ ingt

is fulfilled, i.e. one can choose Q<Inny—aln M—A4; Q=4,Inny. An applica-
tion of Wiener’s theorem and the lemma yields

1 e mT oM A Alme(NY®(NV+M)Y T
v 2 f 12 elar = 2y > 2,,( ) ( 5 ] =

p=0 o p-1 k=M+1 p=0

2P
= A6N<N+M)—3/2 ln nM.
Thus, we conclude

Ly +mllc(~z,m1=c(~n,m1 =

- _ _ i
= A NWN+M) 3P lnny + A MUPEA(N+M) Inny,—M(N+ M) 1+0(W)’
whence

1Lalle—mmi~c=mm = I Lv—vspy+ivsillct-z, = c(=n,m1 =
= N7 lnnpysy(de N~Y2(N—[N/SD—A,[N/S1?)~[N/S]- N"*+O(1/N) =
= N 21n npys(4e(1 — S — 4,572~ S~1+ O (1/N)
for arbitrary N. Choosing S such that the right-hand side be positive, we obtain
Mwllce-rz,nimc(—na1 = A2 N7V 10 ngyys,

which completes the proof.
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Corollary. If the convex sequence {m,} satisfies the weak lacunarity condition
with an exponent a€[0, 1/2) (in particular,if m=[2""], 1/2<B=1) then there are con-
tinuous functions for which the means (1) do not converge.

Proof. Putting N=8SM in the Theorem, we conclude

1Lyl =
lnnM 1 Bar Mpr—1 Ry, M—
= ey e = 4 M2
VSM VSM  Nwu-1 M-z M ]/ ; [ k) 8

Applying the Banach—Steinhaus theorem, we obtain the assertion.

Proof of the Lemma. In the proof we shall make use of the reasoning in
[1, Lemma 5.2], where the case I=[—m=, 7] is considered.

We can suppose that 7 is symmetric with respect to 0. Choose p satisfying the
condition n2*’"1§lll<7t2“’. Then

ap+1 WPl

 ; fl c (nid9 = l AS;M ce™ed|? 9.

k=M+1 T _petp-1 k=M+1

2 T
Using the inequality —x=sin x=x for Oéxé—é— we have
T

gp+1 mETLoNiMm
l > cke’"k"’l4d9§

T 9 p-1 k=M+1

- (2)22p+1 275’-1) EM ckei,,kxl[sm2 ] a8 =

2 T g p-1 k=M+1 27=lsin 9

Jin s [sin27* 9 2
=2 ‘[Lc M+1 ks[[2p 1SIn3] d9

Since (sin 227*9)%(2?~*sin §)~? is a trigonometric polynomial of degree not higher
than 2%, it will be sufficient to estimate the number of those terms in the sum

N+M
for which

l 27 Ck eink.? 4

k=M +1
(5) InJl— JZ"" Js—‘an = 2P

First we give an evaluation to the number of the members of the sequence {r;} in
a given interval. If n, and n, are the largest and the least numbers in the interval [a, 5],

then ny/n,=0b/a. On the other hand, from the condition of weak lacunarity and in
virtue of the inequality 1+x=exp (x/2), valid for 0=x=1, we have
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Hence

ﬂ]-v%r-@mb/aﬂ.

c(z=s) | _ . -
Cxp[m] =b/a, z—s+1=

Clearly, it will suffice to find an estimate for the number of solutions of inequality (5)
satisfying the condition
h=zje=js = s

If ji=j, then, since g=27*", (5)can be satisfied only if j,=j,. Consequently,
there are at most N2 solutions.

Suppose j;=j,, and evaluate the number of solutions of (5) such that
(%) 2¥ =n,/n;, < 2k
for a fixed k. We have N different possibilities for n; . Since

ny,+nj,+n;+28 = n,+3n, = n,(14+3.279),

inequality (5) is solvable if
n;, =n;(1+3.279.

Thus, n; lies in the interval [n; (1+3 27K p ;15 consequently, it can take at most

2(N+M)
c

3.27%41

ZOCEMY s oy <

different values. If

207 (N+M)3.27% <1,
then n; can be chosen uniquely. Therefore n; =n; holds, but this case has been
excluded. Hence
. 6c 127K (N+M)* =1,
i.e.

k=A,In (N+M).

Using again (%), we can see that n; belongs to the interval [nj=2"“1, n; ), whence
it can be chosen in at most

207 (N+M)*In 249241 = 2" YN+ M) (k+1)+1

different ways. Finally, the choice of n; ,n; ,n; being made, for the value of n;
there are left no more than four possibilities (differing in the choice of the signs).
We have obtained that inequality (5) has at most

Nl W3(N+M)y 2~ 1L 1] [2¢ YN+ M)*(k+1)+1]4

solutions under the condition (*). Summing up for all k=4;1n (N+M) we obtain
that the full number of solutions does not exceed

Ay N(N+M)**+ N2 = A, N(N+ M).
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Furthermore, squaring the sum

N+M

{ > slz [2 c e"‘k"][ Z Eke‘i"k'g]

k=M+1

and interchanging the order of summation and integration, we have

+ 3
zzzz%nn“fﬂ%%ﬂﬂ’

Ji J2 J3 s

[ sin27-197?
27~ 1gin 9

In virtue of what has been just shown, all summands but at most N(N+ M) ones are

equal to 0, and for the rest we have the upper bound

P . 2
s sin 2719
skt [ 20

2p Sp-1 Max legl®

This proves the Lemma.

Applying a method used in [8], one can prove an even stronger form of our
Lemma.

Lemma A. Consider the finite sum

P(% = Zc e
where

Mp1—ne = q >0, ny>gq, nmgy/n>1+4c/k?, O0=a<1,

and let I be an interval of length |I|>2nq~'. If

e k
©) ol = g (3 lea)? (=12,

then

{III f[ Z’c eimd|t dg} = Am(ngl'lcklz)m,

where A;y depends only on a,q,c, C.

Note that, as it was shown in [9], condition (6) cannot be dropped even for
I=[—m, 7). For every «€(0,1) there is a weakly lacunar (with exponent a) convex
sequence {r} and a function ¢ with Fourier series %‘ c,e™® such that p€ L2(—m=, 7],
but @¢L*(—=, ]

The author expresses his sincere thanks to R. M. TriGus for useful advices and
the discussion of the results of this paper.
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METOIOM CpPeJHHX apnhMeTHIeCKNX € MPONyCKaMu
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