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On the summability of Fourier series with the method 
of lacunary arithmetic means 

E. S. BELINSKI~ 

Let f be a 2n-periodic summable function with Fourier series 

f(x) ~ Z ck e'% 
k 

and let S,( f ;  x) denote the partial sum of order n. It is known (see e.g. [12]) that the 
Fejdr means 

1 N 
Z Sk(f; x) 

N + I  ~=0 

converge at every Lebesgue point, and, i f f  is continuous, they converge even uni- 
formly. 

We are concerned with the following problem: for which monotone sequences 
{nk} do the means 

N 
I Z S , , k ( f ; x )  (2) -Y 

converge to f ?  Starting with the paper [11] of ZALCWASSER, several mathematicians 
dealt with this question [2--7, 10]. A complete answer has been obtained only for the 
case of strong summability. Namely, for the uniform convergence 

1 N 
(2) -N k~-_~ [S'k (f; x)--f(x)I -~ 0 

for every continuous f i t  is necessary (SALEM [7]) and, if {nk} is convex, also sufficient 
(TRIGUB--ZAGORODNI~ [10]) that 

sup k -1/2 In nk < co. 

The same result was independently obtained by CARLESOr~ (announced in [4]). 
As for the uniform convergence of (1) on the class of continuous functions, it 

is clear that the above condition remains sufficient. About necessity the following is 
known. It is easy to check that, if nk+l/nk--" ~, then there is a continuous function 
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for which we do not have uniform convergence. NI~WMAN [6] showed that uniform 
convergence fails also for the sequence nk=2 k. Thus, for the model sequence of the 
given problem nk=[2 ka] we have: if 0<fl<-l/2 then (1) converges uniformly for 
every continuous function; on the other hand, if fl=>l then, in general, there is no 
convergence. 

In the present paper we are going to prove a general statement, which implies 
in particular that there is no convergence in the case 1 /2<f i<l ,  either (cf. Corol- 
lary). 

Let LN be the linear operator on the space of continuous functions defined by 

�9 1 N 

J = Z 
I v  k = l  

If the sequence {nk} is convex, we have according to [10] 

(3) ItLNllc(-=,na-.c(-n,=] <= Ao(N -alz In nN+ 1). 

Here and in the sequel At denotes different positive constants. Similar lower 
estimation cannot be obtained in the general case; put e.g. nk=22~. Using the Fejtr 
polynomials it is not difficult to show that 

IlL~Ilc~-.,+,c(-.,~ ~ N -12N. 

The following assertion holds true. 

Theorem.  Suppose that the convex sequence of  positive integers {nk} satisfies 
the weak lacunarity condition nk+l/nk>l +ck -~, C is a constant, 0<--e<--l]2. Then 
there exists a positive integer S depending on c and ~ such that 

IILNllc(-~,~>c(-=,~a ~ A1N -1/2 In nttcs-a 1. 

Proof .  Using the Dirichlet formula, simple transformations give 

"LN+~tIIc(-~"a'*c(-'~'n~-- sup I 1 N + ~  ] -- Z Snk(f; x) = 
,Slle~-I N + M  k=l 

1 ? f ( x )  1 N+M sin(nk+�89 
= sup a k__~l ,,I,c~_~ "~-~ N + M  2 sin x/2 dx 

- -  0 k = 1  " - X - - - -  " 
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By the triangle inequality we have 

1 ~..~+u x d x  f lZ sin n~ -> 
N + M  o k=l x 

f N + .  [d.dx x l / i k ~ =  1 x d x 1 [ ~ '  sinnkx sinnk 
--> N+------M" 0 k=M+l N + M  = . 7 .  

In virtue of  (3), the second integral does not exceed 

A , , M ( N + M ) - I ( M  -~l~ In nM + 1). 

In order to obtain a lower bound for the first integral, we represent it in the form 

I : ~  f Z sinnkx - > sinnkx > N + M  = - _ k=M+l X -- N + M  = ~2- -~ k=M+l ~ 
(4) 

N + M  

>= N + M  - n ' ~  -~ k=M+l 

where Q is a positive integer to be defined later. Further, we use the inequality 

[l/IlL1 --> Ilfll~,," rlfllZ? 

which can be easily obtained from the H61der inequality. We get 

~z$-P N + M  

f I z sin, xldx-= 
~:2-P-1 k = M + l  

- P a ] - x / ~  

Z sinn~xl dx I Z sinn~x[ dx~ . 
x k = M . + l  n 2 - p - 1  k = M + l  

To estimate the integral of  the square of  a polynomial from below we make use 
of  the following result due to WIENER (cf. [12], p. 355): 

W i e n e r ' s  T h e o r e m .  Consider the f ini te  sum 

where 

N 
P ( 0 ) =  ~ cke% a ( n _ k = - - n k )  

k = - - N  

nk+l--nk ~ q > 0 (k = O, 1 . . . .  ), 

and let I be an interval o f  length [I1>2~(1 +6)q  -1, 6>0 .  
constant A~ depending only on 5 such that 

Then there is a positive 

1" 
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To obtain an upper bund for the integral of the polynomial of fourth degree we 
shall use the following lemma (to be proved later): 

Lemma.  Suppose that the convex sequence o f  positive integers {nk} satisfies the 

weak lacunarity condition with an exponent eC[0, 1/2], i.e. nk+l/nt>l "t-Ck -~. Let us 

assume, furthermore, that 

n k + l - - n k > q > O  ( k = M + l , . . . ) ,  n M>  q, 

and let us consider an interval I of  length 1II >2nq-L Then 

N+M 
1 in 84 <:= 

c e  ~ d ~ -  fl 2 [ --&N(N+M)maxIcd', 
[I[ x k =M-I-1 

where A2 depends only on e. 

Now choose Q in (4) such that the conditions of the above assertions be fulfilled. 
In consequence of convexity and weak lacunarity we have 

nk+l--n k >-- nu+l - -nu  : nu(nM+l/nM--1 ) ~= nM(l + c M - ' - - l )  = cnMM -~. 

Hence the condition 
~2-Q-1 > 4 n M ' c - l n ~  ~ 

is fulfilled, i.e. one can choose Q<In nM--~ In M - A ;  

tion of Wiener's theorem and the lemma yields 
Q<=A4 In riM. An applica- 

1 Q n2-1 '  N + M  

Z2" f l z  
= = 2 - P - x  / ~ = M + I  

Thus, we conclude 

A5 "q':"= ( N ] a I ~ ( N ( N + M ) ]  -112 
sin nkx[ dx 

= A 6 N ( N + M )  -8/2 In riM. 

~_ A , N ( N + M ) - 3 t 2 1 n n ~ + A 2 M 1 / Z ( N + M ) - * l n n M - - M ( N + M ) - x + O ( ( N + I M ) I / 2 ) ,  

whence 
% II IlL 1 N C ( - ~ , ~ ] - * C ( - ~ , ~ ]  = (N-[NIS])+[NlS][[C(-~,~]-C(-a,~] 

--> N -1 In ntn/sl(An N -al~ ( N -  [N/S]) - As [N/S]  '/2) - [N/S]. N -1 + 0 (l/N) 

>= N -~12 In nrn/sl (A, (1 - S-*) - A 2 S -112) - S -1 + 0 (1/N) 

for arbitrary N. Choosing S such that the right-hand side be positive, we obtain 

IlL.lIce-=,+<( . . . .  ~ >= A7 N -al2 In ntn/Sl, 

which completes the proof. 
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Coro l la ry .  I f  the convex sequence {nk) satisfies the weak lacunarity condition 
with an exponent ~C [0, 1/2) (inparticular, i f  nk = [2k~], l[2~fl<= 1) then there are con- 
tinuous functions for which the means (1) do not converge. 

Proof .  Putting N = S M  in the Theorem, we conclude 

HLNll => 

- -  = In - -  - -  ... In 1+ -~ AsM at2-'. 
--S~-M r  nM-inM-2 nl 

Applying the Banach--Steinhatls theorem, we obtain the assertion. 

P r o o f  of  the Lemma.  In the proof we shall make use of the reasoning in 
[1, Lemma 5.2], where the case I = [ - ~ ,  7~] is considered. 

We can suppose that I is symmetric with respect to 0. Choose p satisfying the 
condition rc2-v-l<=lll<lr2-v. Then 

1 _ N + M  2 v + l  . 2 - v - ~  ~ + M  

2 
Using the inequality --x<-sin x~-x for 0~x~_-~ we have 

7~ 

2p+l  ~r2-v-* N+M 

7C --~2- -1 k +1 

7~ --~2- -I k +1 

<= 7c2 p-1  
~k +1 2 p - t  s in  3 

Since (sin 2P-10)2(2 v-1 sin ~)-~ is a trigonometric polynomial of degree not higher 
than 2 p, it will be sufficient to estimate the number of those terms in the sum 

N+M 
Ik_~M+l Cke~'OI4 for which 

(5) [njl+nj, injs+---nj4[ ~- 2 v. 

First we give an evaluation to the number of the members of the sequence {n~} in 
a given interval. If n~ and n, are the largest and the least numbers in the interval [a, b], 
then nJn~=b/a. On the other hand, from the condition of weak lacunarity and in 
virtue of the inequality 1 + x ~ e x p  (x/2), valid for 0 ~ x ~  1, we have 

~-_~ j=]'[_ ( I +  =~ j--]~s'= {1-) (N+M)"  = i-~ ( N + M ) "  =~ exP,2 ' (N+M)')"  
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Hence 

b[a" z - s + l < -  2(N+M)~Inb[a+l. c ( z - - s )  ] 
exp 2 ( N + M ) ~ ]  < = , c 

Clearly, it will suffice to find an estimate for the number of  solutions of  inequality (5) 
satisfying the condition 

Jl -->- J2 -> Js -> J~- 

If j l= j~  then, since q > 2  p+I, (5) can be satisfied only if ./'z=j~. Consequently, 
there are at most N s solutions. 

Suppose jl>j~, and evaluate the number of solutions of  (5) such that 

( • ) 2 k <= nj2/nj~ < 2 k+l  

for a fixed k. We have N different possibilities for n~l. Since 

ni~,+ni3+nj4+2P <- nj2+3njs <= n/2(1+3.2-k) ,  

inequality (5) is solvable if 
n jl <_- nj~(1 + 3 . 2 - k ) .  

Thus, n& lies in the interval [nil(1 + 3 . 2 - k )  -1, r / j ;  consequently, it can take at most 

2 ( N + M ) ~ l n  ( 1 + 3 . 2 - k ) +  1 < 2(N+M)~3" 2 - k + 1  
c c 

different values. If  
2c-I(N+M)~3 "2 - k  < 1, 

then ni, can be chosen uniquely. Therefore n&=n~: holds, but this case has been 
excluded. Hence 

6c-12-k(N,+ M) ~ > 1, 
i.e. 

k _-< A s In (N+M). 

Using again ( . ) ,  we can see that hi. belongs to the interval [nh2 -~-1, nl,], whence 
it can be chosen in at most 

2c-I(N+M) ~' In 2~+~+ 1 = 2c-~(N+M)'(k+ 1)+ 1 

different ways. Finally, the choice of  n j,, n A, n& being made, for the value of  nj, 
there are left no more than four possibilities (differing in the choice of  the signs). 

We have obtained that inequality (5) has at most 

N[c-~3 (N+M)~'2-k+I+ 1] [2c-1 ( N +  M)  ~ (k+  1) + 1] 4 

solutions under the condition ( . ) .  Summing up for all k<=Aa In (N-t-M) we obtain 
that the full number of  solutions does not exceed 

AgN(N+ M)2~+ N s <= AgN(N+ M). 
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Furthermore, squaring the sum 

N+M N+M N+M 
Ik ~+ cke"~l 2= [k=M+iZ Ck e"~] [k=M+~Z eke-"~] 

and interchanging the order of summation and integration, we have 

Z . . . .  Z Z Z CjlCj2Cj3Cj, f e'(nJl:knj2+nJ~-knJ')~ 
J1 32 J3 J4 --~ 

sin 29-1 0 ]Zdg. 
2 p-1 sin 0 

In virtue of what has been just shown, all summands but at most N ( N + M )  ones are 
equal to 0; and for the rest we have the upper bound 

m a x  [r 4 sin 2p_10 2 
k -~ 2 p - a s in3  d O = ~ m a x l c k [  4. 

This proves the Lemma. 
Applying a method used in [8], one can prove an even stronger form of  our 

Lemma. 

L e m m a  A. Consider the finite sum 

N 
P (0)  = ~ c k ei"k ~ 

k=l 
where 

nk+l--n k ~ q > O, nl > q, nk+l/n k > l +c/k  ~, 0 <= ~ < 1, 

and let I be an interval o f  length 

(6) 

then 

III >2nq -1- I f  

levi =< ~ ( IcilY) 1/~ (k : 1, 2, ...), m=l 

{ ]_~[ / ik_~l }114 N cke"~~ ~ d0 -<- A10(Z Ickl~) 11~, = k~l 

where Alo depends only on ~, q, c, ~. 

Note that, as it was shown in [9], condition (6) cannot be dropped even for 
I = [ - n ,  n]. For  every ~C(0, 1) there is a weakly lacunar (with exponent a) convex 
sequence {nk} and a function ~p with Fourier series ~ Ck e% ~ such that q~E L 2 ( -  ~, hi, 

k 
but r n]. 

The author expresses his sincere thanks to R. M. T~GUB for useful advices and 
the discussion of  the results of  this paper. 
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0 CyMMHpyeMOCTH psuIon @yp~,e 

MeTO~OM cpe~nnx apn~MeTntlecKnx c nponyclcaMn 

9. C. BE/IHHCKHI~I 

B pa6oTe ycTar~aBmmaeTc~t cge~tytom'rr~ pe3yrmTaT. I'lyCTb f--~tenpepr~mHa~ 4?ya~ayra, 
S,, (f)--,IacTt-mIe cyr4MsI nop;i~ica nee  p ~ a  tDypi, e. )][n~ ,caTr.~o~ B*,myKno~ nocne~oBaTesmr~ocTr~ 
{nk}, y~oBaeTBoparomeR yca,oBmo nk + Jnk > 1 + ck -~, c--nono~a~Tem, naz nOCTOmmaa, 0 ~_ ~ < 1/2, 

1 N 
cymecrayeT TaKaa ~enpepJ, mrmn qbya~L,t f0, ,tTO cpe~rme -~ kZ__l S,~ (fo) He CXO~IKTC$I paBHOMeprIo. 
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CCCP. /][OHEI.IK 340048 
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