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Abstract.  This work is part of an attempt to quantify the relationship between the permeability 
tensor (K) and the micro-structure of natural porous media. A brief account is first provided of 
popular theories used to relate the micro-structure to K. Reasons for the lack of predictive power 
and restricted generality of current models are discussed. An alternative is an empirically based 
implicit model wherein K is expressed as a consequence of a few "pore-types" arising from the 
dynamics of depositional processes. The analytical form of that implicit model arises from evidence 
of universal association between pore-type and throat size in sandstones and carbonates. An explicit 
model, relying on the local change of scale technique is then addressed. That explicit model allows, 
from knowledge of the three-dimensional micro-geometry to calculate K explicitly without having 
recourse to any constitutive assumptions. The predictive and general character of the explicit model 
is underlined. The relevance of the change of scale technique is recalled to be contingent on the 
availability of rock-like three-dimensional synthetic media. A random stationary ergodic process is 
developed, that allows us to generate three-dimensional synthetic media from a two-dimensional 
autocorrelation function r(Ax, Ay) and associated probability density function ee measured on a 
single binary image. The focus of this work is to ensure the rock-like character of those synthetic 
media. This is done first through a direct approach: n two-dimensional synthetic media, derived from 
s ingle set (e~, r (A~, A N ) ) yield n permeability tensors K~ = 2, n (calculated by the local change of scale) 
of the same order. This is a necessary condition to ensure that r (Ax, Ay) and e;~ carry all structural 
information relevant to K. The limits of this direct approach, in terms of required Central Process 
Unit time and Memory is underlined, raising the need for an alternative. This is done by comparing 
the pore-type content of a sandstone sample and n synthetic media derived from r(Ax, Ay) and c;~ 
measured on that sandstone-sample. Achievement of a good match ensures that the synthetic media 
comprise the fundamental structural level of all natural sandstones, that is a domainal structure of 
well-packed clusters of grains bounded by loose-packed pores. 

Key words: Local change of scale, permeability tensor, local Representative Elementary Volume, 
image analysis, pore-types, random stationary ergodic process, Fourier transforms, micro-structure 
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Nomenclature 

adjustable parameter 

diameter of the throats associated to the pores of the j th type (m) 

squared Fourier modulus of the Fourier transform (subscript e indicates that the 
micro-geometry has been 0-appended). 

Fourier modulus of the Fourier transform 

formation factor 

scalar component of Darcy's law permeability tensor (m e, 1 darcy ~ 10 -12 m 2) 
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Darcy's law permeability t e n s o r  (m 2, 1 darcy ~ 10 -12  m 2) 

threshold length from mercury injection (m) 
length-scale at which the micro-structure is no longer correlated 
mean pore size (In) 
mean grain size (m) 
number of pores of the j th type per ttm 2 
capillary pressure (N/m 2) 

characteristic length-scale of the local geometrical Representative Elementary Vol- 
ume (m) 
characteristic length-scale of the local Darcy's Representative Elementary Volume 
(m) 
2-D autocorrelation function 
local geometrical Representative Elementary Volume (m 3) 
local averaging volume of Darcy's type (m 3) 
2-D spatial wave-length expressed in a local Cartesian basis (m) 
2-D spatial wave-number expressed in a local Cartesian basis 
complete phase of the Fourier transform 
part of the phase of the Fourier transform 
volume fraction of the void phase (porosity) 

1. Introduction 

This work is part of an ongoing effort to link the micro-geometry of natural 
media to the permeability tensor K. Quantifying the dependence of K on the 
micro-structure of natural media is of prime importance in many fields such as 
exploration and production in oil industry, enhanced petroleum recovery, and con- 
taminated ground-water remediation. The dependence of K on the micro-structure 
has been acknowledged in a number of ways, either empirically (Dullien, 1979) or 
theoretically (Anguy et al., 1994a; Whitaker, 1986). Whatever the model, the thing 
is to express into a predictive and analytical model that K is an implicit function of 
the micro-structure (relation 1), so that a micro-structural change yields a variation 
dK of K. 

K = f (micro-structure) (1) 

Models dealt with in the literature differ essentially in the structural parameters 
p i  held to formulate implicit relation 1 into a predictive model (relations 2 to i=l,N t 
4): 

i micro-structure = f (P i : l ,N)  (2) 

K i = ~(Pi=~,N,)~,~_N (3) 

dK = ~ dP  ~ 
i=1 

(4) 
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where the micro-structure is characterized, through an implicit function f, by N 
geometrical parameters measurable by experiment (P/  1,N)" K is characterized, 

through an implicit function g, by that minimal K-relevant subset, P/~I,N',N'<_N, 
i included in set P~=I,N and ~iN'l Og/OP i is an intrinsic function of the model used 

to derive K. 
The appropriate K-relevant P/z 1 ,N' are not known a-priori, whence the diversity 

of models. There is a general agreement that K does not arise solely from porosity, 
cZ: "It is obvious that no simple correlation between porosity and permeability 
can exist" (Scheidegger, 1974). The micro-structure must be characterized more 
completely by a set of parameters J~ accounting for the spatial arrangement 

of porosity. Attempts to relate K to the sole parameter p1 = c~ met with tangible 
success in cases where the structural variability anaong the samples was strictly 
linked to e/3 (relations 5): 

p1 ---- 6/3, (dP  i = hi(P1))i=2,N, (5) 

where h i i=2,N' are implicit functions. Correlations between K and ~/3 are lim- 

ited to samples verifying the same relations h~=2,N,. Consequently, correlations 
between K and e/3 representative of the present state of a reservoir might be totally 
inappropriate to simulate its diagenetic history. 

The models dealt with in the literature might be classified with respect to two 
extreme cases: the implicit and the explicit models. 

In implicit models, the direct characterization of the micro-geometry (relation 
2) is commonly by-passed. Instead, fundamental laws (for example, Washburn 
equation) are introduced in experimental results to quantify K-relevant effective 
structural parameters Q~=I,M" That is: 

k = h(Q}=l,.a4) (6) 

where h is an implicit function and k, a scalar component of K. 
Implicit relation (6) is then formulated as an analytical model arising from 

various physical and]or geometrical bases. Work by Ehrlich et al. (1991a) and 
McCreesh et al. (1991) yields as Q~=I,~ 2t4 geometrical parameters Npj,j=l, M 
(obtained by petrographic image analysis producing a pore-type base for porosity 
classification) and 34 physical parameters dj,j=l,~ (obtained combining image 
analysis data, e.g. pore-types, with mercury drainage experiments) (Equation (7)): 

( QJ)j=I,M = ( Npj ,  dj)j=l,A4 (7 )  

where dj is the diameter of the throats associated with the pores of the j th  pore-type, 
and Npj  is the number of pores of the j th  pore-type per #m 2. 

Relations (6) and (7) yield: 

k = h (Npj ,  (8) 
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In Ehrlich et al. (1991b), implicit relation (8) is then worked out in an analytical 
tube-like model (Equation (9)) relying on the association between pore-type and 
throat size (C~ is an adjustable parameter). 

M NpjTrd 4 
k = 1013 Ck 

128 
j = l  

(9) 

Relation (6) differs from relation (3) in that, part of the geometrical information 
is integrated by the experimental process used to quantify the effective parameters 
Q~=l,z4. That point is as expressed by Equation (10). That is, the Q}=I,~ are 
related to an effective medium. 

(QJ)j=I,A/I ~- s  (10) 

where s is an unknown additional functional of the geometrical parameters P/~_ 1,N" 
Generally, this additional functional requires a "tuning" constant (Ck in Equation 
(9)) to formulate the analytical relation linking the Q}=I,M to k. Optimal value 
of that "tuning" constant can only be estimated by curve-fitting with respect to a 
set of measured permeabilities (hi,j=1&) derived from k samples. As mentioned 
above (Equation (5)), the predictive character of the model is accordingly limited 
to samples verifying additional relations hi=z4+l,M+;t,. That is: 

(QJ)j=I,~ = (Npj ,  dj)j=l,M," (dQ i = h i ( Q j ) j = l , J ~ ) i = l , 2 ~ l - t - l , ~ - I - ' p  (11) 

The generality of implicit models depends on the generality of the physical and/or 
geometrical arguments used to formulate the Q}=I,M in an analytical model. 
Furthermore a predictive model must be able to predict the physical properties of 
a single sample (Garboczi, 1990). 

For percolation models (Equation (12)) (Thompson, 1991) no curve-fitting is 
required, but the requirement of a random distribution of tube radii makes the model 
inadequate to predict physical properties of sandstones and carbonates due to the 
universal occurrence of a non-random structure as a consequence of depositional 
processes (Prince et al., 1995; Anguy et al., 1994b). 

k = (226)-1/2c.F -1 (12) 

where 5 c is the formation factor and lc is a threshold diameter. 
A pure explicit model is supposed to simulate directly the behaviour of a porous 

medium. Commonly, the actual micro-structure is simplified through an implicit 
approach so that explicit-fike modelling is two-fold: (1) quantify the structural 
effective characteristics Q~=1,~4 of the elements of the model, (2) simulate flow 
over a network built using those elements (Quiblier, 1984). 

The structural characteristics QJ j=I,.Ad are assessed as for implicit models (for 
example, based on mercury intrusion curves (Dullien, 1975)). The structural ele- 
ments might be cylindrical tubes with circular section (Haring et al., 1970) or 
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with step-changing diameters (Azam et al,, 1977). The elements of characteristics 
Q j = I , ~  are then assembled into fixed network that can be, regular (Chatzis et al., 
1977) or irregular (Dullien, 1979). 

In simulating flow over the network, one intends to derive a new and more 
general expression for the implicit function h (Equation (6)). That is, an explicit 
model, per se, is of little interest in that, every different porous material has to be 
measured the same way with no way of predicting k without going through the 
whole process. Thus, explicit models are worth only as a step towards building a 
better e.g., more general implicit model. Nonetheless, as discussed in Bryant (1993), 
explicit models are questionable due to common simplifying assumptions fitted in 
the models (regular lattice, shape of the pores, network coordination number, . . .  ) 
that yield errors that might cancel each other. 

In this work, an "almost" pure explicit approach is developed that aims at 
overcoming the lack of predictiveness and generality of the models dealt with 
above. No effective parameters Q~=I,~ are used. This is consistent with Bryant 
(1993) who underlined that " . . .  void space in a porous media can be properly 
represented by a graph of  connected sites . . . "  provided that the network involves 
no a priori simplifications about the micro-structure. 

A complete measure of the micro-geometry is proposed in terms of N geo- 
metrical parameters P,i 1,N, measurable by image analysis of a single sample. 

That complete measure is reduced to a minimal K-relevant subset P~=I,N',N'<_N 

included in the complete set P/~-I,N" The two-dimensional nature of the P]=I,N', 

implied by the experimental process, image analysis, used to measure the P~/--=I,N' 
requires a random stationary ergodic process that allows the generation of a set of n 
synthetic three-dimensional media from the P/~--1,N' measured on a single sample. 
The flow simulation relies on numerical implementation of the local change of 
scale technique (Anguy et al., 1994a; Anguy, 1993). 

The goal of this paper is to ensure whether or not synthetic media derived 
by a random stationary ergodic process have rock-like structural properties. The 
problem is addressed in two ways: (1) through a direct approach relying on the 
local change of scale model, (2) through an indirect approach capitalizing on a 
model due to Ehrlich (Ehrlich et at., 1991 a,b). 

2. Implicit Modelling of the Permeability 

Characterizing the three-dimensional micro-structure of natural media is com- 
plex, current observations being of porosity exposed on two-dimensional thin 
sections through the medium. Nonetheless, work by Ehrlich (1991a) shows that 
characteristics observed on sections impose limits on structural variations in the 
three-dimensional medium. 

Porosity, on two-dimensional sections, appears as many discrete patches of 
porosity, porels (PORosity ELements), identified as closed areas of porosity (Figure 
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, . . . . .  1 mm 
Figure 1. Sample 3 (Perry-Sandstones), Binary mosaic produced 1) by merging high resolution 
overlapping images (square pixel edge: 3.861 #m) digitized by a colour device and 2) by resampling 
to obtain a 5'1~2 • 512 pixel image ~sqttare pixel edge: 15.44 #m). Mosaic size: 7.905 • 7.905 mm. 
Porosity represented by black. Note that porosity on sections~i~expressed by many porels, PORosity 
ELements. Porels can be identified by image analysis software by tracing porosity boundaries and 
identifying closed loops. 

1). The porels might be produced by a few types, say A/l, of three-dimensional 
objects e,g., pore-types. That ~s,, the two-dimensional complexity arises from a few 
classes of pore-types, each pore-type yielding its representative collection of porels 
ranging in size and shape. 

Ehrlich's image analysis procedure is designed to "deconvolve" the planar 
complexity into those more simplepore-types. 

Derivation of pore-types relies on analysis of porosity of k binary images (for 
example, Figure 1). 

The k binary images are quantified through erosion-dilation software in terms 
of k size and shape distributions (for example, Figure 2). 

Those k size and shape distributions, so-called smooth/rou,gh spectra, are the 
raw material of a pattern recognition/classification algorithm whose output consists 
of A//pore-types expressed by J~A size and shape frequency distributions. Pore- 
types smooth/rough spectra are obtained by a two-fold polytopic vector analysis: 
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Figure 2. Smooth/Rough spectrum of Perry Sandstone sample 3 (Figure 1). The binary image 
displayed in Figure 1 is quantified by a smooth/rough spectrum obtained through erosion-dilation 
procedures. Each porel undergoes progressive degree of erosions followed by an equal degree of 
dilations. An erosion of degree i strips a porel of its i outermost strata of pixels; a dilation of degree i 
adds i strata of pixels to the poreL As erosion-dilation cycles go on, the porel is accordingly smoothed. 
The number of pixels lost between successive erosion-dilation cycles are recorded as a characteristic 
frequency distribution of roughness. Tile process is stopped as the number of erosions exceeds half 
the maximum width of the porel. Next-to-last dilation provides the smooth component of the porel. 
The binary image rough/smooth spectrum is formed by pooling all porel smooth/rough spectra and by 
converting pixels frequencies to proportions. Dark bars show the smooth (S) component, light bars 
the rough (R) component. Horizontal axes show class intervals of a frequency distribution calibrated 
in units of length. For example, for a pixeI size of 15.44/tm, a smooth bin of boundaries 4-6 concerns 
a smooth seed of length-scales ranging from ((2 • 4) - 1) x 15.44 #m to (2 • 6) x 15.44 #m, that 
is, from 108.08 #m to 185.28 #m. 

- a dimensionality phase that involves Q- and R-mode principal component 
factor analyses to assess the minimum number, .A4, of pore-types required to 
account for much of the variability of the < smooth/rough spectra, 

- a polytope phase that builds a "simplex" enclosing the k smooth/rough spectra, 
with as many vertices e.g., pore-types smooth/rough spectra as derived by the 
dimensionality phase. 

Space does not allow fuller discussion of that topic. Detailed account can be 
found in the literature (Miesch, 1976). 

Ehrlich's pore-typing procedure (l 99 1 a) supplies as well, the size, the shape and 
the relative abundances Npi,i=l,M within each binary image for all M pore-types. 

In terms of Equation (2), the set of geometrical parameters, P/*=~,34, held to 
quantify the micro-geometry is: 

i 
( ~ ) i = I , M  ~--" (pore- type/ ,  NPi)i=I,M (13) 

i That geometrical set 7~=~,34 relates to the sole geometry of individual porels. 
Neither information about throats (two-dimensional surfaces lying in the plane of 
local narrowest constriction between two three-dimensional pores), nor information 
about the spatial correlation of the porels is contained in those 7 )i In this /=1,34" 
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respect, Equation (13) is not a complete measure of the three-dimensional micro- 
geometry. The missing structural information is supplied by an implicit approach 
combining two-dimensional image analysis data e.g., As[ pore types, with three- 
dimensional data of petrophysical type e.g., mercury drainage experiments carried 
out on the same samples. A set of regression equations is derived, predicting 
the relative filling of each pore-type versus capillary pressure (Pc) (McCreesh et 
al., 1991). In sandstones, the tendency of pore-types to fill in mutually exclusive 
and narrow ranges of Pc is a consequence of pores of like type to be mutually 
adjacent, connected by similarly-sized throats, as an inescapable consequence of 
depositional processes (Prince et al., 1995). 

The revealed association between pore-types and throat sizes dj,j=l,A,4 allows 
the use of a tube-like model (Equation (9)) to relate the functionals of the micro- 
geometry Q~=a,M = (Xpj ,  dj)j=l,M to k. 

3. Predicting the Permeability Tensor of Natural Porous Media by the Local 
Change of Scale Method 

The approach discussed above is a major advance in linking geometrical charac- 
teristics e.g., pore-types, to flow through natural media. 

On the one hand, the nice feature of that approach is that the model (Equation 
(9)) arises from a revealed association between pore-types and throat sizes. On 
the other hand, the model produces the essential drawbacks peculiar to implicit 
approaches: 

- lack of predictive character through a dependence on a set of samples ("tuning" 
constant Ck), 

- lack of generality: applicability to limited rock-types: sandstones, carbonates. 

The explicit approach discussed below aims at overcoming those drawbacks. 
The local change of scale method (Whitaker, 1986) leads, from first principles, 
to the macroscopic Darcy's law, spatially averaged over a local Representative 
Elementary Volume (R.E.V.) of Darcy's type noted Vf(ro). That technique yields 
furthermore a Stokes-like closure problem set at the microscopic scale over V;~(ro). 

The form of the closure problem shows that knowledge of the three-dimensional 
micro-geometry allows explicit calculation of K as an implicit function of the 
micro-geometry. 

Relevance of the local change of scale technique requires availability of three- 
dimensional micro-geometries. Three-dimensional micro-geometries cannot be 
obtained directly by current two-dimensional image analysis devices. A four-fold 
procedure is developed: 

(1) complete characterization of the three-dimensional micro-structure of natural 
media by a set of N geometrical parameters P~-I,N, derived by image analysis 
from a single sample (Equation (2)), 
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(2) assessment of a m i n i m u m  and flow-relevant subset, p i included in i=I,N',N'<_N 
the complete measure p i  (Equations (3) and (4)), i=l,N 

(3) use of that subset p i  i=l ,N'  to constrain a random stationary ergodic process 
allowing creation of three-dimensional synthetic media. This is the interface 
between the two-dimensional knowledge one has of porosity by image analysis 

i (Pi= 1,N') and three-dimensional numerical implementation s of the local change 
of scale technique (Anguy et al., 1994a), 

(4) formulation of a predictive analytical model capitalizing on relations of type 
Equation (4). 

This paper focuses mainly on the geometrical aspects of the model. 

3.1. COMPLETE CHARACTERIZATION OF THE MICRO-GEOMETRY BY IMAGE 

ANALYSIS 

Image analysis is the method used to obtain micro-structural information from 
binary images. In the field of stereology, the two-dimensional relevance to the 
three-dimensional system only holds under either of two conditions: (1) isotropy of 
the micro-geometry, (2) existence of a single direction of anisotropy e.g., statistical 
axisymmetry (statistical invariance of the micro-geometry in planes rotating about 
that direction of anisotropy). 

To a first approximation, statistical axisymmetry can be assumed in sandstones. 
This has been shown by strong correlations between two-dimensional character- 
istics, pore-types, measured in the plane perpendicular to bedding and physical 
properties measured on associated samples including: permeability, formation fac- 
tor, mercury porosimetry (Ehrlich et al., 1991a-b; McCreesh et al., 1991). 

Image analysis coupled with pattern recognition procedures revealed that iso- 
tropy in sandstones is rare at scales larger than mean grain size (l~) or mean 
pore size (l~) due to the dynamics of the sedimentary processes. Intuitively, one 
will require a complete measure of the micro-geometry i (Pi=I,N) to be assessed 
at some scale r0 over a local geometrical R.E.V. (I/~e(r0). V~(r0) is a minimal 
volume comprising all geometrical characteristics of the macroscopic medium, 
large enough to avoid interactions between sampling and micro-structure and small 
enough to have bearing on the micro-geometry of a larger volume of practical 
interest. The size r0 of V:3(r0) is that size at which s ta t ionar i ty  and  ergodic i ty  

of the micro-geometry can be declared. Two-dimensional Fourier-transforms of 
binary images yield: 

- quant i ta t ive  assessment of the characteristic length-scales of the spatial arrange- 
ment of porosity, 

- quant i ta t ive  assessment of that scale r0 at which stationarity and ergodicity 
are met, 

- qual i ta t ive  display of the nature of the spatial complexity, 
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Capitalizing on statistical axisymmetry in sandstones, the geometrical parame- 
ters listed thereunder is held as a complete measure of the micro-structure. Thus; 

i ( P ) i = 1 , 3  = (~/3, f ( /~x,  Py),((Ltx,  L'y)) (14) 

where F(u~, up) is the Fourier modulus of the binary image, ux and up wave- 
numbers along Cartesian axes, C(ux, up) is a part of the complete Fourier phase 
~:(ux, up) (basic properties of Fourier transforms indicate that part of cp(u~, up ) is 
not relevant). 

The above set, p i  is a complete measure since there exists, in two dimen- i=1,3' 
sions, a one-to-one transformation between the binary image and (E;?, F(ux, up), 
((u~, up )) to within trivial ambiguities (translation of the image, twin images). 

3.2. REDUCING THE GEOMETRICAL INFORMATION 

It is likely that the overall micro-geometry is not K-relevant. The complete measure 
determined above might be reduced to a simpler K-relevant subset, i Pi=I,N',N'_<3" 
Along with other authors (Quiblier, 1984), phase-like information C(uo:, u v) is 
assumed to contain no fundamental K-relevant structural information. The squared 
Fourier modulus IF~(ux, up)[ 2 and its associated density probability function c;~ 
(e.g., porosity for a binary image) are held as a minimum K-relevant subset i P'I= 1,2" 
Equation (3) yields: 

K = V( e, 2) (15) 

The subscript "e" indicates that the micro-geometry has been "zero-appended" to 
derive [F~ (us, up )]2 so that, based on the discrete form of the convolution theorem, 
either of [F~ (ux, up )[ 2 or a two-dimensional autocorrelation function r ( ),~, ),v) can 
be used. That is, IF~(u~, uy)[ 2 and r(Ax, Ap) carry the same geometrical informa- 
tion. Thus; 

K = g(e~, r(),x, Ap)) (16) 

where A~ and ),y are wave-lengths in a Cartesian basis. 

3.3. RANDOM STATIONARY ERGODIC PROCESS 

The two-dimensional nature of the micro-structure characterization i (P i=  1,2 = 
(e~, r(),x, ),y)) requires an ad hoc procedure to obtain three-dimensional micro- 
geometries. Such a procedure can be developed, treating the micro-structure as 
the realization of a stationary ergodic process characterized by its average e~ and 
two-dimensional autocorrelation function r(),x, Ay). 

Stationarity and ergodicity ensure that sample support problems are minimized 
(Anguy el al., 1994b). Stationarity is commonly admitted for porous media " . . .  
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stationarity would appear to be borne out by observation . . . "  (Quiblier, 1984). 
Herein, stationarity is considered to stem from ergodicity. Ergodicity is declared 
from the non-splitting of the random process into elementary processes appearing 
with different probabilities (Ventzel, 1973). That is, ergodicity is declared if: 

lim r(A~, Ax) ,.~ 0 (17) 
Xx, Xv---+image size 

Within that framework, a random stationary ergodic process has been developed 
that yields a set of n two-dimensional and/or three-dimensional synthetic media, 
all characterized by measured c;~ and r(A~, Ay). A detailed account of the process 
would not fit this paper. The outline of this topic can be found, for example, in 
Joshi (1979). Qualitatively, the n synthetic media are derived convolving ~2 and 
r(Ax, Ay) with Gaussian fields in a way similar to that of Gujar (1967), a pioneer 
in generating random sequences with averages and autocorrelation functions. 

3.4. DIRECT APPROACH 

The question is: are these synthetic media realistic? That is, does one capture in e2 
and r(Ax, Av) the essential characteristics of the micro-structure relevant to K? 

That raises the need of objective criteria to quantify the amount of information 
carried by e~ and r(Ax, Av). This problem has been addressed in crystallography 
and optics as the so-called phase retrieval problem that concerns the uniqueness of 
the reconstruction of an object from r(Ax, Ay). On the one hand, theoretical work, 
capitalizing on essential irreducibility of the z-transform of an object in more than 
one dimension yields that a unique object can be reconstructed from r(Ax, Ay) (to 
within a few ambiguities) (Hayes, 1982). If so, the set (~;~, r(A~, s fitted in the 
random process could be further reduced. On the other hand, other work, tackling 
the phase retrieval problem as a convolution problem showed that r(s Ay) yields 
a large number of admissible geometries (Brames, 1987). Hence the requirement 
to quantify information comprised of e~ and r(A~:, Ay). 

In this respect, the direct method outlined at the beginning of Section 3 can be 
used. If all K-relevant structural information is carried by r and r(A~, s then, n 
synthetic media generated from single set (e;3, r ( ),~, s ) must yield n permeability 
tensors K i such that: i=l,n 

K 1 ~ K 2 ~ K 3 ~ . . .  ,~ K ~ (18) 

i where, Ki=I, n are calculated numerically by the local change of scale technique. 
Furthermore, the K i i=1,~ must be consistent with some experimental measure of 
the permeability ]r 

A test has been performed in two-dimensions. A set of n synthetic media were 
derived from artificial set (E~, r(s Av)): 
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Figure 3. (a) and (b): examples of two artificial isotropic media of size (50x r0 • 50x r0) generated 
by a random stationary ergodic process constrained by the same average and isotropic autocorrelation 
function. Porosity expressedby white. 

E~ = 60%, 
- r()~x, )~y) is isotropic and equal to zero for all ,~  and )~y such that ()~ + 

,~)1/2 _> 8 pixels. That is, the local geometrical R.E.V. V;~(r0) is achieved at 
that scale r0 -= 8 pixels at which the micro-geometry is stationary ergodic. 

The local change of scale method operates over a local R.E.V. of Darcy's type, 
V;~ (r0), treated as a unit cell in a spatially periodic porous media so that the periodic 
assumption is implicit to the local change of scale method. V;~(ro) must contain 
enough V~(ro) for random effects to be faithfully accounted for. In the particular 
case treated here, the additional effects produced by the periodic boundary condi- 
tion imposed at the limits of V~ (r0) have been quantified (Bernard, 1995), showing 
that for large enough V~(ro) (so as to account the required randomness at scale 
larger than Vg(r0)), periodicity is a weak condition compared to dominant no-slip 
boundary condition imposed at the solid-fluid interface within the medium. 

Two examples of such media, of size 50x r0 • 50z r0 are displayed as Figure 3. 
The curves in Figure 4 display results obtained by computing K by the local change 
of scale model using R.E.V.s of Darcy's type of increasing sizes and common centre. 

This confirms that Vg(ro ) must be larger than Vg(ro ) for random effects to be 
accurately accounted for, such that; 

r0 ~ 30xr0. (19) 

Convergence of the permeability tensors towards the same value (~50 Darcys) 
(Figure 4) is a necessary condition to ensure that (e~, r(),x, Ay)) carry all K-  
relevant structural information. Similar results have been obtained for many other 
synthetic media derived from the parameters mentioned above. 

Adler et al. (1990) attempted to apply a quite similar direct approach in three 
dimensions to Fontainebleau-sandstones. Discrepancies found by Adler et al. 
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Figure 4. (a) and (b): numerical evolution of the permeability tensor t (  calculated by the local change 
of scale method as a function of the size of the local Darcy's R.E.V. (V~ (r0)) for the synthetic isotropic 
media displayed in Figures 3a and 3b respectively. Horizontal axes calibrated in r0 (characteristic 
length-scale of the local geometrical R.E.V.) (r0 = 8 pixels) so that the size ~r of Vr goes from r0 
to 50xr0 (400 pixels). 

(1990) between modelled and experimental permeabilities are likely to be due 
to several too restrictive assumptions: (1) use of an isotropic autocorrelation, (2) 
use of a too small Darcy's R.E.V. of size ro ~ 3xro, likely to contribute signif- 
icantly to the large variance characterizing the modelled permeabilities (random 
effects not faithfully accounted for), (3) use of a too small V•(r0), r0 "- 100 #m 
(~ grain size) as support for measured ~9 and isotropic r(A~, Ay). 

Indeed, recent work (Prince et al., 1995; Anguy et al., 1994b) showed that 
sandstones contain a universal structural hierarchy, mainly as a result of the depo- 
sitional processes. The reasons for that were given in a paper by Graton et al. 
(1935). Sandstone micro-structure can be viewed as a domainal structure of jux- 
taposed well-packed grain-clusters bounded by packing-flaws. Flaws are zones of 
disorder formed through a variety of depositional processes discussed by Prince 
et al. (1995). Close- and loose-packed domains are the fundamental textural ele- 
ments, afirst order structure in a hierarchy. In ascending length-scales, the second 
order structure consists of loose-packed zones coalescing into circuits throughout 
a matrix of close-packed domains. Third order structures concern various modes 
of clustering of the loose-packed circuits as well as contrasts due to grain size. 

As discussed further, work by Ehrlich et al, (1991b) bases the K-relevance of 
structural levels on the first and second orders. The K-relevance of third order 
structural levels remains unknown at present. 

As a consequence, any attempt to prove that ( ~ ,  r(A~, Ay)) carries all K-  
relevant structural information, by verifying Equation (18), must reproduce within 
the three-dimensional synthetic media those three structural levels. Use of a cor- 
relation length of roughly 100 #m (that is ~ (l~, l~s)) invalidates the Adler et 
al. (1990) attempt wherein the first order structural level is not even faithfully 
accounted. 

Commonly, structures of third order have length-scales,/~Clusters of the order of 
several cm (given a mean grain size l~, ~ 200 #m). Even using a voxel size of 15 
r  requires a three-dimensional synthetic medium consisting of several billions of 
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voxels. Therefore, due to present-day computational limitations, second and higher 
order structural levels cannot be simulated. So the permeability of the simulated 
medium cannot be compared with the permeability measured on the sample from 
which it was derived. 

4. Indirect  Tests on  the  Val idi ty  o f  S i m u l a t e d  Media :  Resul t s  

However, the fidelity of the simulated medium can be assessed by comparing 
patterns of porosity exposed in sections through the simulated medium with those 
exposed on the actual prototypical samples. That is, the synthetic sections can be 
subjected to the same image analysis procedures (Ehrlich et al., 1991a) as those 
derived from actual media. It has been demonstrated that, in general, correlations 
exist between pore-types and mercury injection curves (McCreesh et al., 1991). 
Riggert (1994) verified this for the sandstones discussed in this paper. Thus if the 
simulated sections display the same pore-type proportions as the prototype sanaples 
and also display the networks of packing flaws upon which the correlation with 
mercury porosimetry is based, then the simulated media should have the same 
permeability as that of the sample that yielded both ~ and r(),~, Ay). 

Eleven binary mosaics of sandstones were used to derive pore-types using 
Ehrlich's image analysis software (Ehrlich et al., 1991 a). As an example, sample 
3 is displayed in Figure 1. All samples come from four Pennsylvanian subsurface 
sand units including (Riggert, 1994): 

- samples from the upper part of the Hoover Sandstones: medium- to fine- 
grained quartz arenite (samples 7 and 8), samples from the lower Hoover 
Sandstones: fine- to very fine-grained subarkose and sublitharenite (sample 
1), 

- samples from the Elgin Sandstones: fine- to very fine-grained quartz arenite 
and subarkose (sample 9), 

- samples from the Perry Sandstones: fine-grained quartz arenite, subarkose, 
and sublitharenite (samples 2 to 4), 

- samples from the Layton Sandstones: fine- to very fine-grained lithic sub- 
arkoses, subarkoses, and feldspathic litharenites (samples 5, 6, 10 and 11). 

All samples come from the same well, drilled east of Newkirk, Kay Coun- 
ty, Oklahoma, as part of an international consortium, the Conoco Borehole Test 
PrOject (C.B.T.P.), on a Conoco Production Research and Development initiative. 
Three pore types were derived to characterize the porels of the eleven samples. 
Smooth/rough spectra and petrographic appearance of the three pore-types are dis- 
played in Figure 5. Proportions of each pore-type within the eleven samples are 
listed in Table I. 

Synthetic two-dimensional slices have been generated, for sample 3 (Perry 
Sandstones) by the random process discussed in Section 3.3.Porosity (e;3 = 0.2089) 
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Table I 

Pore-type relative abundances in the 11 sandstone samples as 
derived by the Extended Q-Model of Ehrlich et al. (1991 a) 

PTI relative PT II relative PT HI relative 
abundance abundance abundance 

Sample 1 0.1114 0.7793 0.1093 

Sample 2 0.0388 0.4815 0.4796 
Sample 3 0.0647 0.4235 0.5118 
Sample 4 0.0000 0.7693 0.2307 

Sample 5 0.4574 0.5426 0.0000 
Sample 6 0.4828 0.5046 0.0126 

Sample 7 0.0440 0.3017 0.6543 

Sample 8 0.0946 0.0145 0.8909 
Sample 9 0.2124 0.7164 0.0713 

Sample 10 0.8902 0.0631 0.0468 
Sample 11 0.9327 0.0194 0.0479 
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and two-dimensional autocorrelation function, r(A~, Ay) measured on sample 3 
(Figure 1) were fitted in the random process. Of course, other values of e~ and r(Ax, 
Ay) would have to be used for simulating synthetic slices of the other sandstones 
listed in Table I. Only that part of r(Az, Av) related to lags (A~, Av) verifying 
inequalities (20) is accounted for. That is, no spatial correlation is imposed within 
the synthetic media at scales larger than 478.7 #m. 

[As] _< 478.7 #m and [Av[ _< 478.7#m (20) 

This correlation length, Lc = 478.7 pro, is consistent with: 

- the mean length-scales of the porels derived from the three pore-types to 
be reproduced (29.0 #m, 43.7 r  and 62.5 #m respectively, as derived by 
Ehrlich's pore-typing procedure), 

- the requirement by the random process for r(A~, Ag) to verify (Joshi, 1979): 

lim r(Az, Av) ~ 0 (21) 
Az,.~y'-'~Lc 

Over the lags accounted for (relations 20), r (As, Ay) turned out not to depart signifi- 
cantly from an isotropic autocorrelation. In that respect an isotropic autocorrelation 
rI~'(Aj=, Ay) has been fitted to the random process. Isotropy of the porosity over 
length-scales smaller than 478.7 #m ensures that the frequency distributions rep- 
resenting three-dimensional pore-types are unbiased as a consequence of the plane 
of section intersecting a large number of pores whose orientations and positions are 
random with respect to the plane of section. The synthetic media have been added, 
as external samples to Ehrlich's software and defined in terms of the pore-types 
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Figure 5. Smooth/rough spectra of  the three pore types (PT) derived through Ehrlich 's  petrographic 
Image Analysis  Software (Ehrlich et al., 1991 a). The mean size of  each pore type is calculated through 
the formula of  the mean  of  grouped data. Mean sizes for PT I, PT II and PT 11I are 29.0/~m, 43.7 
# m  and 62.5 # m  respect ively as supplied by Ehrlich 's  software. Based  on examinat ion of  Table I, 
the visual appearance of  pore- types  is straightforward by picking up sub-domains  of  samples  having 
high relative proport ions of  a given pore-type.  

obtained for the eleven C.B.T.R sandstone samples. Achieved pore-type relative 
abundances for three of those synthetic samples are listed, as examples, in Table II. 
Synthetic sample 2 is displayed in Figure 6. Its associated smooth/rough spectrum, 
as derived by Ehrlich's procedure, is displayed in Figure 7. 

Results listed in Table II yield two remarks: (1) all synthetic samples have, 
by-and-large, the same pore-type proportions, (2) the pore-type proportion agree- 
ment between real Perry-Sandstone sample-3 and the synthetic samples is quite 
good. This is a strong argument to state that the geometrical parameters i _]9i= 1, 2 = 
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Table lI 

Comparison of the pore-type relative abundances of 3 synthetic isotropic 
slices generated by a random stationary ergodic process constrained by 
porosity and isotropic autocorrelation function measured on sample 3 

PT I relative PT II relative PT 11I relative 
abundance abundance abundance 

Sample 3 0.0647 0.4235 0.5118 
Synthetic sample 1 0.1366 0.4238 0.4396 

Synthetic sample 2 0.1369 0.4449 0.4181 

Synthetic sample 3 0.1195 0.4306 0.4499 
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(e;~, r Is  (Ax,Ay)) carry pore-type-like information. That is, synthetic media derived 
in this work from sample 3 do have the first order structural level present in all 
sandstones. The same result has been obtained for all sand units discussed at the 
beginning of the current section. In brief, those results, obtained by merging two 
different approaches allow partial quantification of the nature of the geometrical 
information carried by (~ ,  rI~(Ax,  Av) ). 

5. Discussion 

Work completed by the authors reveals that synthetic media generated through a 
random stationary ergodic process are rock-like, in terms of their pore-type content. 
Pore-types arise from the dynamics of depositional processes, yielding a universal 
first order structural level: a domainal  structure consisting of efficiently packed 
clusters of grains bounded by loose-packed domains. That first order structural 
level can be qualitatively delineated by Fourier transform analysis as displayed in 
Figure 8. Both real (Figure 8a) and synthetic (Figure 8b) media show statistically 
similar first order structure represented by stippled pattern. Note that the stippled 
pattern selectively overlays porels in loose-packed domains derived from pore- 
types II and III. 

Second order structure is displayed on Figure 9a and consists mainly of inde- 
pendent circuits of porels derived from pore-type III, and to a less extent, of circuits 
of porels derived from pore-type II. That is, the association between pore-types 
and throat sizes as predicted implicitly by Ehrlich et al. (1991a-b) and McCreesh 
et al. (1991) would be the same as that one displayed in Figure 9a. In this example, 
the characteristic length-scale of the circuits is /~Circuits = 494.1 #m, as derived 
by Fourier analysis. That is, ,~Circuits is of the same order as the imposed corre- 
lation length L~ (L~ = 478.7 #m). This, combined with the quite random spatial 
arrangement of the circuits (Figure 9a) yields a statistically analogous structural 
level of second order for both synthetic (Figure 9b) and natural media (Figure 9a). 
Figure 10a displays the third order structural level in the hierarchy (contrasts in 
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1 m m  

Figure 6. Isotropic synthetic sample 2 derived from co, r I ~(A:~, Ay) measured on Perry-sandstone 
sample 3 (Figure 1). Image Size: 7.905 m m •  7.905 mm (512 • 512 pixels, square pixel edge: 
15.44 #m). Image is random at scales larger imposed correlation length L~ = 478.64 ttm (31 pixels). 
Porosity represented by black. 
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Figure 7. Smooth/rough spectrum of synthetic sample 2 (Figure 6) (See caption of Figure 2 for 
details). 

porosity due to a particular mode of clustering of the circuits displayed on Figure 
9a). This level, of length-scale, /~Clusters .= 1317.6 #m, appears quite random in 
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a) 

1 m m  

b) 

1 m i l l  

Figure 8. Filtered reconstructions for, (a) Perry-Sandstone sample 3 and (b) synthetic sample 2. 
Stippled pattern represents image after filtering all wave-lengths smaller or equal to grain size 
(~231.0/~m). Original images expressed by black representing porosity. In both real and synthetic 
cases, the stippled pattern selectively overlays oversized pores associated with packing flaws, the 
lowest structural level in a hierarchy. The achieved displays of structural heterogeneities are only 
qualitative in that: (1) the cutoff value used to binarize the filtered images is not universal, (2) Fourier 
filtering concerns only the size of the heterogeneities and not their shape. 
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a) 

1 m m  

b) 

1 m m  

Figure 9. Similar to Figure 8 except filtered at wave-length 494.1 #m, revealing complete circuits 
of packing flaws. 
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Figure 10. Similar to Figure 8 except filtered at wave-length 1317.6 ~m, revealing a higher level in 
a structural hierarchy. 
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Perry-Sandstone sample 3 (Figure 10a). Again there is statistical similarity with 
synthetic sample 2 (Figure 10b), r a n d o m  at scales larger than Lc. 

Commonly, sandstones are more structured, with larger ACircuits and ,~Clusters. 
Furthermore, at scales of the order of ,~Circuits, sandstones are commonly anisotrop-  

ic. That is, anisotropic r (A~, Ay) with correlation lengths of a f e w  c m  must be fitted 
in the random process to reproduce the complete hierarchy of structures. 

As mentioned above, this is impractical using the current random process. A 
new simulation is currently being developed by the authors, allowing reproduction 
of the complete structure. The debate whether or not all structural components in 
sandstones must be reproduced to generate K-relevant synthetic media will then 
be addressed through a two-fold procedure: 

- compare filtered binary sandstone images (of type Figures 8a, 9a, 10a) with 
filtered slices through three-dimensional synthetic media, 

- compare mercury porosimetry curves obtained on natural samples with numer-  

ical  mercury drainage experiments carried over three-dimensional synthetic 
media comprising structural levels up to second order and up to third order. 
This mercury drainage numerical simulator is currently developed. 
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