Zusammenfassung. Die Übersicht befasst sich mit der Entdeckungsgeschichte der entzündlich, toxisch und kokarzinogen hochwirksamen Phorbolester aus Croton tiglium L., wobei insbesondere die Anreicherungs- und Isolierungsversuche sowie die Beiträge zur Chemie der Wirkstoffe berücksichtigt werden. Nach ersten Untersuchungen durch PELLETIER und CA-VENTOU im Jahre 1818 erbrachten vor allem die Arbeiten der Arbeitskreise um Военм sowie FLA-SCHENTRÄGER in den zwanziger Jahren dieses Jahrhunderts entscheidende Fortschritte in der chemischen Charakterisierung der Giftstoffe, die als Fettsäureester des Phorbols, C20H28O6, erkannt wurden. Nach der Entdeckung der kokarzinogenen Aktivität hielt das Crotonöl Einzug in die experimentelle Krebsforschung und gab Anlass zu intensiviertem Bemühen um die Isolierung der Wirkstoffe, die durch Anwendung von Gegenstromverteilungen schliesslich 1962 erstmals frei von inaktiven Begleitstoffen dargestellt werden konnten. Inzwischen ist die Chemie der Phorbolester weitgehend geklärt und ein Strukturvorschlag für das Phorbol erarbeitet worden. Die Biochemie dieser Substanzen im Hinblick auf ihre Tumorpromotion bei der Karzinogenese ist jedoch bislang völlig ungeklärt.

SPECIALIA

Les auteurs sont seuls responsables des opinions exprimées dans ces brèves communications. - Für die Kurzmitteilungen ist ausschliesslich der Autor verantwortlich. - Per le brevi comunicazioni è responsabile solo l'autore. - The editors do not hold themselves responsible for the opinions expressed in the authors' brief reports. - Ответственность за короткие сообщения несёт исключительно автор. - El responsable de los informes reducidos, está el autor.

Two Types of Carbonate Substitution in the Apatite Structure

The apatite structure (e.g. $Ca_{10}(PO_4)_6(OH)_2$) allows varied substitutions to take place (e.g. Sr^{2+} or Ba^{2+} for Ca^{2+} ; $(SiO_4)^{4-}$ for $(PO_4)^{3-}$; Cl^- or F^- for $(OH)^-$) without a significant alteration in its basic structure. These substitutions in the structure are manifested by changes in the lattice parameters (a- and c-axes) of the apatite depending on the size of the substituting cation or anion. The incorporation of carbonate into the apatite structure, however, has been the subject of study and speculations for more than 3 decades. On the basis of chemical analysis, CO₃-for-OH substitution was proposed by EITEL¹. Carbonate-containing mineral apatites demonstrate a contraction of the unit cell²⁻⁴ but biological apatite (e.g. human enamel) demonstrate an expanded a-axis, 9.44 Å. Since all naturally occurring apatites have other constituents besides those of Ca, $\overline{\text{CO}_3}$ and PO_4 , it is necessary to study synthetic systems in which the incorporation of only the carbonate could be directly correlated with the physical properties of the apatite. 2 types of carbonatecontaining synthetic apatites have been reported in literature: (a) prepared at high temperatures, 900-1000 °C, with exclusion of water 5,6 ; and (b) prepared from aqueous systems by direct precipitation 7,8 and by conversion of monetite, CaHPO₄, in carbonate solutions at 100 °C⁸. The results from X-ray diffraction and IR-absorption studies are briefly reported in this paper. A more extensive report will be published elsewhere.

X-ray diffraction analysis. Figure 1 shows diffraction patterns of the 2 types of carbonate-containing synthetic apatites: (A) and (B) are apatites prepared at 1000 °C before and after passing dry CO_2 over them; (C) and (D) are patterns of apatites precipitated from phosphate solutions at 100 °C without and with added carbonate, respectively. The expansion of the a-axis in the former

case is determined from the shifting of the (300) reflection to lower angles (2θ) , and the slight contraction of the c-axis from the shifting of the (002) reflection to higher angles. In the precipitated apatites, carbonate incorporation shifts the (300) reflection to higher angles, indicating a contraction of the a-axis, and the (002) reflection to lower angles, indicating a slight expansion of the c-axis. Since the planar CO_3 group is larger than the (OH) group, an expansion of the unit cell would be expected to accompany a CO₃-for-OH substitution in the apatite (Table I). On the other hand, the planar carbonate is smaller than the tetrahedral PO₄ group, and a contraction of the unit-cell would be expected to accompany a CO₃for-PO₄ substitution (Table II). It is also of interest to note that the a-axes of the precipitated carbonate-free apatites as precipitated, are slightly longer (i.e. by 0.014–0.022 Å) than those of apatites which have been heated at high temperature or those of the mineral OHapatite from Holly Springs, Ga. (i.e. 9.42, Å). This slight expansion of the a-axis observed in the precipitated apatites could be due to the presence of some HPO_4^- or entrapped water⁴.

- ¹ W. EITEL, Schr. Koenigsb. gelehrt. Ges. naturw. Kl. 1, 159 (1925).
- ² D. McConnell, Am. J. Sci. 36, 247 (1938).
- ³ J. SMITH and J. R. LEHR, J. agric. Food Chem. 14, 342 (1966).
- ⁴ O. R. TRAUTZ, Ann. N.Y. Acad. Sci. 60, 696 (1955).
- ⁵ J. C. Elliott, J. dent. Res. 42, 1081 (1963); Ph.D. Thesis, University of London (1964).
- ⁶ R. WALLAEYS, Trans. Colln Int. Union pure appl. Chem. Muenster (Verlag Chemie, Weinheim 1954), p. 183. ⁷ R. Z. LEGEROS, Nature 206, 403 (1965).
- ⁸ R. Z. LEGEROS, Ph.D. Thesis, New York University (1967).

Fig. 1. X-ray diffraction patterns of the 2 types of carbonate-containing synthetic apatites. (A) OH-apatite treated at high temperature $(a = 9.42_2 \text{ Å}; c = 6.88 \text{ Å}; \text{weight-}\% \text{ CO}_3 = 0.0)$. (B) Prepared by passing dry CO₂ over (A) at 1000 °C $(a = 9.57 \text{ Å}; c = 6.85_1 \text{ Å}; \text{weight-}\% \text{ CO}_3 = 5.83)$. (C) OH-apatite precipitated at 100 °C $(a = 9.43_6 \text{ Å}; c = 6.88_1 \text{ Å}; \text{weight} \% \text{ CO}_3 = 0.5)$. (D) Carbonate-containing OH-apatite precipitated (at 100 °C). $(a = 9.40_6; c = 6.89_7 \text{ Å}; \text{weight-}\% \text{ CO}_3 = 5.80)$. Samples (A) and (B) were prepared and given to us by Dr. J. C. ELLIOT, University of London.

Fig. 2. IR-absorption spectra of carbonate-containing apatites. (A) Biological apatite (human enamel). (Carbonate content 2.7 weight-% CO₃.) (B) Carbonate-apatite prepared at 1000 °C (Carbonate content 5.83 weight-% CO₃). (C) Carbonate-OH-apatite precipitated at 100 °C (Carbonate-content 3.5 weight-% CO₃).

IR-absorption analysis. The difference between the 2 types of synthetic carbonate-containing apatites is also reflected in their IR-absorption spectra (Figures 2B and 2C). Table III lists the corresponding frequencies of the vibration bands of the CO_3 , PO_4 and OH groups in the 2 types of carbonate apatites. The significant difference is observed in the V_2 vibration of CO_3 : it is observed at 877 cm⁻¹ in high temperature apatite (Figure 2B) and as a doublet at 871 and 878 cm⁻¹ in precipitated apatite (Figure 2C). The CO_3V_3 vibration is degenerate in both spectra but are shifted to higher frequencies in the high temperature apatites. The additional band at 1125 cm⁻¹ in the spectrum of high temperature apatite is unassigned.

Table I. Lattice parameters of apatites treated at high temperatures with CO_2 (900–1000 °C): CO_3-for-OH substitution

Type of apatite	Weight- % CO ₃	Lattice parameters a -axis (Å)	c-axis (Å)	
Calcium	0.0	9,42	6.885,6	
Calcium	3.49	9,518	6.851 ⁶	
Calcium	1.77	9.457	6.878 ⁵	
Calcium	2.31	9,469	6.8745	
Calcium	3.67	9.492	6.8675	
Calcium	4.39	9.544	6.8595	
Barium	0.0	10.15	7.69 ⁹	
Barium	3.0	10.20	7.65 ⁹	
Strontium	0.0	9.76	7.2810	
Strontium	3.58	9.88	7.24 ¹⁰	

Table II. Lattice parameters of carbonate-containing precipitated apatites (100 °C): CO_{s}-for-PO_4 substitution

Type of apatite	Weight-	Lattice parameters		
·- •	% CO ₃	a-axis (Å)	c-axis (Å)	
Calcium	0.50	9.43 ₆	6.87 ₉ 8	
Calcium	2.50	9.42	6.88 ₇ 8	
Calcium	4.28	9.41,	6.88, ⁸	
Calcium	8,96	9.38,	6.89 ⁸	
Calcium	15.10	9.35	6.90 ⁸	
Calcium	20,53	9.31	6.92,8	
Calcium	22.22	9.304	6.93 ⁸	
Calcium:	0.51	9.47,	6.92 ₂ 8	
strontium (9:1)	15.84	9.386	6.95 ₃ ⁸	
Calcium:	0.40	9.48 ₉	6.89 ₅ ⁸	
barium (9:1)	10.51	9.427	6.91 ⁸	
	16.73	9.38	6.92 ⁸	
Strontium	0.20	9.76	7.2748	
Strontium	27.50 ^a	9.70 ₃	7.2598	
Lead	0.21	9.76 ₈	7.19 ₇ b	
Lead	8.20	9.72 ₁	7.20 ₂ 8	
Calcium,	0.30	9.45 ₅	6.89 ₈ 8	
lead (9:1)	14.68	9.347	6.91 ₉ 8	

^a Contains also SrCO₃. ^b This work.

¹⁰ A. N. AKHAVAN-NIAKI, Annls Chim. 6, 51 (1961).

⁹ S. MOHSENI-KOUTSEFEHANI, Ph.D. Thesis, Université de Paris (1961).

Biological apatites. The expanded *a*-axis of the human enamel apatite has been explained as being due to the partial substitution of CO_3 -for-OH in the apatite structure⁵. However, it has been demonstrated from these studies that all apatites precipitated from aqueous systems demonstrate longer *a*-axes than those heated to high temperatures or those of the natural mineral apatites. Furthermore, since the CO_3 -for-OH substitution is accomplished only with the exclusion of water, it is difficult

Table III. Frequency assignments of the absorption bands of OH, CO_3 , PO_4 in the spectra of carbonate-containing synthetic and biological apatites

Vibrating group	Modes	Synthetic A ^a	Synthetic B ^b	H. Enamel
он	· · · · · · · · · · · · · · · · · · ·		3580 cm ⁻¹	3575 cm ⁻¹
		-	1624	1630
PO ₄	V ₁	950	957	955
	V.	1045	1090	1080
	U	1025	1040	1035
	Va	602	602	602
	-	572	562	562
	comb.	455	470	472
CO ₃	V.	877	870	870
	4		877	878
	V,	1460	1410	1410
	5	1525	1450	1460
		1550	1540	1545

^a Prepared at high temperatures (1000 °C). CO_3 -for-OH substitution. ^b Precipitated at 100 °C. CO_3 -for-PO₄ substitution.

Synthesis of Phyllocaerulein

We report the synthesis of a nonapeptide of the formula Pyr-Glu-Tyr(SO₃H)-Thr-Gly-Trp-Met-Asp-Phe-NH₂ according to the following scheme. The product was found to be identical with natural phyllocaerulein¹⁻³.

Condensation of Boc-Thr⁵ with Z-NH-NH₂ via the mixed anhydride in THF afforded the protected hydrazide I (97% yield) which was directly treated with AcCl in AcOH/HCl 6N to give ⁺H₂-Thr(Ac)-NH-NH-Z·Cl⁻ (II) (68% yield; m.p. 125-126°; $[\alpha]_{23}^{23}$ + 10°, c = 1, DMF; $E_{1,2} = 0.94$ Glu. Anal. Calcd. for $C_{14}H_{19}N_3O_5$ ·HCl: C 48.6; H 5.8; N 12.1; Cl 10.2. Found C 48.2; H 6.2; N 12.3; Cl 9.8).

Boc-Tyr⁵ was condensed, via the mixed anhydride, with II in THF/DMF in the presence of 1 equivalent of MM to give Boc-Tyr-Thr(Ac)-NH-NH-Z (III) (61% yield; m.p. 133-134°; $[\alpha]_{21}^{21}$ - 1.6°, c = 1, DMF. Anal. Calcd. for $C_{28}H_{36}N_4O_9$: C 58.7; H 6.3; N 9.8. Found C 58.5; H 6.3; N 9.6).

Treatment of III with HCl/AcOH 1.3 N afforded ${}^{+}\text{H}_2$ -Tyr-Thr(Ac)-NH-NH-Z·Cl⁻ (IV) (100% yield; m.p. 150–160°; $[\alpha]_D^{21} + 29^\circ$, c = 1, AcOH 95%. Anal. Calcd. for $C_{23}H_{28}N_4O_7$ ·HCl: C 54.3; H 5.8; N 11.0. Found C 54.3; H 5.9; N 10.7) which was condensed, via the mixed anhydride, with Boc-Glu(OBzl)⁶ in THF/DMF in the

to conceive of such substitution in biological apatites. The IR-absorption spectra of biological apatites are similar to those of precipitated apatites in which CO_3 -for-PO₄ substitution takes place (Figure 2). The V₂ CO₃ doublet at 871 and 878 cm⁻¹ in the spectra of biological apatites have been interpreted to indicate lattice carbonate (substituting for OH groups) and adsorbed carbonate⁵. This doublet is also observed in the spectra of carbonate⁵ containing precipitated apatites¹¹. The similarities of the characteristics of the carbonate bands in the spectra of precipitated and biological apatites suggest that the carbonates in these apatites experience the same environment¹¹⁻¹⁴.

Zusammenfassung. Um die Art des Karbonateinbaues in die Apatitstruktur zu klären, wurden zwei Typen von synthetischen Karbonatapatiten untersucht: solche, die sich in wässrigen Medien bildeten, und andere, die bei hohen Temperaturen und unter Ausschluss von Wasser entstanden.

R. Z. LEGEROS, O. R. TRAUTZ, E. KLEIN and J. P. LEGEROS

New York University, College of Dentistry, New York (N.Y. 10010) and The Cooper Union, New York (N.Y., USA), 12 August 1968.

- ¹¹ R. Z. LEGEROS, J. P. LEGEROS, O. R. TRAUTZ and E. KLEIN, Proc. Soc. appl. Spec. 7, in press (1968).
- ¹² R. Z. LEGEROS, O. R. TRAUTZ, J. P. LEGEROS and E. KLEIN, Bull. soc. Chim. Fr., No. special 1712 (1968).
- ¹³ We acknowledge the technical assistance of C. S. STROM and G. M. DOMINGO. This program is supported by U.S.P.H.S. Grant No. DE-00159.
- ¹⁴ We are grateful to Dr. J. C. ELLIOTT of the University of London for giving us the apatites prepared at high temperatures.

presence of 1 equivalent of MM to give Boc-Glu(OBzl)-Tyr-Thr(Ac)-NH-NH-Z (V) (85% yield; m.p. 183-184°; $[\alpha]_{D}^{21} - 3.6^{\circ}, c = 1$, DMF. *Anal.* Calcd. for C₄₀H₄₉N₅O₁₂: C 60.7; H 6.2; N 8.8. Found C 60.5; H 6.1; N 8.8).

In the same way, treatment of V with HCl/AcOH 1.3 N gave ${}^{+}\text{H}_2$ -Glu(OBzl)-Tyr-Thr(Ac)-NH-NH-Z·Cl- (VI) (86% yield; m.p. 182°; $[\alpha]_{\text{D}}^{21} + 28^{\circ}$, c = 1, AcOH 95%; $\text{E}_{1,2} = 0.56 \text{ Glu}$. Anal. Calcd. for $\text{C}_{35}\text{H}_{41}\text{N}_5\text{O}_{10}$ ·HCl: C 57.7; H 5.8; N 9.6. Found C 57.6; H 6.0; N 9.3) which on condensation with Z-Pyr⁷, via the mixed anhydride, in THF/DMF in the presence of 1 equivalent of MM, afforded the protected tetrapeptide Z-Pyr-Glu(OBzl)-Tyr-Thr(Ac)-NH-NH-Z (VII) (70% yield; m.p. 222-224°;

A. ANASTASI and V. ERSPAMER, 3rd Symposium of the European Pancreatic Club, Prague 2–4 July 1968.

- ² A. ANASTASI, Experientia 25, 8 (1969).
- ³ All the amino acids have the L-configuration. The following abbreviation are used throughout this paper⁴: Z, benzyloxycarbonyl; Boc, t-butyloxycarbonyl; OB2l, benzyl ester; Ac, acetyl; n-Bu, n-butyl; Et, Ethyl; MM, N-methylmorfoline; THF, tetrahydrofuran; DMF, dimethylformamide; DMSO, dimethylsulfoxide; Cys(SO₃H), cysteic acid.