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ON THE Q-SYSTEMS OF CIRCLES 

By 

A. FLORIAN (Salzburg), L. HARS (Budapest) and J. MOLN~R (Budapest) 

Let {Ci} be a packing of  cirles in the Euclidean plane. A circle C is said to 
be a supporting circle of  the circle system {Ci} if it has no c o m m o n  interior point  
with {Ci} and touches at least three circles o f  {Ci}. I f  ~ is the greatest lower bound  
of  the radii Q* of  all support ing circles o f  {Ci} and if ~ = i n f Q * > 0 ,  then {Ci} is 
called a Q-system of  circles. 

The density of  a circle system {C~} with respect to the Euclidean plane is 
defined by 

Z (C~ A C(R)) 1 
5 =  li-m i 

R ~  C(R)  

where C(R) is a circle o f  radius R centred at a fixed point  O of  the plane. 2 
Subsequent to the investigations o f  MOLN.~R ([10], [l l]) ,  c6ncerning e-systems 

of  circles, we prove the following 

THEOREM. 3 I f  d denotes the density of  a packing in the Euclidean plane by a 
Q-system of  circles of  radii contained in the interval [e, 1], where e>O, then 

1 
arccos - - - -  

I + Q  
d < _ 

1/2Q+e ~ 

2 1 / 3 - 1 ,  I / 2 - 1  and 1 and the Q-system consists only of  Equality holds i f  ~= 3 

unit circles. 4 
Consider three circles o f  radii 1, 1, Q and centres A, B, C mutual ly  touching 

1 
arccos - -  

one another  (Fig. 4). Then d(Q)= 1 + Q is the density o f  the unit  circles 
] / iQ+Q ~ 

in the triangle ABC, namely the ratio o f  the area o f  the par t  o f  the triangle ABC 
covered by the unit  circles to the area o f  the whole triangle. 

1 We denote a domain and its area by the same symbol. 
�9 2 It is easy to see that 6 does not depend oa the choice of O; see F~JES T6T~ [1]. 

Attention should also be drawn to the quadrilateral tessellation and the lemmas employed 
in the proof of this theorem which may be useful for future density investigations. Lemmas 5 and 
6 are due to Hirs and Florian respectively, the remaining part of the article is the work of Moln{tr. 

4 See Fig. 1, 2 and 3. 
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206 A. FLORIAN, L. HARS AND J. MOLN.~R 

Fig. 1 Fig. 2 

> 
> 

F~.3 

Fig. 4 

Without loss of generality we may suppose that the packing of the p-system 
of circles is saturated. We shall construct a tessellation with quadrilateral faces, 
the vertices of which are alternatively centres O1, 02 . . . .  of  the circles C1, C2 . . . .  
and centres 111, V2 . . . .  of  the supporting circles of {C,}. In order to prove our 
assertion we shall show that in each quadrangle of the tessellation the density of  
{Ci} does not exceed d(p). 

We introduce the notion of the (algebraic) distance d(P, C ) = O P - r  of a 
point P from a circle C of radius r centred at O. Let us associate with any circle 
C i the set S, of  all points P lying "nearer"  to Ci than to any other circle Cj, i.e. 
d(P, Ci)<d(P, Cj) ( j ~ i ) /  It is not difficult to show that S, is a star region with 
respect to the pole Og (Fig. 5). The star regions {Si} are bounded by arcs of hyper- 
bolae and segments of straight lines. 

Obviously the star regions $1, Sz . . . .  constitute a tessellation S. Joining the 
centre Oi ( i=  1, 2, ...) with the vertices V1, V2 . . . .  of  the corresponding star region 
Si, we obtain a new tessellation T with quadrilateral faces (Fig. 6). 

We proceed to show that in each quadrilateral face (quadrangle) of  T the 
density of {C~} is <=d(Q). 

To prove this statement we need a certain number of lemmas. 

See FEJES T6TH--MOLN.~R [2]. 
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ON THE e-SYSTEMS OF CIRCLES 207 

Fig.  5 Fig. 6 

LEMMA 1. Let AOB be a triangle of <~ OAB>= 2 .  I f  M is the midpoint of  the 

side AB then <~AOM> <~BOM. 

PROOF. The condition <[OAB>= 2 implies OB>OA (Fig. 7). Let O* be the 

mirror point of O with respect to M. Considering the triangle O0*B, we have 
<~ BOM< <~ BO* M =  ~ AOM in consequence of O* B =  OA < OB. 

t~ _ _  0 ~ 

0 A 

Fig. 7 

Let OaAO2B be a simple quadrangle and let Ca, Ce be two circles of centres 
Oa, 02. Denote by Ca(AOaB ) and C3(AO~B) the sectors of the circles Ca and C3 
corresponding to the angles <~AOaB and <~AO~B of OaAO~B. We define the 
density of the circles Ca, C2 with respect to the quadrangle Oa.403B by 

(1) d13(AB ) = C~(AOaB)+ Ce(AO3B) 
OaAO3B 

LEMMA 2. In the Euclidean plane, consider two circles Ca, Ce of centres Oa, 03 
and of  radii ra, r2 (ra<r3), resp. Let A, B be two different points, both at the same 

distance from Ca and C2 and on the same side of the straight line Oa 03. I f  < BAOa >=2 

(hence 01A < OaB), then for any point P of the segment AB we have d12(AP)>= da3(PB). 
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2 0 8  A. FLORIAN,  L. I-Is AND J. M O L N s  

PROOF. 6 We first remark that A, B are points on the same branch of the hyper- 
bola H of foci O1, 08, the length of the transverse axis is r2-r~.  Since the line 

AB is a secant o f / t  and < AOI # we have also (Fig 8) 
z ;  

Fig. 8 

Let P1, P~, -.., Pn be equidistant points on AB, i.e. API=P1P2 . . . . .  P,,-IP,,= 
=P,,B. In view of Lemma 1, the angles <~AO1P1=~l, <ZPIOIP2=a2 . . . . .  
.~P,,O~B=a,,+I and <~AO2P~=fla, ~PIO2P~=fl2 . . . . .  <P,,O~B=fl,,+~ form 
two decreasing sequences. On the other hand, the quadrangles O~AO2P~, 01PIP2P2, 
. . . .  01P, O~B have all the same area. Therefore, employing the notation introduced 
in (1), we see that the sequence d12(APO, dl~(P1P2) . . . . .  dl~(P,,B) decreases mono- 
tonically. Consequently we get 

d12(APi) >= d~2(Pi-iPi) > d~(P~Pi+O ~= d12(Pi B) (i = 1 . . . .  , n). 

But the inequality dl~(APi)>d12(PiB) is true for any n and i=1  . . . . .  n. This con- 
dudes the proof  of  Lemma 2. 

Obviously, d~(AP)>=d12(PB) implies dI2(AP)>=d~(AB). 

LEMMA 3. Let H be a hyperbola branch and F the focus lying in the convex 
domain bounded by H. Let us denote by H* one of the half branches of H determined 
by the transverse axis of H. The circle of  diameter FP, where P is a point of  H*, 
has at most one further common point with H*. 

X 2 y 2  
PROOF. Let aS b~ = 1 be the equation of the hyperbola H and let H* be 

the half branch of H lying in the first quadrant of the coordinate system (Fig. 9). 
Let F(c, 0) be the corresponding focus of H and P(2, #) a point of  H*. The equation 
of  the circle C with diameter FP is 

x2 + y=--(.~ + c)x--#y  + 2c = O. 

The abscissae of the common points of C and H satisfy the equation 

C 2 ~ a - -  
f ( x )  -- -~ x~ - (2  + c)x---ff # Cx~-a~ + 2 c - b  ~ = O. 

A different proof which does not make use of Lemma 1, was given later by A. Florian. 
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F(-c,o) 

I y / 
/ 

Via, o) F(c~ o) x 

Fig.  9 

Obviously, f ( x )  is a strictly convex function for x>=a which vanishes at x = ) ,  
Now we distinguish two cases: 

(i) 2 > a  implies 

f ' ( s  = 2 ~-~-c > ( c - a ) >  0 

and f ( a ) = ( 2 - a ) ( c - a ) > O .  Therefore, the function f ( x )  has precisely two zeros 
in the interval x>a, the greater of which is ~. Let V=(a, 0) be the vertex of H*. 
If  2 > a  and consequently P C  V then C intersects H* in exactly two points, namely 
P and Q c P ,  where Q lies between P and V. From this we deduce immediately 

, 7l: 
that any point P* on the open arc PQ of H* has the property ~ P P  F>-~.  

a(ac - b  2) 
(ii) For 2 = a  the function f (x) vanishes only at x = a  and x -  c2 ; 

but ac-b2<c ~. It follows that, if  P =  V, the circle C and the hyperbola half 
branch H* touch each other at V and do not have any other point in common. 

LEMMA 4. In the Euclidean plane, consider two non-overlapping circles C1, C2 
of centres 01, 02 and radii rl, r2 (rl<r2). Let A, B be two different points, both 
equidistant from C1 and C2 and on the same side of the straight line 0102. Let H 
be that branch of the hyperbola of foci 01, 02 having the length r2 - r  1 of the trans- 
verse axis which contains A, B. I f  01A<O1B, then for any interior point P of the 
arc AB of  H we have, using the notation (1), 

(2) dl~. (AP) ~ d12 (PB). 

PROOF. It suffices to prove', the lemma under the assumption that A is not the 
vertex V of H, carrying out the limiting process A ~ V in the other case. 

We can find, on the basis of Lemma 3, on the open arc AB of  H a sequence 
of  points P1, P2 , - . . ,  P , ,  so that the angles ~P1A01,  r . . . . .  r 
are obtuse. A sequence of this property we call admissible. Since the tangent at 
any point P of H is the bisecting line of <~ O1P02, the angles <:[/'1A 02, <~ P2 P102, 
.... BP,02 are obtuse too (Fig. 10). 
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210  A. FLORIAN, L. HARS AND J. MOLN.~R 

We shall first prove the inequality 

lira d~3(MP3 > lim d~3(PiN) (i = 1, . . . ,  n) 
M ~ P  i N ~ P  i 

where M and N are pointson the segments P~_~P~ and P~P~+I respectively (Fig. 11). 

/ 

Q 
Fig. 10 Fig. 11 

Write <[MO1Pi=el, <~MO2PI=~2, <~NOIPi=8~, <~NO~PI=e~ and denote 
by 11, I~ and 13, I~ the intersections of the perpendicular bisector of  the segment 
01P~ and 03P~ respectively, with the straight lines perpendicular to P~_IP~ and 
P~PI+ 1 at Pv 

Taking into account that PiII=RI>P~I[=R~,  PiI3=R3<PiI~=R * and that 

r~ o-~? (r2+0) 3 
~ o--~? (~1+0) ~ 

it is easy to see that 

~1 r~+r~ R3 3 2 
- -  R"~" r~ + r3 

lim d13(MPi) >- lim ~3 = > 
M~P~ ~1~0 ~1 ~ 2  , ~--"--~ 2 R 3  - - 3  

--01~'i +c'3ri --~-01P~ + ~ P ~  
82 

R~ ~ 3 ~ 3 R---f rl + r~ "-~ rl + r3 

R~ > H---E2 . O---~,3 ,~olim . lim d12(PiN). 

Therefore, and in view of  Lemma 2, we obtain 

d13(AP0 > dl~(P1P3) > . . .> d~(P,B), 
whence 

d13(APi) >- d13(Pi_~Pi) > d13(PiPi+l) e d12(P~B ) (i = 1, ..., n). 

Let P be an arbitrary interpolating point on the open arc P~_~P~ of H. Recalling 
zc 

the property <~ PIPi_~01 >~-,  we note that <~ PP~_IQ1 > 2  and, according to Lemma 

3, <~PfO~>-~-. Thus the sequence P 1 ,  . . . ,  P i - 1 ,  P ,  Pi ,  " " ,  Pn i s  also admissible 

and the inequality (2) is shown. 
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ON THE e-SYSTEMS OF CIRCLES 211 

Let ABC  be a triangle where the lengths of  the sides AC and  BC are supposed 

to be fixed. The notation is chosen so that AC<=BC. We draw attention to the 
density 

2~ + #fl + vx 

&(x) = ; A C . B C .  s inx  
z ,  

where x indicates the angle enclosed by A C  and BC (Fig. 12). Herein 2, #, v denote 
non-negative constants, not all of  which are zero. 6(x) represents the ratio of  a 
weighted sum of the angles to the area of  the triangle ABC. 

C 

Fig.  12 

LEMMA 5. 7 Let us vary the angle x of  the triangle ABC, so that O<-x<=n. Then, 
in any subinterval of  (0, re), f (x) attains its maximum at one of  the endpoints. 

Functions having this property we shall call in the following quasiconvex. 
For the sake of simplicity let us consider, instead of 6(x), its constant multiple 

(3) S(x) -- 2 e +  pfl + vx 
sin x 

We remark that  S(x) is continuous in (0, 7r). 
Making use of  the cosine theorem and introducing the notation 

(p<_-l), we have 
p -  cos x 

COS 0~ = 
V l + p 2 - 2 p  cos x 

( 4 )  

Differentiation yields 

dc~ 
( 5 )  ~ '  = - -  = 

dx 
and, in view of ~ + fl + x = re, 

p c o s x - 1  
1 + p ~ -  2p cos x ' 

AC/BC= p  

(6) 
fl, d,6 - 1 -  ~z" = p c~ x -  p2 

= d'--x = 1 + p ~ - 2 p  cos x " 

7 See  L.  HArts [4]. I n  a p r e v i o u s  p a p e r  [3] A.  FLOrtIAN p r o v e d  a m o r e  spec i a l  r e s u l t  i n  
a s i m i l a r  way .  
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212 A. F L O R I A N ,  L. H~-RS A N D  J. MOLN./~.R 

Putting, for  brevi ty 's  sake, 2c~+#f i+vx=y ,  we obtain  

(7) y ' =  

and, with the nota t ion  

- [(/~ - v) pZ + 2 -  v] + p cos x [2 + p - 2v] 
1 + p 2 - 2 p  cos x 

2 ~ ~ t (8) A = ( # - v ) p  + / . - v ;  B = p ( /~ - rp -2v ) ,  

- A  + B o o s  x 
(9) y '  = . 

1 + p 2 - 2 p  cos x 

Differentiating once again, we have 

00) 

and, owing to (3), 

(11) 

y" = p(p2_  1)(~-).) sin x 
(1 +p2--2p  cos x) "~ 

S '  = y sm x -  y cos x _ P 
sin 2 x sin ~ x " 

We observe tha t  S '  has the same sign as P. The funct ion 

(12) Q = y ' s i n x - y c o s x  _ P y ' t g x - y  
COS X COS X 

is cont inuous on the set [0, 7r/2)U(~/2, ~z] and has the values 

(13) Q(0) = - y ( 0 )  -~ 0, Q(Tc) = - y @ )  <= O. 

Since cos x > 0  in [0, ~z/2) and  cos x < 0  in (re/2, ~] we can state tha t  

a l )  for  x < ~ / 2  S is increasing if Q > 0 ,  
a2) s is decreasing if Q < 0 ,  
b l )  for  ~z/2<x<-~ S is decreasing if Q > 0 ,  
b2) S is increasing if Q < 0 .  

To  examine the sign of  Q it will be useful to see whether  Q is increasing or 
decreasing in a given interval. Fo r  this purpose  we shall need its derivative 

Since 

0 ' =  P ( P 2 - 1 ) ( P - 2 ) s i n 2 x  ( - A + B c ~  
( l + p2_  2p cos x)O. cos x + ( l + p ~ -  2p cos x) cos2 x �9 

[cos 2 x (! + p 2 - 2 p  cos x) 2 Q']  sgn Q ' =  sgn [ - s ~  

in (0, n/2) and  (~/2, re) we have to consider the funct ion 

COS 2 X 

R ( x )  -- sin2 x (1 + p Z -  2p cos x)~Q" = 

= - 2pB cos 2 x + [(p~ - 1) (k i -  2) p + 2Ap + B (1 + p2)] cos x -  A (1 + p2). 
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ON THE 0-SYSTEMS OF CIRCLES 213 

But, by (8), the coefficient of cos x is 4pA, so that we finally have 

(14) R(x) = -2pB cos ~ x+4pA cos x - A  (1 +p2). 

Obviously, R(x) is a polynomial in cos x of degree _-<2. Denoting it by F 

F(z) = - 2pBz 2 + 4pAz-- A (1 + p2) 

tlaen R(x)=F(cos x). The discriminant of F is 

(15) D = 8Ap~(p ~-  1)(/z--2). 

In proving S to be quasiconvex, we have to distinguish several cases and 
subcases. 

I. B=0.  If  also A=0 ,  then from (9) it follows that y ' = 0  and from (11) 
that sgn S'= - s g n  (cos x). Therefore, S is decreasing for x<n/2 and increasing 
for x>n/2, which means that S is quasiconvex. 

If, however, Ar  then F(z)=A[4pz-(p2+l)] is a linear polynomial in 

z having the root P 2 + l > 0 .  
4p 

1.1. A>0.  For c o s x = z ~ 0  we have R(x )<0  by (14). More generally, if 
R(x)<-O for x>n/2 (Q is decreasing)or R(x )<0  for n/2-<x<xl and R(x)>0  
in Xl<X<n with any xlC(Tr/2, n) (Q is decreasing in (lr/2, xl) and increasing in 
(x,, re)), we shall refer to it as case c). Since Q(n)<=O by (13), in this case Q is either 
negative or positive in the whole interval (n/2, ~), or positive in a certain subinterval 
(n/2, Xo) and negative in (x0, n). Then we can state that: 

in the first case (case b2)) S is increasing, 
in the second case (case bl)) S is decreasing and 
in the third case (case bl) in (~z/2, x0) and case b2) in (x0, n)) S is decreasing 

in (n/2, xo) and increasing in (x0, n). 
I f  we can show, moreover, that for x-<n/2 we have S'(x)<=O (this will be 

supposed to hold in case c)) then S follows to be quasiconvex. 
In fact, for O<x<n/2 cosx  and s inx  are positive, so that, in view of (11), 

it will be sufficient to verify the inequality y'<O. But this is trivial by (9) and B=0,  
A>0.  

1.2. A<0.  Then we have R(n/2)>O. More generally, if R(x)=>0 for 0 < x <  
< e / 2  (Q is increasing) or R(x )<0  in (0, x2) and R( x ) > 0  in (x2, 7c/2) with any 
x~(O, n/2) (Q is decreasing in (0, x~) and increasing in (x2, 7z/2)), we shall refer 
to f.~ s case d). Since Q(0)<=0 by (13) Q is, in this case, either negative or positive 
in the whole interval (0, ~z/2), or negative in a certain subinterval (0, x0) and positive 
in (Xo, n/2). Therefore, we again have to distinguish three cases here: 

In the first case (case a2)) S is decreasing 
in the second case (case al)) S is increasing and 
in the third case S is decreasing in (0, x0) and increasing in (xo, n/2). 
It is easy to see that if for x>n/2 we have S'(x)>=O (this is supposed to 

be valid in case d)), then S is proved to be quasiconvex. 
But now c o s x < 0 ,  s i n x > 0  and, by (11), we have only to show that y'>O. 

This inequality follows from (9) in view of A<0,  B=0.  
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From now on we can suppose that Br  

II. D_<-0 (see (15)). In this case the polynomial F does not change its sign. 

II.1. R<_-0 in (0, re). Combining Q'(x)~O in (0, re/2) with Q(0)=<0 by (13), 
we find that Q(x)<=O and, by (12) and (11), that also S'(x)<=O for x<=~/2. Since 
case c) is realized here the function S(x) turns out to be quasiconvex. 

II.2. R_->0 in (0, re). Combining Q'(x)>-_O in 0z/2, ~) with Q(~)<-0 by (13) 
we get Q(x)<=O and, owing to (12) and (11), S'(x)>--_O for x~rc/2. Since the 
conditions of case d) are fulfilled, the function S(x) is quasiconvex. 

Consequently, in the following we shall confine ourselves to the more com- 
plicated case D>0 .  

III. D>0 .  This assumption ensures that p < l  and 

(16) A(# -2 )  < O, 

as can be seen from (15). The quadratic equation F(z)=0  has exactly two different 
real roots 

- 2A ___ ] /2A (p~ - 1) ( p -  2) 
(17) z+,_ = - 2 B  

Obviously, they have the same sign if and only if 

(18) AB > O. 

Consequently, we have to study four subcases corresponding to the signs of A and B. 

IIL1. A>0,  B>0.  The graph of F(z) is exhibited in Fig. 13a. Since z+ + z _ =  
A 

= 2 ~ -  we obtain z + , z _ > 0 .  

F(z) 
I 

\ 

Fig.  13a 

We proceed to show that the conditions of case c) are satisfied. For x>-_rc/2 
is z=cosx<=0, hence F(z)<0  and R(x)<0.  Now let x<rc/2, then by (11) 
S'(x)<-O, provided y'<O or - A + B c o s x < O .  But 

(19) - - A + B e o s x  < - - A + B  = (p--1)[--(#--v)p§ 
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where the first factor is negative. As A > 0  we deduce from (16) ~.>p, whence 
2 - v > # - v .  Since B=p Q . + ~ t - 2 v ) > 0 ,  we have (2 - v) + (/t - v) > 0  and therefore 
2 - v > 0 .  Consequently, we obtain 2-v>p  (p-v), so that the second factor in 
(19) is positive and -A+Bcosx<O, according to our assertion. 

III.2. A > 0 ,  B < 0  (see Fig. 13b). Then z _ < 0 < z + .  Observing that trivially 
-A+Bcosx<O or S ' ( x ) < 0  for x-<-~z/2, we state that there is case c) again. 

III.3. A < 0 ,  B > 0  (see Fig. 13c). Then z + < 0 < z _ .  

i Flz ) I F{z) 
l 

Z 

I 

Fig. 13b Fig. 13c 

We shall show that  the conditions of  case d) are now fulfilled. To do this, 
we have yet to verify that S ' ( x ) > 0  or, owing to (11), that y" sin x - y  cos x > 0  
for x>rc/2. We have 

- A  + p ( 2  + # -  2v) cos x 
(20) y '  sin x - -  y cos x = 1 + p2_ 2p cos x sin x - -  (2~ + pfl + vx) cos x > 

:> .l+p~._2pcosx PSinx--pfi cosx_-> l+p2 2pcos xpsinx- lzs inf i  cosx,  

the second factor being negative. On the other hand, we obtain, employing the 
sine theorem on the triangle ABC, 

sin fl = p sin x 
Ul +p~-2p cos x ' 

hence the first factor on the right hand of  (20) is 

)~+#-2v 
1 + p2_ 2p cos x p sin x -  # sin fl = 

= p s i n x  [(L + / z - 2 v ) - #  ~l+p2-2pcosx. 
1 + p2_ 2p cos x 

I t  follows f rom (16) that  p:>). or # - v > 2 - v .  Since O<B/p=(l~-v)+(2-v), 
we have / z - v > 0 .  On the other hand, O>A=(#-v)p2+O~--v), whence 2 - v < 0  
and 2 - 2 v < 0 .  Taking into account, further, that l+p2-2pcosx>l,  we see 
that the expression in brackets is negative, and consequently the statement 
y" sin x - y  cos x > 0  for x>rc/2 is true. 
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216 A. FLORIAN, L. H/~.RS AND J. MOLN.,I.R 

III.4. A<0, B<0 (see Fig. 13d). Then 0 < z _ < z + .  
We proceed to show that the assumptions of case d) are fulfilled again. For 

x>=rc/2 is y ' > 0  by (9), hence S'(x)>0.  Further, the vertex of the parabola F(z) 
A 

has the abszissa z0=-~-. We claim that zo>l. This inequality is equivalent to 

- A + B > 0  or, by (19), to - ( p - v ) p + ( 2 - v ) < O .  It follows from (16) that ).</x 
or 2 - v < # - v .  But O>B/p=()~-v)+(#-v) ,  hence 2 - v < 0 .  Consequently, 
- ( p - v ) p + ( 2 - v ) < - ( # - v ) p + ( 2 - v ) p = ( 2 - ~ O p < O .  Therefore, for the greater 
root of F(z) , z+>l  holds, confirming our assertion. 
Now, the proof of Lemma 5 is complete. 

iu(z) 
/ 

I 
Fig. 13d 

Z 

-r LEMMA 6. Let C,, C1 and Cp be three circles of  radii a (0 a= l ) ,  l and p (>01 
fixed), respectively, and mutually touching one another (Fig. 14). Then the density 
6 of C, and C1 with respect to the triangle A, determined by the centres of  the three 
circles, attains its maximum only for a= 1. 

c~ 
Fig. 14 

PROOF. Obviously, 

2A 

A',:ta Mathema~ica Academiae Sctenttarun~ Hungaricae 34, !979 
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where q~a and qh denote the central angles belonging to C a and C~. By elementary 
calculation we find 

1 V 1 |@6 = f (a ,p ) - -  ]/a(a+p+l) a2arctg a(a+p+l)  t-arctg a + p + l  " 

To examine this function, we differentiate it partially and obtain 

with 

Of 2 a + p + l  
0---a = 2[a(a + p +  1)] ~/2 fl(a' p) 

V 1; a z (2a + 3p + 3) arctg P ap 
f l (a 'P)--  2 a + p + l  a(a+p+t)  arctg a + p + l  

a2+(a +p)(a-- i) 
(a+p)(2a+p+ i) ]/ap(a +p+ 1). 

Further differentiation yields 

Of 1 = 2a 4a2+6ap+6a+ 3p~+6p+ 3 f2(a, p) 
Oa (2a + p +  1) ~ 

where 
/ p 1 ]/ap(a+p+ 1) 

f~(a, p) = arctg a(a+p+l)  2 (a+l)2(4a2+6ap+6a+3p2+6p+3) 

�9 a+p " (2a2+3ap+3a+4p)_ ~ 4a+p+3a " 

After some laborious calculations we obtain, putting amp"=(m, n), 

4a(a + p)3(a + 1)Z(4aZ + 6ap+ 6a + 3pZ + 6p + 3)2 ~ / a(a + p + l) Of 2 = 
p Oa 

= f 3 ( a , p ) - - - 9 6  (7,4)-128 (7, 1)-336 (6,3)-880 (6 ,2) -  

-320 (6, 1)-456 (5,4)-1920 (5,3)-1688 (5,2)-288 (5, 1 ) -  

-294 (4,5)-1918 (4,4)-2850 (4,3)-1298 (4,2)-104 (4, 1 ) -  

- 8 7  (3,6)-944 (3, 5)-2086 (3,4)-1620 (3, 3)-435 (3,2)- 

Since 

fa (I, p) = - 24p 7 -  348p 6-1908p 5 -  5112p 4 -  7008p a -  4460p ~-  852p < 0 

- 1 2  (3, 1 ) -9  (2, 7),-216 (2,6)-658 (2, 5)-700 (2 ,4) -  

-309 (2,3)-60 (2,2)-18 (1,7)--63 (1,6)-48 (1,5)+18 (1,4)+ 

+ 18 (1, 3 ) -3  (1, 2)+3 (0, 7)+ 18 (0, 6)+36 (0, 5)+30 (0, 4)+9 (0, 3). 

0 ~ < 0 ,  f~ is a concave function of a. Note that f3(0,p)>0 and 
O u -  
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for any positive p. Therefore, f3(a, p) and also ~ passes from positive to negative 

values when a varies, increasing from 0 to 1. 
We observe that 

r P 2pZ+14p2+27p+13 
fz(1,p) = arctg p + 2  2(p+l)2(3p2+12p+13) 1/P(P+2)' 

hence 
l 

d@fe(1,p) = 2(p+ 1)a(3p~+ 12p+ 13)z p + 2  

�9 [21p5+ 170p4+527p3+767p~+496p+91] > O. 

Since f2(1,0)=0, we have f2(1,p)>0. Combining this with !im0f~(a,p)=-~o, 

ofl we deduce that f2(a, p) and also ~ passes from negative to positive values when 

a increases. In view of fl(0, p) =0  it follows that f (a,  p) as a function of a assumes 
its maximum only in a boundary point of the interval 0<=a-<_l. But it is easily 
proved, in a similar way as above, that 

1/~o +----2 I f  P ]/p(p + 2) 
2 [f(1, p ) - f (0 ,  p)] = arctg V p + 2 2 (p + 1) > 0  

for p>0 .  This completes the proof of Lemma 6. 

Finally, it is very easy to prove the following two lemmas: s 

LEMMA 7. Let Ak=OTP k (k= l ,  2) be right triangles ( <~ OTPk=rc/2), where 
the sides TPk do not have common interior points with the circle C of centre 0 
(Fig. 15). I f  OPI<OP2 then 

C(~A1 CNA2 
A1 A2 

LEMMA 8. Let Ak=OTkP (k= l ,  2) be right triangles ( <; OTkP=rc/2), where 
the sides TkP do not have common interior points with the circle C of centre 0 
(Fig. 16). I f  <~TIOP< ~ T 2 0 P  then 

C(~A1 C(~A2 
A1 As 

Let us now return to the proof of our theorem. 
For simplicity's sake, let us denote by O1 V1 O3 V2 an arbitrary quadrangle of 

the tessellation T, where O1, 02 are the centres of the circles C1, C2 of {Ci} and 
V1, Vg are the corresponding vertices of the tessellation S. 

s See MOLN~.R [5] [6], [7], [8], [9]. 

A c t a  N a t h e m a f i c a  A c a d e m ~ a e  S c i e n t i a r u m  H u n g a r i c a e  34, 1979 



ON THE o-SYSTENIS OF CIRCLES 219 

Fig. 15 

r, 

p 

We now proceed to show that in O1 V102 V2 the density of {C~} does not 
exceed d(0), i.e. 

1 
arccos 1 + Q 

d12(Vi V..) <= d(~) - 
1/~,o+0 a 

and distinguish the following two cases: 
a) 01 V102 V2 is convex. In this case we decompose O, VIO,. V2 into two tri- 

angles Al=OlO2V 1 and Ae=OIO2V~. Obviously, the inequality d12(V1V=)<= 
~d(Q) is valid if we can show that 

dl.o(Vi) = G A & + C 2 ~ 3 ~  -<_ d ( e )  (i = l ,  2), 
di 

and it suffices for i=  1. 
Consider three circles of' radii r, r, 0* and of centres A, B, C, respectively, 

mutually touching one another. We denote with d(r, r, 9*) the density of the 
circles of centres A, B with respect to the triangle ABC; obviously d(r, r, 0")= 

Let 0"_->~o be the radius of the supporting circle C centred at V1 which 
touches C 1, C2. 

If  the segment O102 has no common interior points with C (Fig. 17) then, 
in view of Lemma 5, dl~(V1) attains its maximum for one of the following 
configurations: 

(i) C1 and C~ (radii rx and r 2, q<=r2) touch one another (Fig. 18). Making 
use of Lemma 6 and, if necessary, of Lemma 7, we obtain d12(V1)<=d(r~, r.,, 0")= 

(ii) The segment O102 touches C (Fig. 19). We draw the tangents from V1 
to Cz and C~ and denote the points of tangency with T1 and T~. In view of Lemma 8 
we get 

CiNOiPV1 CiNOiTiV1 
< -- d(ri, ri, 0") (i = 1, 2), 

OiPV1 OiTiV1 
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where P is the foot of the perpendicular from V1 to O102. Thus d12(V~)<= 
<=d(r2, r2, O*)<=d(Q). 

If the segment 0102 has common interior points with C, the inequality d12 ([/1)<-- 
<=d(~) can be proved in the same way as in case (ii) of a). 

Fig. 17 Fig. 18 Fig. 19 

b) 01 V102 V2 is concave. Let O1 V1 < O1 V~ (Fig. 20), then by Lemma 4 we 
have dlz(V 1 V2)<=d12(VO. But we have already seen that da2(V1)<=d(Q). 

This completes the proof of our statement that in each quadrangle of the tessella- 
tion T the density of {C~} is not greater than d(~). In order to deduce, finally, the 
inequality d~d(e), we remark that, in view of supr,_-<l, the circumradii of 

/ 

Fig. 20 

the quadrangles of the tessellation T have also a finite upper bound b. Denoting 
by Q~j=O, AO~B the quadrangle of the tessellation T corresponding to the circles 
C,, Cj and taking into account that 

Ci (A O~B) + Cj (A Oj B) <= d(Q) Qij, 

Ar ~a~hemat~ca Academiae Sc~ent~arum Hungaricae 34, 1979 
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we obtain 
d(e) 

1 2 '  c (R) )  <_- 1 Z c, <_- Z < 
7zR 2 �9 ~ R  ~ c nC(R)#~ ~zR 2 = 

- -  :zR~. d ( 0 )  = 1 +  2 

F r o m  this the desired inequality d<=d(o) follows immediately. 

RZMARK. The Lemmas  2, 4, 5, 7, 8 continue to be valid whenever the "measure"  
of  C i is an arbitrary positive value ~0(r~). The system o f  values {q)(r~)} associated 
to {C,} is called a functional system of  {C~} and the corresponding density a func- 
tional density. 

Lemma 5, however, is no longer valid for  an arbitrary functional system. The 
case o f  a decreasing function qo(r) yields a trivial counterexample.  I t  is easy to 
give counterexamples also for  certain increasing functions (0(r). But it seems likely 
that  Lamina 6 continues to hold for some particular functional systems of  {C~}. 
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