ON THE *o***-SYSTEMS** OF CIRCLES

B_v

A. FLORIAN (Salzburg), L. HÁRS (Budapest) and J. MOLNÁR (Budapest)

Let $\{C_i\}$ be a packing of cirles in the Euclidean plane. A circle C is said to be a *supporting circle* of the circle system ${C_i}$ if it has no common interior point with $\{C_i\}$ and touches at least three circles of $\{C_i\}$. If ϱ is the greatest lower bound of the radii ϱ^* of all supporting circles of $\{C_i\}$ and if $\varrho = \text{int } \varrho^* > 0$, then $\{C_i\}$ is called a *Q-system of circles.*

The *density of a circle system* ${C_i}$ *with respect to the Euclidean plane* is defined by

$$
\delta = \overline{\lim}_{R \to \infty} \frac{\sum\limits_{i} (C_i \cap C(R))}{C(R)}^{1}
$$

where $C(R)$ is a circle of radius R centred at a fixed point O of the plane.²

Subsequent to the investigations of MOLNÁR ($[10]$, [11]), concerning ρ -systems of circles, we prove the following

THEOREM. 3 *If d denotes the density of a packing in the Euclidean plane by a* ρ -system of circles of radii contained in the interval $[\varepsilon, 1]$, where $\varepsilon > 0$, then

$$
d \leq \frac{\arccos \frac{1}{1+\varrho}}{\sqrt{2\varrho + \varrho^2}}.
$$

Equality holds if $\rho = \frac{2}{3} - 1$, $\gamma = 2 - 1$ *and 1 and the Q-system consists only of unit circles. 4*

Consider three circles of radii 1, 1, ϱ and centres A, B, C mutually touching $\arccos \frac{1}{1}$

one another (Fig. 4). Then $d(\varrho) = \frac{1}{\sqrt{2a + a^2}}$ is the density of the unit circles

in the triangle *ABC,* namely the ratio of the area of the part of the triangle *ABC* covered by the unit circles to the area of the whole triangle.

¹ We denote a domain and its area by the same symbol.

² It is easy to see that δ does not depend on the choice of O; see FEJES T6TH [1].

³ Attention should also be drawn to the quadrilateral tessellation and the lemmas employed in the proof of this theorem which may be useful for future density investigations. Lemmas 5 and 6 are due to Hárs and Florian respectively, the remaining part of the article is the work of Molnár.

⁴ See Fig. 1, 2 and 3.

Fig. 4

Without loss of generality we may suppose that the packing of the ϱ -system of circles is saturated. We shall construct a tessellation with quadrilateral faces, the vertices of which are alternatively centres O_1, O_2, \ldots of the circles C_1, C_2, \ldots and centres V_1, V_2, \ldots of the supporting circles of $\{C_i\}$. In order to prove our assertion we shall show that in each quadrangle of the tessellation the density of ${C_i}$ does not exceed $d(\varrho)$.

We introduce the notion of the (algebraic) *distance* $d(P, C) = \overline{OP} - r$ of a point P from a circle C of radius r centred at O . Let us associate with any circle C_i the set S_i of all points P lying "nearer" to C_i than to any other circle C_j , i.e. $d(P, C_i) < d(P, C_i)$ ($j \neq i$)⁵ It is not difficult to show that S_i is a star region with respect to the pole O_i (Fig. 5). The star regions $\{S_i\}$ are bounded by arcs of hyperbolae and segments of straight lines.

Obviously the star regions S_1, S_2, \ldots constitute a tessellation S. Joining the centre O_i (i=1, 2, ...) with the vertices V_1, V_2, \ldots of the corresponding star region S_i , we obtain a new tessellation T with quadrilateral faces (Fig. 6).

We proceed to show that in each quadrilateral face (quadrangle) of T the density of $\{C_i\}$ is $\leq d(\varrho)$.

To prove this statement we need a certain number of lemmas.

⁵ See FEJES TÓTH---MOLNÁR [2].

Acta Mathematica Acaclemiae Scientiarum Hungaricae 34, 1979

LEMMA 1. Let AOB be a triangle of $\leq OAB \geq \frac{\pi}{2}$. If M is the midpoint of the side AB then $\triangle AOM > \triangle AOM$.

PROOF. The condition $\leq OAB \geq \frac{\pi}{2}$ implies $\overline{OB} > \overline{OA}$ (Fig. 7). Let O^* be the mirror point of O with respect to M. Considering the triangle *O0*B,* we have $\langle \angle BOM \rangle \langle \angle BOM \rangle = \langle \angle AOM$ in consequence of $O^* \overline{B} = O \overline{A} \langle \overline{OB} \rangle$.

Let $O_1 A O_2 B$ be a simple quadrangle and let C_1, C_2 be two circles of centres O_1 , O_2 . Denote by $C_1(AO_1B)$ and $C_2(AO_2B)$ the sectors of the circles C_1 and C_2 corresponding to the angles $\langle A_1A_2B_1 \rangle \langle A_2B_2B_1 \rangle$ and $\langle A_1A_2B_2 \rangle$. We define the *density of the circles* C_1, C_2 with respect to the quadrangle O_1AO_2B by

(1)
$$
d_{12}(AB) = \frac{C_1(AO_1B) + C_2(AO_2B)}{O_1AO_2B}.
$$

LEMMA 2. In the Euclidean plane, consider two circles C_1, C_2 of centres O_1, O_2 *and of radii* r_1, r_2 ($r_1 < r_2$), resp. Let A, B be two different points, both at the same *distance from* C_1 *and* C_2 *and on the same side of the straight line* O_1O_2 *. If* $\triangleleft BAO_1 \geq \frac{n}{2}$ *(hence* $\overline{O_1A} < \overline{O_1B}$), then for any point P of the segment AB we have $d_{12}(AP) \geq d_{12}(PB)$.

PROOF.⁶ We first remark that A, B are points on the same branch of the hyperbola H of foci O_1 , O_2 , the length of the transverse axis is r_2-r_1 . Since the line AB is a secant of H and $\langle BAO_1 \rangle \geq \frac{1}{2}$ we have also $\langle BAO_2 \rangle \geq \frac{1}{2}$ (Fig. 8).

Let P_1, P_2, \ldots, P_n be equidistant points on *AB*, i.e. $\widehat{AP_1} = \widehat{P_1P_2} = \ldots = \widehat{P_{n-1}P_n} = \widehat{P_nP_2} = \ldots$ $= P_n B$. In view of Lemma 1, the angles $\langle A_1 Q_1 P_1 = \alpha_1, \quad \langle P_1 Q_1 P_2 = \alpha_2, \ldots, \quad \rangle$ $\langle P_n O_1 B = \alpha_{n+1}$ and $\langle A O_2 P_1 = \beta_1, \langle P_1 O_2 P_2 = \beta_2, ..., \langle P_n O_2 B = \beta_{n+1} \rangle$ form two decreasing sequences. On the other hand, the quadrangles $O_1AO_2P_1$, $O_1P_1P_2P_2$, \ldots , $O_1P_nO_2B$ have all the same area. Therefore, employing the notation introduced in (1), we see that the sequence $d_{12}(AP_1)$, $d_{12}(P_1P_2)$, ..., $d_{12}(P_nB)$ decreases monotonically. Consequently we get

$$
d_{12}(AP_i) \geq d_{12}(P_{i-1}P_i) > d_{12}(P_iP_{i+1}) \geq d_{12}(P_iB) \quad (i = 1, ..., n).
$$

But the inequality $d_{12}(AP_i) > d_{12}(P_iB)$ is true for any *n* and $i=1, ..., n$. This condudes the proof of Lemma 2.

Obviously, $d_{12}(AP) \ge d_{12}(PB)$ implies $d_{12}(AP) \ge d_{12}(AB)$.

LEMMA 3. *Let H be a hyperbola branch and F the focus lying in the convex domain bounded by H. Let us denote by H* one of the half branches of H determined by the transverse axis of H. The circle of diameter FP, where P is a point of H*, has at most one further common point with H*.*

PROOF. Let $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$ be the equation of the hyperbola H and let H^* be

the half branch of H lying in the first quadrant of the coordinate system (Fig. 9). Let $F(c, 0)$ be the corresponding focus of H and $P(\lambda, \mu)$ a point of H^* . The equation of the circle C with diameter *FP* is

$$
x^2 + y^2 - (\lambda + c)x - \mu y + \lambda c = 0.
$$

The abscissae of the common points of C and H satisfy the equation

$$
f(x) \equiv \frac{c^2}{a^2} x^2 - (\lambda + c)x - \frac{a}{b} \mu \sqrt{x^2 - a^2} + \lambda c - b^2 = 0.
$$

⁶ A different proof which does not make use of Lemma 1, was given later by A. Florian.

Acta Mathematica Acaclemiae Sc~entiarum Hungaricae 34, 1979

Obviously, $f(x)$ is a strictly convex function for $x \ge a$ which vanishes at $x = \lambda$. Now we distinguish two cases:

(i) $\lambda > a$ implies

$$
f'(\lambda) = \lambda \frac{c^2}{a^2} - c > \frac{c}{a} (c - a) > 0
$$

and $f(a)=(\lambda-a)(c-a)$ Therefore, the function $f(x)$ has precisely two zeros in the interval $x>a$, the greater of which is λ . Let $V=(a, 0)$ be the vertex of H^* . If $\lambda > a$ and consequently $P \neq V$ then C intersects H^{*} in exactly two points, namely P and $Q \neq P$, where Q lies between P and V. From this we deduce immediately that any point P^{*} on the open arc PQ of H^{*} has the property $\langle PP^*F \rangle \frac{\pi}{2}$. (ii) For $\lambda = a$ the function $f(x)$ vanishes only at $x = a$ and $x = \frac{a(ac - b^2)}{2}$;

but $ac-b^2 < c^2$. It follows that, if $P=V$, the circle C and the hyperbola half branch H^* touch each other at V and do not have any other point in common.

LEMMA 4. In the Euclidean plane, consider two non-overlapping circles C_1, C_2 *of centres* O_1 , O_2 and radii r_1 , r_2 (r_1 < r_2). Let A, B be two different points, both *equidistant from* C_1 and C_2 and on the same side of the straight line O_1O_2 . Let H be that branch of the hyperbola of foci O_1 , O_2 having the length r_2-r_1 of the trans*verse axis which contains A, B. If* $\overline{O_1A} < \overline{O_1B}$, then for any interior point P of the *arc AB of H we have, using the notation* (1),

(2)
$$
d_{12}(AP) \geq d_{12}(PB).
$$

PROOF. It suffices to prove the lemma under the assumption that A is not the vertex V of H, carrying out the limiting process $A \rightarrow V$ in the other case.

We can find, on the basis of Lemma 3, on the open arc *AB* of H a sequence of points $P_1, P_2,..., P_n$, so that the angles $\langle P_1 A_1 A_2, P_2 P_1 O_1, ..., \langle P_n P_n O_n \rangle$ are obtuse. A sequence of this property we call admissible. Since the tangent at any point P of H is the bisecting line of $\langle O_1PO_2$, the angles $\langle P_1AO_2, \langle P_2P_1O_2, \rangle$ \ldots , BP_nO_2 are obtuse too (Fig. 10).

We shall first prove the inequality

$$
\lim_{M \to P_i} d_{12}(MP_i) > \lim_{N \to P_i} d_{12}(P_iN) \quad (i = 1, ..., n)
$$

where M and N are pointson the segments $P_{i-1}P_i$ and P_iP_{i+1} respectively (Fig. 11).

Write $\lt M_0P_i=e_1, \lt M_0P_i=e_2, \lt M_0P_i=e_1^*, \lt M_0P_i=e_2^*$ and denote by I_1 , I_1^* and I_2 , I_2^* the intersections of the perpendicular bisector of the segment O_1P_i and O_2P_i respectively, with the straight lines perpendicular to $P_{i-1}P_i$ and $P_i P_{i+1}$ at P_i .

Taking into account that $\overline{P_i I_1} = R_1 \rightarrow \overline{P_i I_1^*} = R_1^*$, $\overline{P_i I_2} = R_2 \rightarrow \overline{P_i I_2^*} = R_2^*$ and that

$$
\frac{r_2^2}{r_1^2} > \frac{\overline{O_2 P_i}^2}{\overline{O_1 P_i}^2} = \frac{(r_2 + \varrho)^2}{(r_1 + \varrho)^2}
$$

it is easy to see that

$$
\lim_{M \to P_i} d_{12}(MP_i) \ge \lim_{\epsilon_1 \to 0} \frac{\frac{\epsilon_1}{\epsilon_2} r_1^2 + r_2^2}{\frac{\epsilon_1}{\epsilon_2} \overline{O_1 P_i^2} + \overline{O_2 P_i^2}} = \frac{\frac{R_2}{R_1} r_1^2 + r_2^2}{\frac{R_2}{R_1} \overline{O_1 P_i^2} + \overline{O_2 P_i^2}} > \frac{\frac{R_2^*}{R_2^*} r_1^2 + r_2^2}{\frac{R_2^*}{R_1^*} \overline{O_1 P_i^2} + \overline{O_2 P_i^2}} = \lim_{\epsilon_2^* \to 0} \frac{\frac{\epsilon_1^*}{\epsilon_2^*} r_1^2 + r_2^2}{\frac{\epsilon_2^*}{\epsilon_2^*} \overline{O_1 P_i^2} + \overline{O_2 P_i^2}} \ge \lim_{N \to P_i} d_{12}(P_i N).
$$

Therefore, and in view of Lemma 2, we obtain

$$
d_{12}(AP_1) > d_{12}(P_1P_2) > \ldots > d_{12}(P_nB),
$$

whence

$$
d_{12}(AP_i) \ge d_{12}(P_{i-1}P_i) > d_{12}(P_iP_{i+1}) \ge d_{12}(P_iB) \quad (i = 1, ..., n).
$$

Let P be an arbitrary interpolating point on the open arc $P_{i-1}P_i$ of H. Recalling π the property $\langle P_i P_{i-1} O_1 \rangle \frac{1}{2}$, we note that $\langle P_i P_{i-1} O_1 \rangle \frac{1}{2}$ and, according to Lemma 3, $\langle P_i P O_1 \rangle \frac{\pi}{2}$. Thus the sequence $P_1, \ldots, P_{i-1}, P, P_i, \ldots, P_n$ is also admissible and the inequality (2) is shown.

Act-a Mathematica Academiae Scientiarum Hungaricae 34, i979

Let *ABC* be a triangle where the lengths of the sides *AC* and *BC* are supposed to be fixed. The notation is chosen so that $\overline{AC} \leq \overline{BC}$. We draw attention to the density

$$
\delta(x) = \frac{\lambda \alpha + \mu \beta + v x}{\frac{1}{2} \overline{AC} \cdot \overline{BC} \cdot \sin x}
$$

where x indicates the angle enclosed by AC and BC (Fig. 12). Herein λ , μ , v denote non-negative constants, not all of which are zero. $\delta(x)$ represents the ratio of a weighted sum of the angles to the area of the triangle *ABC.*

Fig. 12

LEMMA 5.⁷ Let us vary the angle x of the triangle ABC, so that $0 \le x \le \pi$. Then, *in any subinterval of* $(0, \pi)$, $\delta(x)$ attains its maximum at one of the endpoints.

Functions having this property we shall call in the following *quasiconvex.* For the sake of simplicity let us consider, instead of $\delta(x)$, its constant multiple

(3)
$$
S(x) = \frac{\lambda \alpha + \mu \beta + \nu x}{\sin x}.
$$

We remark that $S(x)$ is continuous in $(0, \pi)$.

Making use of the cosine theorem and introducing the notation $AC/BC = p$ $(p \leq 1)$, we have

(4)
$$
\cos \alpha = \frac{p - \cos x}{\sqrt{1 + p^2 - 2p \cos x}}
$$

Differentiation yields

(5)
$$
\alpha' = \frac{d\alpha}{dx} = \frac{p\cos x - 1}{1 + p^2 - 2p\cos x},
$$

and, in view of $\alpha + \beta + x = \pi$,

(6)
$$
\beta' = \frac{d\beta}{dx} = -1 - \alpha' = \frac{p \cos x - p^2}{1 + p^2 - 2p \cos x}.
$$

⁷ See L. HARS [4]. In a previous paper [3] A. FLORIAN proved a more special result in a similar way.

Putting, for brevity's sake, $\lambda \alpha + \mu \beta + \nu x = y$, we obtain

(7)
$$
y' = \frac{-[(\mu - v)p^2 + \lambda - v] + p \cos x[\lambda + \mu - 2v]}{1 + p^2 - 2p \cos x}
$$

and, with the notation

(8)
$$
A = (\mu - \nu)p^2 + \lambda - \nu; \quad B = p(\lambda + \mu - 2\nu),
$$

(9)
$$
y' = \frac{-A + B \cos x}{1 + p^2 - 2p \cos x}.
$$

Differentiating once again, we have

(10)
$$
y'' = \frac{p(p^2 - 1)(\mu - \lambda)\sin x}{(1 + p^2 - 2p\cos x)^2}
$$

and, owing to (3),

(11)
$$
S' = \frac{y' \sin x - y \cos x}{\sin^2 x} = \frac{P}{\sin^2 x}.
$$

We observe that S' has the same sign as P . The function

(12)
$$
Q = \frac{y' \sin x - y \cos x}{\cos x} = \frac{P}{\cos x} = y' \text{tg } x - y
$$

is continuous on the set $[0, \pi/2] \cup (\pi/2, \pi]$ and has the values

(13)
$$
Q(0) = -y(0) \le 0, \quad Q(\pi) = -y(\pi) \le 0.
$$

Since cos $x>0$ in [0, $\pi/2$) and cos $x<0$ in $(\pi/2, \pi]$ we can state that

al) for $x \lt \pi/2$ S is increasing if $Q > 0$, a2) S is decreasing if $Q<0$, bl) for $\pi/2 < x \leq \pi$ *S* is decreasing if $Q > 0$, b2) S is increasing if $Q<0$.

To examine the sign of Q it will be useful to see whether Q is increasing or decreasing in a given interval. For this purpose we shall need its derivative

$$
Q'=\frac{p(p^2-1)(\mu-\lambda)\sin^2 x}{(1+p^2-2p\cos x)^2\cos x}+\frac{(-A+B\cos x)\sin^2 x}{(1+p^2-2p\cos x)\cos^2 x}.
$$

Since

$$
\operatorname{sgn} Q' = \operatorname{sgn} \left[\frac{\cos^2 x}{\sin^2 x} (1 + p^2 - 2p \cos x)^2 Q' \right]
$$

in $(0, \pi/2)$ and $(\pi/2, \pi)$ we have to consider the function

$$
R(x) = \frac{\cos^2 x}{\sin^2 x} (1 + p^2 - 2p \cos x)^2 Q' =
$$

= $-2pB \cos^2 x + [(p^2 - 1)(\mu - \lambda)p + 2Ap + B(1 + p^2)] \cos x - A(1 + p^2).$

Acta Mathematica Academiae Scientiarum Hungaricae 34, 1979

But, by (8), the coefficient of $\cos x$ is $4pA$, so that we finally have

(14)
$$
R(x) = -2pB\cos^2 x + 4pA\cos x - A(1 + p^2).
$$

Obviously, $R(x)$ is a polynomial in cos x of degree ≤ 2 . Denoting it by F

$$
F(z) = -2pBz^2 + 4pAz - A(1+p^2)
$$

then $R(x)=F(\cos x)$. The discriminant of F is

(15)
$$
D = 8Ap^2(p^2-1)(\mu-\lambda).
$$

In proving S to be quasiconvex, we have to distinguish several cases and subcases.

I. $B=0$. If also $A=0$, then from (9) it follows that $v'=0$ and from (11) that sgn $S' = -sgn(\cos x)$. Therefore, S is decreasing for $x < \pi/2$ and increasing for $x > \pi/2$, which means that S is quasiconvex.

If, however, $A\neq 0$, then $F(z)=A[4pz-(p^2+1)]$ is a linear polynomial in z having the root $p^2+1-\alpha$.

having the root
$$
\frac{4p}{ }
$$

1.1. $A > 0$. For cos $x = z \le 0$ we have $R(x) < 0$ by (14). More generally, if $R(x) \le 0$ for $x > \pi/2$ (Q is decreasing) or $R(x) < 0$ for $\pi/2 < x < x_1$ and $R(x) > 0$ in $x_1 < x < \pi$ with any $x_1 \in (\pi/2, \pi)$ (Q is decreasing in $(\pi/2, x_1)$ and increasing in (x_1, π) , we shall refer to it as *case* c). Since $Q(\pi) \le 0$ by (13), in this case Q is either negative or positive in the whole interval $(\pi/2, \pi)$, or positive in a certain subinterval $(\pi/2, x_0)$ and negative in (x_0, π) . Then we can state that:

in the first case (case $b2$)) S is increasing,

in the second case (case $b1$)) S is decreasing and

in the third case (case b1) in $(\pi/2, x_0)$ and case b2) in (x_0, π)) S is decreasing in $(\pi/2, x_0)$ and increasing in (x_0, π) .

If we can show, moreover, that for $x \lt \pi/2$ we have $S'(x) \le 0$ (this will be supposed to hold in case c)) then S follows to be quasiconvex.

In fact, for $0 < x < \pi/2$ cos x and sin x are positive, so that, in view of (11), it will be sufficient to verify the inequality $y' < 0$. But this is trivial by (9) and $B=0$, $A > 0$.

1.2. $A < 0$. Then we have $R(\pi/2) > 0$. More generally, if $R(x) \ge 0$ for $0 < x <$ $\langle \langle x, z \rangle \rangle$ (Q is increasing) or $R(x) \le 0$ in $(0, x_2)$ and $R(x) > 0$ in $(x_2, \pi/2)$ with any $x_2 \in (0, \pi/2)$ (Q is decreasing in $(0, x_2)$ and increasing in $(x_2, \pi/2)$), we shall refer to i[†] s *case* d). Since $Q(0) \le 0$ by (13) Q is, in this case, either negative or positive in the whole interval $(0, \pi/2)$, or negative in a certain subinterval $(0, x_0)$ and positive in $(x_0, \pi/2)$. Therefore, we again have to distinguish three cases here:

In the first case (case a2)) S is decreasing

in the second case (case al)) S is increasing and

in the third case S is decreasing in $(0, x_0)$ and increasing in $(x_0, \pi/2)$.

It is easy to see that if for $x > \pi/2$ we have $S'(x) \ge 0$ (this is supposed to be valid in case d)), then S is proved to be quasiconvex.

But now $\cos x < 0$, $\sin x > 0$ and, by (11), we have only to show that $y' > 0$. This inequality follows from (9) in view of $A<0$, $B=0$.

From now on we can suppose that $B\neq 0$.

II. $D \le 0$ (see (15)). In this case the polynomial F does not change its sign.

II.1. $R \le 0$ in $(0, \pi)$. Combining $Q'(x) \le 0$ in $(0, \pi/2)$ with $Q(0) \le 0$ by (13), we find that $O(x) \le 0$ and, by (12) and (11), that also $S'(x) \le 0$ for $x \le \pi/2$. Since case c) is realized here the function $S(x)$ turns out to be quasiconvex.

II.2. $R \ge 0$ in $(0, \pi)$. Combining $Q'(x) \ge 0$ in $(\pi/2, \pi)$ with $Q(\pi) \le 0$ by (13) we get $Q(x) \le 0$ and, owing to (12) and (11), $S'(x) \ge 0$ for $x \ge \pi/2$. Since the conditions of case d) are fulfilled, the function $S(x)$ is quasiconvex.

Consequently, in the following we shall confine ourselves to the more complicated case $D>0$.

III. $D>0$. This assumption ensures that $p<1$ and

$$
(16) \t\t\t A(\mu-\lambda) < 0,
$$

as can be seen from (15). The quadratic equation $F(z)=0$ has exactly two different real roots

(17)
$$
z_{+,-} = \frac{-2A \pm \sqrt{2A(p^2-1)(\mu-\lambda)}}{-2B}.
$$

Obviously, they have the same sign if and only if

$$
(18) \t\t AB > 0.
$$

Consequently, we have to study four subcases corresponding to the signs of A and B .

III.1. $A > 0$, $B > 0$. The graph of $F(z)$ is exhibited in Fig. 13a. Since $z_+ + z_ =2\frac{A}{R}$ we obtain $z_+, z_- > 0$.

Fig. 13a

We proceed to show that the conditions of case c) are satisfied. For $x \ge \pi/2$ is $z=\cos x \le 0$, hence $F(z) < 0$ and $R(x) < 0$. Now let $x < \pi/2$, then by (11) $S'(x) \leq 0$, provided $y' < 0$ or $-A+B \cos x < 0$. But

(19)
$$
-A+B\cos x < -A+B = (p-1)\{-(\mu-\nu)p+\lambda-\nu\}
$$

Acta Mathematica Academiae Scientiarum Hungaricae 34, 1979

where the first factor is negative. As $A>0$ we deduce from (16) $\lambda > \mu$, whence $\lambda - v > \mu - v$. Since $B = p(\lambda + \mu - 2v) > 0$, we have $(\lambda - v) + (\mu - v) > 0$ and therefore $\lambda - v > 0$. Consequently, we obtain $\lambda - v > p$ ($\mu - v$), so that the second factor in (19) is positive and $-A+B\cos x<0$, according to our assertion.

III.2. $A > 0$, $B < 0$ (see Fig. 13b). Then $z = 0 < z_+$. Observing that trivially $-A+B\cos x<0$ or $S'(x)<0$ for $x\leq \pi/2$, we state that there is case c) again. III.3. $A < 0$, $B > 0$ (see Fig. 13c). Then $z_+ < 0 < z_-$.

We shall show that the conditions of case d) are now fulfilled. To do this, we have yet to verify that $S'(x) > 0$ or, owing to (11), that $y' \sin x - y \cos x > 0$ for $x > \pi/2$. We have

(20)
$$
y' \sin x - y \cos x = \frac{-A + p(\lambda + \mu - 2v) \cos x}{1 + p^2 - 2p \cos x} \sin x - (\lambda \alpha + \mu \beta + v x) \cos x >
$$

$$
> \left[\frac{\lambda + \mu - 2v}{1 + p^2 - 2p \cos x} p \sin x - \mu \beta \right] \cos x \ge \left[\frac{\lambda + \mu - 2v}{1 + p^2 - 2p \cos x} p \sin x - \mu \sin \beta \right] \cos x,
$$

the second factor being negative. On the other hand, we obtain, employing the sine theorem on the triangle *ABC,*

$$
\sin \beta = \frac{p \sin x}{\sqrt{1 + p^2 - 2p \cos x}},
$$

hence the first factor on the right hand of (20) is

$$
\frac{\lambda + \mu - 2\nu}{1 + p^2 - 2p \cos x} p \sin x - \mu \sin \beta =
$$
\n
$$
= \frac{p \sin x}{1 + p^2 - 2p \cos x} [(\lambda + \mu - 2\nu) - \mu \sqrt{1 + p^2 - 2p \cos x}].
$$

It follows from (16) that $\mu > \lambda$ or $\mu - \nu > \lambda - \nu$. Since $0 < B/p = (\mu - \nu) + (\lambda - \nu)$, we have $\mu - \nu > 0$. On the other hand, $0 > A = (\mu - \nu)p^2 + (\lambda - \nu)$, whence $\lambda - \nu < 0$ and $\lambda - 2\nu < 0$. Taking into account, further, that $1 + p^2 - 2p \cos x > 1$, we see that the expression in brackets is negative, and consequently the statement $y' \sin x - y \cos x > 0$ for $x > \pi/2$ is true.

III.4. $A < 0$, $B < 0$ (see Fig. 13d). Then $0 < z_{-} < z_{+}$.

We proceed to show that the assumptions of case d) are fulfilled again. For $x \geq \pi/2$ is $y' > 0$ by (9), hence $S'(x) > 0$. Further, the vertex of the parabola $F(z)$ has the abszissa $z_0 = \frac{A}{B}$. We claim that $z_0 > 1$. This inequality is equivalent to $-A+B>0$ or, by (19), to $-(\mu-\nu)p+(\lambda-\nu)$ It follows from (16) that $\lambda<\mu$ or $\lambda - \nu < \mu - \nu$. But $0 > B/p = (\lambda - \nu) + (\mu - \nu)$, hence $\lambda - \nu < 0$. Consequently, $-(\mu-\nu)p+(\lambda-\nu) < -(\mu-\nu)p+(\lambda-\nu)p = (\lambda-\mu)p < 0$. Therefore, for the greater root of $F(z)$, $z_+ > 1$ holds, confirming our assertion. Now, the proof of Lemma 5 is complete.

LEMMA 6. Let C_a , C_1 and C_p be three circles of radii a $(0 < a \le 1)$, 1 and p (> 0 , *fixed), respectively, and mutually touching one another (Fig. 14). Then the density* δ of C_a and C_1 with respect to the triangle Δ , determined by the centres of the three *circles, attains its maximum only for a= 1.*

PROOF. Obviously,

$$
\delta = \frac{a^2 \varphi_a + \varphi_1}{2\varDelta}
$$

A',:ta Mathema~ica Academiae Sctenttarun~ Hungaricae 34, !979

where φ_a and φ_1 denote the central angles belonging to C_a and C_1 . By elementary calculation we find

$$
\sqrt{p\delta} = f(a, p) \equiv \frac{1}{\sqrt{a(a+p+1)}} \left[a^2 \arctg \sqrt{\frac{p}{a(a+p+1)}} + \arctg \sqrt{\frac{ap}{a+p+1}} \right].
$$

To examine this function, we differentiate it partially and obtain

$$
\frac{\partial f}{\partial a} = \frac{2a+p+1}{2[a(a+p+1)]^{3/2}} f_1(a, p)
$$

with

$$
f_1(a, p) = \frac{a^2(2a+3p+3)}{2a+p+1} \arctg \sqrt{\frac{p}{a(a+p+1)}} - \arctg \sqrt{\frac{ap}{a+p+1}} - \frac{a^2+(a+p)(a-1)}{(a+p)(2a+p+1)} \sqrt{ap(a+p+1)}.
$$

Further differentiation yields

$$
\frac{\partial f_1}{\partial a} = 2a \frac{4a^2 + 6ap + 6a + 3p^2 + 6p + 3}{(2a + p + 1)^2} f_2(a, p)
$$

where

$$
f_2(a, p) = \operatorname{arctg} \sqrt{\frac{p}{a(a+p+1)} - \frac{1}{2} \frac{\sqrt{ap(a+p+1)}}{(a+1)^2(4a^2 + 6ap + 6a + 3p^2 + 6p + 3)}} \cdot \left[\left(\frac{2a+p+1}{a+p} \right)^2 (2a^2 + 3ap + 3a + 4p) + \frac{4a+p+3}{a} \right].
$$

After some laborious calculations we obtain, putting $a^m p^n = (m, n)$,

$$
4a(a+p)^{3}(a+1)^{2}(4a^{2}+6ap+6a+3p^{2}+6p+3)^{2}\sqrt{\frac{a(a+p+1)}{p}\frac{\partial f_{2}}{\partial a}} =
$$

\n
$$
=f_{3}(a, p) \equiv -96 (7, 4)-128 (7, 1)-336 (6, 3)-880 (6, 2)-
$$

\n
$$
-320 (6, 1)-456 (5, 4)-1920 (5, 3)-1688 (5, 2)-288 (5, 1)-
$$

\n
$$
-294 (4, 5)-1918 (4, 4)-2850 (4, 3)-1298 (4, 2)-104 (4, 1)-
$$

\n
$$
-87 (3, 6)-944 (3, 5)-2086 (3, 4)-1620 (3, 3)-435 (3, 2)-
$$

\n
$$
-12 (3, 1)-9 (2, 7)-216 (2, 6)-658 (2, 5)-700 (2, 4)-
$$

\n
$$
-309 (2, 3)-60 (2, 2)-18 (1, 7)-63 (1, 6)-48 (1, 5)+18 (1, 4)+
$$

\n
$$
+18 (1, 3)-3 (1, 2)+3 (0, 7)+18 (0, 6)+36 (0, 5)+30 (0, 4)+9 (0, 3).
$$

\nSince
$$
\frac{\partial^{2} f_{3}}{\partial a^{2}} < 0, f_{2}
$$
 is a concave function of *a*. Note that $f_{3}(0, p) > 0$ and
\n
$$
f_{3}(1, p) = -24p^{7}-348p^{6}-1908p^{5}-5112p^{4}-7008p^{3}-4460p^{2}-852p < 0
$$

for any positive p. Therefore, $f_3(a, p)$ and also $\frac{\partial f_2}{\partial a}$ passes from positive to negative values when a varies, increasing from 0 to 1.

We observe that

$$
f_2(1,p) = \arctg \sqrt{\frac{p}{p+2} - \frac{2p^3 + 14p^2 + 27p + 13}{2(p+1)^2(3p^2 + 12p + 13)}} \sqrt{p(p+2)},
$$

hence

$$
\frac{d}{dp}f_2(1, p) = \frac{1}{2(p+1)^3(3p^2+12p+13)^2} \sqrt{\frac{p}{p+2}}.
$$

•[21p⁵+170p⁴+527p³+767p²+496p+91] > 0.

Since $f_2(1,0)=0$, we have $f_2(1,p)=0$. Combining this with $\lim_{a\to 0}f_2(a,p)=-\infty$, we deduce that $f_2(a, p)$ and also $\frac{\partial f_1}{\partial a}$ passes from negative to positive values when a increases. In view of $f_1(0, p) = 0$ it follows that $f(a, p)$ as a function of a assumes its maximum only in a boundary point of the interval $0 \le a \le 1$. But it is easily proved, in a similar way as above, that

$$
\frac{\sqrt{p+2}}{2}[f(1, p)-f(0, p)] = \arctg \sqrt{\frac{p}{p+2} - \frac{\sqrt{p(p+2)}}{2(p+1)}} > 0
$$

for $p>0$. This completes the proof of Lemma 6.

Finally, it is very easy to prove the following two lemmas:⁸

LEMMA 7. Let $A_k = OTP_k$ (k=1, 2) be right triangles ($\triangle QTP_k = \pi/2$), where *the sides TPk do not have common interior points with the circle C of centre 0 (Fig. 15). If* $\overline{OP_1} \leq \overline{OP_2}$ then

$$
\frac{C\cap A_1}{A_1} > \frac{C\cap A_2}{A_2}
$$

LEMMA 8. Let $\Delta_k = O T_k P (k=1, 2)$ *be right triangles* $({\langle O T_k P = \pi/2 \rangle})$, where the sides T_kP do not have common interior points with the circle C of centre O *(Fig. 16). If* $\langle T_1OP \rangle \langle T_2OP$ then

$$
\frac{C\cap A_1}{A_1} < \frac{C\cap A_2}{A_2}
$$

Let us now return to the proof of our theorem.

For simplicity's sake, let us denote by $O_1V_1O_2V_2$ an arbitrary quadrangle of the tessellation T, where O_1 , O_2 are the centres of the circles C_1 , C_2 of $\{C_i\}$ and V_1 , V_2 are the corresponding vertices of the tessellation S.

 s See MOLNÁR [5] [6], [7], [8], [9].

Acta Nathemafica Academ~ae Scientiarum Hungaricae 34, 1979

We now proceed to show that in $O_1V_1O_2V_2$ the density of $\{C_i\}$ does not exceed $d(\varrho)$, i.e.

$$
d_{12}(V_1V_2) \leq d(\varrho) = \frac{\arccos \frac{1}{1+\varrho}}{\sqrt{2\varrho + \varrho^2}},
$$

and distinguish the following two cases:

a) $O_1V_1O_2V_2$ is convex. In this case we decompose $O_1V_1O_2V_2$ into two triangles $A_1 = O_1O_2V_1$ and $A_2 = O_1O_2V_2$. Obviously, the inequality $d_{12}(V_1V_2) \leq$ $\leq d(\rho)$ is valid if we can show that

$$
d_{12}(V_i) = \frac{C_1 \cap d_i + C_2 \cap d_i}{d_i} \leq d(\varrho) \quad (i = 1, 2),
$$

and it suffices for $i=1$.

Consider three circles of radii r, r, ϱ^* and of centres A, B, C, respectively, mutually touching one another. We denote with $d(r, r, \varrho^*)$ the density of the circles of centres A, B with respect to the triangle ABC; obviously $d(r, r, \varrho^*)$ = $=d\left(1,1,\frac{\varrho^*}{r}\right)=d\left(\frac{\varrho^*}{r}\right).$

Let $\varrho^* \geq \varrho$ be the radius of the supporting circle C centred at V_1 which touches C_1, C_2 .

If the segment O_1O_2 has no common interior points with C (Fig. 17) then, in view of Lemma 5, $d_{12}(V_1)$ attains its maximum for one of the following configurations:

(i) C_1 and C_2 (radii r_1 and r_2 , $r_1 \le r_2$) touch one another (Fig. 18). Making use of Lemma 6 and, if necessary, of Lemma 7, we obtain $d_{12}(V_1) \leq d(r_2, r_2, \varrho^*)$ $=d\left(1,\,1,\,\frac{\varrho^*}{r_2}\right)\leq d(\varrho).$

(ii) The segment O_1O_2 touches C (Fig. 19). We draw the tangents from V_1 to C_1 and C_2 and denote the points of tangency with T_1 and T_2 . In view of Lemma 8 we get

$$
\frac{C_i \cap O_i P V_1}{O_i P V_1} < \frac{C_i \cap O_i T_i V_1}{O_i T_i V_1} = d(r_i, r_i, \varrho^*) \quad (i = 1, 2),
$$

where P is the foot of the perpendicular from V_1 to O_1O_2 . Thus $d_{12}(V_1) \leq$ $\leq d(r_2, r_2, \varrho^*) \leq d(\varrho).$

If the segment O_1O_2 has common interior points with C, the inequality $d_{12}(V_1) \leq$ $\leq d(\varrho)$ can be proved in the same way as in case (ii) of a).

b) $O_1V_1O_2V_2$ *is concave.* Let $O_1V_1 < O_1V_2$ (Fig. 20), then by Lemma 4 we have $d_{12}(V_1 V_2) \leq d_{12}(V_1)$. But we have already seen that $d_{12}(V_1) \leq d(\varrho)$.

This completes the proof of our statement that in each quadrangle of the tessellation T the density of ${C_i}$ is not greater than $d(\varrho)$. In order to deduce, finally, the inequality $d \leq d(\rho)$, we remark that, in view of sup $r_i \leq 1$, the circumradii of

the quadrangles of the tessellation T have also a finite upper bound b . Denoting by $Q_{ij}=O_i A O_j B$ the quadrangle of the tessellation T corresponding to the circles C_i , C_j and taking into account that

$$
C_i(AO_iB) + C_j(AO_iB) \leq d(\varrho)Q_{ii},
$$

Ar ~a~hemat~ca Academiae Sc~ent~arum Hungaricae 34, 1979

we obtain

$$
\frac{1}{\pi R^2} \sum_{i} (C_i \cap C(R)) \leq \frac{1}{\pi R^2} \sum_{C \cap C(R) \neq \emptyset} C_i \leq \frac{d(\varrho)}{\pi R^2} \sum_{i} Q_{ij} \leq
$$

$$
\leq \frac{\pi (R + 2 + 2b)^2}{\pi R^2} d(\varrho) = \left(1 + \frac{2 + 2b}{R}\right)^2 d(\varrho).
$$

From this the desired inequality $d \leq d(\varrho)$ follows immediately.

REMARK. The Lemmas 2, 4, 5, 7, 8 continue to be valid whenever the "measure" of C, is an arbitrary positive value $\varphi(r_i)$. The system of values $\{\varphi(r_i)\}$ associated to $\{C_i\}$ is called a functional system of $\{C_i\}$ and the corresponding density a functional density.

Lemma 5, however, is no longer valid for an arbitrary functional system. The case of a decreasing function $\varphi(r)$ yields a trivial counterexample. It is easy to give counterexamples also for certain increasing functions $\varphi(r)$. But it seems likely that Lemma 6 continues to hold for some particular functional systems of ${C_i}$.

References

- {1] L. FEJES TdTH, *Lagerungen in der Ebene, auf der Kugel und im Raum.* Zweite Auflage (Berlin-- Heidelberg-New York, 1972).
- [2] L. FEJES TÓTH and J. MOLNÁR, Unterdeckung und Überdeckung der Ebene durch Kreise, *Math. Naehrichten,* 18 (1958), 235--243.
- [3] A. FLOaIAN, Ausffillung der Ebene durch Kreise, *Rend. Circ. Mat. Palermo,* (2) 9 (1960), $300 - 312$.
- [4] L. HArs, Weighted circle systems (Thesis, in Hungarian), L. Eötvös University (Budapest, 1977).
- [5] J. MOLNAa, Collocazioni di cerchi sulla superficie di curvatura constante, *Celebrazioni arch# medee del secolo XX, Siracusa, 11-16 aprile 1961, pp. 61-72.*
- [6] J. MOLNÁR, Körelhelyezések állandó görbületű felületeken, *Magyar Tud. Akad. III. Oszt. Kdzl.,* 12 (1962), 223--263 (in Hungarian).
- [7] J. MOLNs Kreislagerungen auf Flfichen konstanter Kriimmung, *Math. Annalen,* t58 (i965), 365--376.
- [8] J. MOLNs Collocazioni di cerchi di Minkowski, *Ren& Sere. Mat. di Messina,* 10 (1966), 100--104.
- [91 J. MOLN/~R, Aggregati di cerchi di Minkowski, *Annali di 34atematiea pura ed applicata,* 71 $(1966), 101 - 108.$
- [10] J. MOLN~R, On the 0-system of unit circles, *Annales Univ. Sei. Budapest, Seetio Math.,* 29 $(1977), 195 - 203.$
- [11] J. MOLNÁR, Sur les empilements de ρ -système de cercles dans un domaine convexe, *Coll. on Intuitive Geometry* (Tihany, 1975).

(Received Novemker 16, 1977)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SALZBURG, PETERSBRUNNSTRABE 19, A--5020 SALZBURG, AUSTRIA. DEPARTMENT OF GEOMETRY,

L. EOTVOS UNIVERSITY, MÚZEUM KRT. 6-8, H-1088 BUDAPEST.