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ON THE ¢-SYSTEMS OF CIRCLES

By
A. FLORIAN (Salzburg), L. HARS (Budapest) and J. MOLNAR (Budapest)

Let {C;} be a packing of cirles in the Euclidean plane. A circle C is said to
be a supporting circle of the circle system {C;} if it has no common interior point
with {C;} and touches at least three circles of {C;}. If ¢ is the greatest lower bound
of the radii ¢* of all supporting circles of {C;} and if ¢=inf ¢*=0, then {C;} is
called a g-system of circles.

The density of a circle system {C;} with respect to the Euclidean plane is

defined by
~Z@newy)’
TR TTam
where C(R) is a circle of radius R centred at a fixed point O of the plane.?

Subsequent to the investigations of MoLNAR ({10], {11]), concerning g-systems
of circles, we prove the following

THEOREM.? If d denotes the density of a packing in the Euclidean plane by a
g-system of circles of radii contained in the interval e, 1], where &=0, then

arccos 1
I+o
d é e
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Equality holds if Q:T—-l, V2—1 and 1 and the g-system conmsists only of

unit circles.*
Consider three circles of radii 1, 1, ¢ and centres 4, B, C mutually touching

arccos

one another (Fig. 4). Then d(g):—»————l—-Il is the density of the unit circles
V20 +¢?

in the triangle ABC, namely the ratio of the area of the part of the triangle ABC

covered by the unit circles to the area of the whole triangle.

1 We denote a domain and its area by the same symbol.
2 It is easy to see that & does not depend on the choice of O; s=e Frses TotH [1].

3 Attention should also be drawn to the quadrilateral tessellation and the lemm as employed
in the proof of this theorem which may be useful for future density investigations. Lemmas 5 and
6 are due to Hars and Florian respectively, the remaining part of the article is the work of Molnar.

% See Fig. 1, 2 and 3.
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206 A. FLORIAN, L. HARS AND J. MOLNAR

Fig. 1 Fig. 2 Fig. 3

Fig. 4

Without loss of generality we may suppose that the packing of the g-system
of circles is saturated. We shall construct a tessellation with quadrilateral faces,
the vertices of which are alternatively centres Oy, O,, ... of the circles C,, C,, ...
and centres Vi, V3, ... of the supporting circles of {C;}. In order to prove our
assertion we shall show that in each quadrangle of the tessellation the density of
{C;} does not exceed d(g).

We introduce the notion of the (algebraic) distance d(P, C)=0P—r of a
point P from a circle C of radius » centred at O. Let us associate with any circle
C; the set S; of all points P lying “nearer” to C; than to any other circle C;, i.e.
d(P, C)<d(P, C)) (j=i) It is not difficult to show that S; is a star region with
respect to the pole O; (Fig. 5). The star regions {S;} are bounded by arcs of hyper-
bolae and segments of straight lines.

Obviously the star regions Sj, S, ... constitute a tessellation S. Joining the
centre O; (i=1, 2, ...) with the vertices V;, V,, ... of the corresponding star region
S;, we obtain a new tessellation 7" with quadrilateral faces (Fig. 6).

We proceed to show that in each quadrilaterai face (quadrangle) of T the
density of {C;} is =d(p).

To prove this statement we need a certain number of lemmas.

5 See Fries TOTH—MOLNAR [2].
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ON THE ¢-SYSTEMS OF CIRCLES 207

LemMa 1. Let AOB be a triangle of < OABzg—. If M is the midpoint of the
side AB then {AOM= <{BOM.

Proor. The condition <IOAB§~;~ implies OB>0A4 (Fig. 7). Let O* be the
mirror point of O with respect to M. Considering_t_he t_r@ngl_e_ 0O0*B, we have
<<BOM< < BO*M= < AOM in consequence of O* B=0A<OB.

B o*

0 A
Fig. 7

Let O; A0, B be a simple quadrangle and let C;, C, be two circles of centres
O;, 0,. Denote by C,(40,B) and C,(40,B) the sectors of the circles C; and C,
corresponding to the angles < 40;B and <{AO,B of 0,40,B. We define the
density of the circles C,, Cy with respect to the quadrangle O, A0, B by

C,(40,B)+C,(A0,B)

LemMMA 2. In the Euclidean plane, consider two circles C,, C, of centres Oy, O,
and of radii vy, vy, (ry<t,), resp. Let A, B be two different points, both at the same

ey d.(4B) =

distance from C, and C, and on the same side of the straight line O, O,. If < BA 01§§
(hence 071‘ <0,B, ), then for any point P of the segment AB we have dyy(AP)=d,,(PB).
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208 A. FLORIAN, L. HARS AND J. MOLNAR

Proor.® We first remark that A, B are points on the same branch of the hyper-
bola H of foci Oy, O,, the length of the transverse axis is r,—r;. Since the line

AB is a secant of H and <IBA01——§— we have also qBAOzz—;— (Fig. 8).

Let P,, P,, ..., P, be equidistant points on 4B, i.e. AP,=P,Py=...=P,_P,=
=P,B. In view of Lemma 1, the angles <AO;P;=0,, AP;0,P,=a,, ...,
<P,0,B=qa,,, and <SAOP,=f,, <AP,03Py=p;,..., <P,0,B=p,,, form
two decreasing sequences. On the other hand, the quadrangles 0, 40, P,, O, P, P, P,,

.., O, P, 0, B have all the same area. Therefore, employing the notation introduced
in (1), we see that the sequence dy3(APy), dyy(PyPy), ..., dis(P, B) decreases mono-
tonically. Consequently we get

dip(AP) = dys(Pi_1 P) > dys(PiPyyy) = dys(P,B) (i =1, ..., n).

But the inequality dyo(4P;)=>d,,(P;B) is true for any n and i=1, ..., n. This con-
cludes the proof of Lemma 2.
Obviously, d,(AP)=d;;(PB) implies d5(AP)=d,,(AB).

LemMa 3. Let H be a hyperbola branch and F the focus lying in the convex
domain bounded by H. Let us denote by H™* one of the half branches of H determined
by the transverse axis of H. The circle of diameter FP, where P is a point of HY,
has at most one further common point with H*.

2
PROOF. Let — — —1 be the equation of the hyperbola H and let H* be

@ b
the half branch of H lying in the first quadrant of the coordinate system (Fig. 9).
Let F(c, 0) be the corresponding focus of H and P(4, ) a point of H*, The equation

of the circle C with diameter FP is
x24+y2—(A+o)x—uy+ic=0.

The abscissae of the common points of C and H satisfy the equation

f(x)z (/1+c)x———ul/x2—a2 Ae—b2=10

¢ A different proof which does not make use of Lemma 1, was given later by A. Florian.

Acta Mathematica Academiae Scientiarum Hungaricae 34, 1979



ON THE ¢-SYSTEMS OF CIRCLES 209
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Fig. 9

OCbviously, f(x) is a strictly convex function for x=a which vanishes at x=Ai.
Now we distinguish two cases:
(i) A=a implies

2
j«@:l%—c>§@~@>o

and f{@)={—a)(c—a)=0. Therefore, the function f(x) has precisely two zeros
in the interval x=a, the greater of which is 4. Let V'=(q, 0) be the vertex of H*.
If 2=a and consequently PV then C intersects H* in exactly two points, namely
P and Q#P, where Q lies between P and V. From this we deduce immediately
o

5
aac—b%
2 3

that any point P* on the open arc PQ of H* has the property < PP*F=

(i) For A=ga the function f(x) vanishes only at x=a and x=

C
but ac—b*<c® It follows that, if P=V¥, the circle C and the hyperbola half
branch H* touch each other at ¥ and do not have any other point in common.

LemMA 4. In the Euclidean plane, consider two nom-overlapping circles C,, C,
of centres Oy, O, and radii ry, ry (ry<r,). Let A, B be two different points, both
equidistant from C, and C, and on the same side of the siraight line 0,0,. Let H
be that branch of the hyperbola of foci Oy, O, having the length ro—r, of the trans-
verse axis which contains A, B. If O,A<O0,B, then for any interior point P of the
arc AB of H we have, using the notation (1),

2) d12(AP) = dy,(PB).

Proor. It suffices to prove the lemma under the assumption that A4 is not the
vertex V of H, carrying out the limiting process 4V in the other case.

We can find, on the basis of Lemma 3, on the open arc 4B of H a sequence
of points Py, P,, ..., P,, so that the angles <<P;40,, <P,P,04, ..., <BP,0,
are obtuse. A sequence of this property we call admissible. Since the tangent at
any point P of H is the bisecting line of <{ 0, PO,, the angles < P, 40,, < P,P,0,,
..., BP, 0, are obtuse too (Fig. 10).
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210 A. FLORIAN, L. HARS AND J. MOLNAR

We shall first prove the inequality
L}i_{l},i d1a(MP) > léi_g}i dp(P;N) (i=1,...,n)

where M and N are pointson the segments P,_,P; and P,P; , respectively (Fig. 11).

o) 0,
Fig. 10 Fig. 11

Write << MO,P,=¢,, <MO,P;=¢,, <NO;P,=¢{, <{NO,P;=¢; and denote
by I, I} and I,, I the intersections of the perpendicular bisector of the segment
O, P, and O,P; respectively, with the straight lines perpendicular to P;_,P; and
P/P,,, at P,

Taking into account that P,,=R, >PiI_{"=R’1k , PI,=R,<P,If=R{ and that

Z'_g 02 (72+Q)2
. i 01 (7'1+Q)2
it is easy to see that
Lritr =i
Jim dm(MP)>hm ) - 2 =% L >
8: O, P +0,P; RTjOIPi4+02Pi2
* 8*
I rl—l-r2 81 ri4+rd
= _1—‘——' = 1 0‘8__‘2—'———— = ]%iI% d12(PiN)'
R* —20,P’+0,P, ! L0,P’+0,P;} '
2

Therefore, and in view of Lemma 2, we obtain

di2(APy) > dyy (P Py) > ... > dy5(P, B),
whence
dip(AP) = dyp(P;1 P) > dyp(PiPy1y) = dyp(PB) (i=1,...,m).

Let P be an arbitrary interpolating point on the open arc P;_;P; of H. Recalling

the property < P;P;_;04 - we note that < PP;_,0, >-2— and, according to Lemma

2 5
3, JAPPO,; >;. Thus the sequence Py, ..., P,_,, P, P, ..., P, is also admissible
and the inequality (2) is shown.
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ON THE ¢-SYSTEMS OF CIRCLES 211

Let ABC be a triangle where the lengths of the sides AC and BC are supposed

to be fixed. The notation is chosen so that AC=BC. We draw attention to the
density

Ae+uf+vx

3(x) = —

> AC-BC-sinx
where x indicates the angle enclosed by AC and BC (Fig. 12). Herein A, p, v denote
non-negative constants, not all of which are zero. d(x) represents the ratio of a

weighted sum of the angles to the area of the triangle ABC.

C

4 (X\ /ﬁ

Fig. 12

8

LEMMA 5.7 Let us vary the angle x of the triangle ABC, so that 0=x=n. Then,
in any subinterval of (0, ), 6(x) attains its maximum at one of the endpoints.

Functions having this property we shall call in the following guasiconvex.
For the sake of simplicity let us consider, instead of §(x), its constant multiple

Au+puf +vx
We remark that S(x) is continuous in (0, 7).
Making use of the cosine theorem and introducing the notation AC/BC=p
{p=1), we have
p—COS X

4 COS O =~
V1+p*—2pcosx

Differentiation yields
&) o =

and, in view of a+pB+x=m,

de  pcosx—1
dx ~ 1+p>—2pcosx’

, _dp , _ pcosx—p?
©) F= dx *= 1+p*~2pcosx’

7See L. HARs [4]. In a previous paper [3] A. FLORIAN proved a more special result in
a similar way.
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212 A. FLORIAN, L. HARS AND J. MOCLNAR

Putting, for brevity’s sake, Aa+uf-+vx=y, we obtain

s —lu—v)p*+2A—vl+pcos x[A+u—2y]

™ y 14-p*—2pcosx

and, with the notation

® A=W—vp*+i—-v; B=pl+u—2v),
» , —A+Bcosx

©) Y=

1+p*—2pcosx”
Differentiating once again, we have

. p@—D{u—2)sinx.

(10) Y= (1+p?—2p cos x)?

and, owing to (3),

(1) g = y’sinpf—aycosx _ 1: .
sin? x sin?x

We observe that S” has the same sign as 2. The function

, .
SinxX—yCcosx P
:y Y = :y’tgx—y )
COS X OS5 X

12 o

is continuous on the set [0, n/2)U(n/2, #] and has the values
(i3) Q0)=—y(0) =0, 2m=—y{m=0.
Since cos x=0 in [0, 7/2) and cos x<0 in (n/2, #] we can state that

al) for x<mn/2 S is increasing if =0,

a2) S is decreasing if O<0,
bl) for n/2<x=xn § is decreasing if §=0,
b2) S is increasing if Q—<0.

To examine the sign of Q it will be useful to see whether Q is increasing or
decreasing in a given interval. For this purpose we shall need its derivative

s PP —Du—A)sin’x (—A--Bcosx)sin®x

= (A+p*—2pcosx)Pcosx  (1+p2—2pcosx)cosix’

Since
cos® x

sgn ' = sgn [Ein"*x

(1+p2—2pcos x)? Q’]

in (0, #/2) and (n/2, ) we have to consider the function
_cos?x , oy
Rx)= iy (1+4+p2—2pcos x*Q’ =

=—2pBcos?x+[(p?—1)(u—A) p+24p+ B(L+pHicos x—A(1 +p*).

Actg Mothematica Academiae Scientiarum Hungaricee 34, 1979



ON THE g¢-SYSTEMS OF CIRCLES 213

But, by (8), the coefficient of cos x is 4p4, so that we finally have

(14) R(x) =—2pBcos?x+4pAd cos x—A(1+ p?).

Obviously, R(x) is a polynomial in cos x of degree =2. Denoting it by F
F(z) = —2pBz*+4pAz— A(1+p?

then R(x)=F (cos x). The discriminant of F is

(15) | D = 84p*(p*—D(u—A).

In proving S to be quasiconvex, we have to distinguish several cases and
subcases.

1. B=0. If also A=0, then from (9) it follows that y'=0 and from {(11)
that sgn S’= —sgn (cos x}. Therefore, S is decreasing for x<mn/2 and increasing
for x=n/2, which means that § is guasiconvex.

If, however, 40, then F(2)=A[dpz—(p*+1)] is a linear polynomial in

241
z having the root —p—+——>0.
4p

L1, 4=9. For cosx=z=0 we have R(x)<0 by (14). More generally, if
R{x)=0 for x=>n/2 (Q is decreasing) or R(x)<0 for n/2<x<x; and R(x)=>0
in x;<x=<n with any x€(n/2, n) (Q is decreasing in (n/2, x;) and increasing in
(xy, m)), we shall refer to it as case c). Since Q(m)=0 by (13), in this case Q is either
negative or positive in the whole interval (n/2, «), or positive in a certain subinterval
{n/2, xy) and negative in (x,, ). Then we can state that:

in the first case (case b2)) S is increasing,

in the second case (case bl)) S is decreasing and

in the third case (case bl) in (7/2, x,) and case b2) in (x,, 7)) S is decreasing
in (n/2, x,} and increasing in (x,, 7).

If we can show, moreover, that for x<n/2 we have S’(x)=0 (this will be
supposed to hold in case c)) then § follows to be quasiconvex.

In fact, for O0<x<mn/2 cos x and sin x are positive, so that, in view of (i11),
it will be sufficient to verify the inequality )’=<0. But this is trivial by (9) and B=0,
A=0.

1.2. A<0. Then we have R(n/2)=0. More generally, if R(x)=0 for O0<x<
<gx/2 (Q is increasing) or R(x)<0 in (0, x,) and R(x)=0 in (x,, 7/2) with any
%3€(0, m/2) (Q is decreasing in (0, x,) and increasing in (x,, 7/2)), we shall refer
to it s case d). Since Q(0)=0 by (13) Q is, in this case, either negative or positive
in the whole interval (0, ©/2), or negative in a certain subinterval (0, x,) and positive
in (x,, 7/2). Therefore, we again have to distinguish three cases here:

In the first case (case a2)} S is decreasing

in the second case (case al)) S is increasing and

in the third case S is decreasing in (0, x,) and increasing in (x,, 7/2).

It is easy to see that if for x>mn/2 we have S’(x)=0 (this is supposed to
be valid in case d)), then S is proved to be quasiconvex.

But now cos x=0, sin x>0 and, by (11), we have only to show that 3 =0.
This inequality follows from (9) in view of A4<0, B=0.
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214 A. FLORIAN, L. HARS AND J. MCLNAR

From now on we can suppose that B=0.
I. D=0 (see (15)). In this case the polynomial F does not change its sign.

IL1. R=0 in (0, n). Combining Q’(x)=0 in (0, n/2) with Q(0)=0 by (13),
we find that Q(x)=0 and, by (i2) and (11), that also S’(x)=0 for x=m/2. Since
case c) is realized here the function S(x) turns out to be quasiconvex.

IL2. R=0 in (0, r). Combining Q'(x)=0 in (a/2, n) with Q(=)=0 by (13)
we get Q(x)=0 and, owing to (12) and (11), S$"(x)=0 for x=n/2. Since the
conditions of case d) are fulfilled, the function S(x) is quasiconvex.

Consequently, in the following we shall confine ourselves to the more com-
plicated case D=0.

III. D=0. This assumption ensures that p<1 and
(16) A(p—21) <0,

as can be seen from (15). The quadratic equation F(z)=0 has exactly two different

real roots
_ 2_ _7
a7 s = Z2AEVAG DG

—2B

Obviously, they have the same sign if and only if
(18) AB=0.

Consequently, we have to study four subcases corresponding to the signs of 4 and B.
IIL.1. A=0, B=0. The graph of F(z) is exhibited in Fig. 13a. Since z, +z_=

A .
:Z—B— we obtain z,,z_=0.

Fig. 13a

We proceed to show that the conditions of case c) are satisfied. For x=n/2
is z=cosx=0, hence F(z)<0 and R(x)<0. Now let x<m/2, then by (11)
S’(x)=0, provided y'<0 or —A+Bcosx<0. But
(19) —~A+Bcosx <—A+B=(p—D[—(pu—v)p+i—v]
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ON THE ¢-SYSTEMS OF CIRCLES 215

where the first factor is negative. As 4=>0 we deduce from (16) A=y, whence
A—~v=p—v. Since B=p (A+pnu—2v)=0, we have (A—v)+(u—v)=0 and therefore
A—~v=0. Consequently, we obtain A—v=p (u—v), so that the second factor in
(19) is positive and —A+ B cos x<0, according to our assertion.
II1.2. 4=0, B<0 (see Fig. 13b). Then z_-<0<z_ . Observing that trivially
—A+Bcosx<0 or S'(x)=<0 for x=z/2, we state that there is case ¢) again.
II1.3. A<0, B=0 (see Fig. 13c). Then z, <0<z_.

i
i) F Flz)
|

z\/ /Z+ z

Fig. 13b Fig. 13¢

We shall show that the conditions of case d) are now fulfilled. To do this,
we have yet to verify that S’(x)>0 or, owing to (11), that »” sin x—y cos x=0
for x=>n/2. We have

—A+4+p(A+u—2v)cos x

2 "sin x— =
(20) y'sinx—ycosx T+ pi=2pcosx

sin x— (Ao + pf + vx) cos x >

_ [ Atd-p—2v

sin x— ﬁ] cos >[ g2
1+p?*—2pcosx P a r=

mpsm X~ psin B] cos X,

the second factor being negative. On the other hand, we obtain, employing the
sine theorem on the triangle ABC,
psinx
V1€p2E—2pcosx
hence the first factor on the right hand of (20) is

sinff =

A+p—2v

552 2R\;psmx—usmﬁ =
psinx

- 1+p>*—2pcosx

It follows from (16) that u=1 or p—v=>A—v. Since O0<B/p=(u—v)-+(A—),
we have p—v=0. On the other hand, 0>4=(u—v)p?+(L—v), whence 1—v<0
and 24—2v<0. Taking into account, further, that 1+p2—2pcosx=1, we see
that the expression in brackets is negative, and consequently the statement
Y sinx—ycos x>0 for x=>mn/2 is true.

[(A+u—2v)—p V1+p2—2p cos x.
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2i6 A, FLORIAN, L. HARS AND J. MOLNAR

1.4, A<0, B<0 (see Fig. 13d). Then O0<z_<z,.

We proceed to show that the assumptions of case d) are fulfilled again. For
xz=mf2 is y'=0 by (9), hence S”(x)=0. Further, the vertex of the parabola F(z)

has the abszissa Zo=—- We claim that z,>1. This inequality is equivalent to

—A+B=0 or, by (19), to —(u—v)p+(A—v)<0. It follows from (16) that i<y
or A—v=p—v. But 0=B/p=(A—v)+(r—v), hence A—v<0. Consequently,
—(u—p+E—V)<—Wu—p+A—v)p=(—u)p<0. Therefore, for the greater
root of F(z),z,.=1 holds, confirming our assertion.

Now, the proof of Lemma 5 is complete.

b
(Fiz}

|

Fig. 13d

LemMa 6. Let C,, C; and C, be three circles of radii a (0<a=1), 1 and p (>0,
fixed), respectively, and mutually touching one another (Fig. 14). Then the density
& of C, and C, with respect to the itriangle A, determined by the centres of the three
circles, attains its maximum only for a=1.

Proor. Obviously,

5 — az(pa+(p1
24
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ON THE ¢-SYSTEMS OF CIRCLES 217

where ¢, and ¢, denote the central angles belonging to C, and C;. By clementary
caiculation we find

-— 1 ] /
/pé = f(a, +arct V
Vp fla, p) = ]/a(a+p+ 1) a(a+p+1) & +P+1
To examine this function, we differentiate it partially and obtain

of  _ 2atptl
9a ~ 2la(a+p+ PR f1(a, p)

_ a*(Qa+3p+3) ]/ p / ap
hia p) = — et | ST amtg] atp+1

2 { + __1
_ataipaZl) e,

(a+p)QRa+p+1)

with

Further differentiation yields

afy _ > 402+ 6ap+6a+3p*+6p+3

3& = zd (2a+p+1)2 fz(aa p)
where
B r 1 Vap(a+p+1)
fa(a, p) = amtgl/a(a—l—p—f—l) T2 @@+ bap+6at3pEt6piI)
2a+ p+1] 20t 4a+p+3]
[( s (2a2+3ap+3a+4p)+ p; .

After some laborious calculations we obtain, putting a™p"=(m, n),

4a(a+py*(a+1)*(4a®+6ap+6a+3p*+6p +3)° |/ aatptl) +Dp+ D %J_;?- =

=f,(a, p) =—96 (7,4)—128 (7,1)—336 (6,3)—880 (6,2)—

—320 (6,1)—456 (5,4)—1920 (5,3)—1688 (5,2)—288 (5,1)—

—~294 (4,5)— 1918 (4,4)—2850 (4,3)—1298 (4,2)—104 (4, 1)—

—87 (3,6)—944 (3,5)—2086 (3,4)—1620 (3,3)—435 (3,2)—

—12 (3,1)—9 (2, T)—216 (2,6)—658 (2,5)—700 (2,4)—

—309 (2,3)—60 (2,2)—18 (1,7)—63 (1,6)—48 (1,5)+18 (1,4)+
+18 (1,3)=3 (1,2)+3 (0,7)+18 (0, 6)+36 (0,5)+30 (0,4)+9 (0, 3).

af3<0 f5 is a concave function of a. Note that f;(0, p)>0 and

Since

Foll, p) = —24p7— 3485 — 1908 p°— 5112p*— T008p° — 4460p%— 852p < 0O
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218 A. FLORIAN, L. HARS AND J. MOLNAR

for any positive p. Therefore, f;(a, p) and also —g{% passes from positive to negative

values when g varies, increasing from O to 1.
We observe that
2p®+14p*+27p+13

= p__ (0L D)

hence

d _ 1 p
P = e a5 1y Vp+2 '
-[21p°+ 170p* + 527 p?+ 76T p*+496p+91] > 0.

Since f5(1,0)=0, we have f;(1,p)=0. Combining this with lirré fola, p)=—<=,
2fi

we deduce that f,(a, p) and also Ba passes from negative to positive values when
a increases. In view of f£,(0, p)=0 it follows that f(a, p) as a function of a assumes
its maximum only in a boundary point of the interval O0=g=1. But it is easily

proved, in a similar way as above, that

Vp+2 i

2150, 910, pl =arctg | L PR

p+2  2(p+1)

for p>=0. This completes the proof of Lemma 6.
Finally, it is very easy to prove the following two lemmas:®

LemMMA 7. Let A,=OTP, (k=1,2) be right triangles (<{OTP,=m/2), where
the sides TP, do not have common interior points with the circle C of centre O

(Fig. 15). If OP,<OP, then

CN4, CN4,
=S .
4y 4,

LeMMA 8. Let A,=OT. P (k=1,2) be right triangles (<(OT,P=m/2), where
the sides T, P do not have common interior poinis with the circle C of centre O
(Fig. 16). If A T;0P<<AT,0P then

cNn4, CN4,
-< .

Let us now return to the proof of our theorem.

For simplicity’s sake, let us denote by 0, V;0,V, an arbitrary quadrangle of
the tessellation T, where O;, O, are the centres of the circles C,, C, of {C;} and
V., V, are the corresponding vertices of the tessellation S.

¢ See MOLNAR [5][6], [7], [8], [9].
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Fig. 15

We now proceed to show that in O, V;0,V, the density of {C;} does not
exceed d(p), i.e.

arccos

1+o

d 9 V Vg = d = =
12(V1V3) (@ ]/2_Q-+Qz
and distinguish the following two cases:

a)y O,V,0,V, is convex. In this case we decompose O, V,0,V, into two tri-
angles 4,=0,0,V; and A4,=0,0,V,. Obviously, the inequality d,(V;Vy)=
=d{g) is valid if we can show that

CiN4,+C,N 4, .
—‘I——Z—z— =d(@ (=12,

13

dlz (Vz) =

and it suffices for i=1.

Consider three circles of radii r, 7, 0* and of centres 4, B, C, respectively,
mutually touching one another. We denote with d(r, #, ¢*) the density of the
circles of centres 4, B with respect to the triangle ABC; obviously d(r,r, 0¥)=

* *
:d(l, 1, Q—)zd["—].
I r

Let ¢*=p be the radius of the supporting circle C centred at ¥y which
touches C;, C,.

If the segment O, 0, has no common interior points with C (Fig. 17) then,
in view of Lemma 35, d;,(V;) attains its maximum for one of the following
configurations:

(i) C, and C, (radii r, and r,, ry=ry) touch one another (Fig. 18). Making
use of Lemma 6 and, if necessary, of Lemma 7, we obtain di, (Vi) =d(r,, 1y, 0=

*
:d(l, 1, f )éd(g).
2

(ii) The segment O, 0, touches C (Fig. i9). We draw the tangents from ¥
to C, and C, and denote the points of tangency with 7 and T,. In view of Lemma 8
we get

GNOPY, _ GNOTY,
0, PV, O.T,V;

=d(r,r;, 07 (=12),
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where P is the foot of the perpendicular from V; to 0,0,. Thus d, (V)=
§d(”2» Fa, Q*)éd(Q)

If the segment O, O, has common interior points with C, the inequality di, (V)=
=d{p) can be proved in the same way as in case (ii) of a).

Fig. 17 Fig. 18 Fig. 19

b) O V0.V, is concave. Let O, V;< 0.V, (Fig. 20), then by Lemma 4 we
have dp, (Vi Vy)=d, (V). But we have already seen that d;,(V;)=d(g).

This completes the proof of our statement that in each quadrangle of the tessella-
tion 7 the density of {C;} is not greater than d(g). In order to deduce, finally, the
inequality 4=d{g), we remark that, in view of supr,=1, the circumradii of

Fig. 20

the quadrangles of the tessellation 7 have also a finite upper bound 5. Denoting

by 0;;=0,40;B the quadrangle of the tessellation T corresponding to the circles

C, C; and taking into account that
Ci(AO;B)+C;(40;B) = d(0)0;;,
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we obtain

SN = — 3 =29 50,

TR? ¢ 0 Ry=o TR?

n(R+242b) 24+2b
= d()—[1+——] a(e)-

From this the desired inequality 4=d(g) follows immediately.

ReMaARrK. The Lemmas 2, 4, 5, 7, 8 continue to be valid whenever the “measure”
of C; is an arbitrary positive value @(r;). The system of values {@(r;)} associated
to {C;} is called a functional system of {C;} and the corresponding density a func-
tional density.

Lemma 6, however, is no longer valid for an arbitrary functional system. The
case of a decreasing function ¢ () yields a trivial counterexample. It is easy to
give counterexamples also for certain increasing functions ¢ (r). But it seems likely
that Lemma 6 continues to hold for some particular functional systems of {C;}.
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