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1. Introduction 

Let f ( x )  ( - ~ < x <  + ~ )  be a measurable function such that 

1 

(1.1) f ( x + l )  = f (x ) ,  f f (x)dx= o. 
0 

It is well known that if f ( x )  is smooth enough and the sequence {nk} of integers 
grows rapidly then the sequence f (nkX  ) of functions (0<=x<=l) behaves like a 
sequence of independent random variables. A typical result in this direction (see [5], 
[8]) is that if f satisfies (1.1) and the Lipschitz condition and 

(1.2) nk+l/nk -~ 

then f (ngx) obeys the central limit theorem and the law of the iterated logarithm 
(CLT and LIL in the sequel). Here (1.2) is best possible in the sense that it cannot 
be weakened to 

(1.3) nk+l/n k >= q > 1 

even with a large q. This is shown by the example of ERD6S and FORTET (see [5]) 

f ( x )  = cos 2rex+cos 27rmx, n k = m k -  1 

for which both the central limit theorem and the law of iterated logarithm fail to 
hold. On the other hand, there exist many sequences {nk} satisfying (1.3) but not 
(1.2) such that f (nkX) satisfies the CLT and LIL. E.g. nk=2 k is such a sequence 
(see [4]). It was Gaposhkin who characterized all the sequences {nk} (among the 
sequences obeying (1.3)) such that f (nkX ) obeys the CLT. Let us say that a sequence 
{nk} of integers belongs to class 

B2 if there is a constant C such that the number of solutions of the equation 
n~++_nt=v (k> l )  is at most C for any integer v>0;  

Dm if the (set-theoretic) union of the sequences {nk}, {2nk} . . . . .  {rank}, considered 
as a single sequence, belongs to class B~; 

D~ if {nk} belongs to class D m for all integers m =  1, 2 . . . . .  
GAVOSHKIN showed (see [3]) that if {nk} belongs to D= (and satisfies (1.3)) 

then f (nkX)  obeys the CLT for all sufficiently smooth f ;  on the other hand, if {nk} 
does not belong to D~ (but satisfies (1.3)) then there exists a trigonometric poly- 
nomial f such that f (nkX  ) fails to obey the CLT. 

The purpose of the present paper is to extend (the positive half of) Gaposhkin's 
theorem and to prove an a.s. invariance principle for the sequence f (nkX ) under 
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the assumption that {nk) satisfies (1.3) and belongs to D=. Our method (which 
differs from that of Gaposhkin) makes use of martingale tools; in fact, it is a com- 
bination of the methods of [1--2], [6]. In [2], w 3 an a.s. invariance principle was 
proved for f (nkx)  assuming a condition for {nk} (the so called A* condition) which 
is slightly more stringent than D=. The present improvement (which is now best 
possible) is obtained by utilizing ideas from [6]. 

Our main result is the following: 

THEOREM 1. Let f ( x )  ( - ~ < x <  + ~ )  satisfy (1.1) and the Lipschitz condition. 
Assume that {nk} satisfies (1.3) and belongs to class D~. Assume finally that there 
exists a constant C1>0 such that for any M=>0, N>=No "we have 

(1.4) | ~ f (n j x ) |  dx >= C1N. 
0 \ j = M + I  ] 

iV 

Let S N :  ~ f ( n k x ) .  Then the sequence {S~,,N~I} can be redefined on a new 
k = l  

probability space (without changing its distribution) together with a Wiener-process 
~(t) such that 

(1.5) SN = ~(ZN)+O(N 1/2-~) a.s. 

where 2 > 0  is an absolute constant and ZN is an increasing sequence of random 
variables such that "cN/bN -+ 1 a.s. where 

0 \ k  = 1 J 

Condition (1.4) in Theorem 1 cannot be omitted as it is shown by the example 
f ( x ) = c o s  2~x-cos  4~x, n~=2 k (cf. [5]). 

Actually, the proof of Theorem 1 will yield the following result which gives 
some information about what happens if we replace D~ by D,, in Theorem t. 

THEOREM 2. Let z>0. Then there exists an m=m(e,  f )  with the property 
that i f  we replace the condition {nk}C D~ by {nk}C Dm in Theorem 1 then the statement 
remains valid with the modification that for the random variable ZN in (1.5) we have 

. "C N ~ T N (1.7) 1 - ~  ~ hm -:-- <_- hm _---- ~ 1 +e  a.s. 
bN N ~  bN 

instead of zu/bN ~" 1 a.s. 

In other words, if {nk} belongs to D,, with a large m ("large" here depends 
also on f )  then the conclusion of Theorem 1 remains "almost" valid. 

It is easy to see (cf. [2], Lemmas (2.1), (2.2) and their proofs) that Theorem 1 
implies Donsker's invariance principle (functional CLT) and the functional LIL 
for f (nkx) .  These limit theorems need not be valid under the conclusion of The- 
orem 2 but even under Theorem 2 we can state at least that f (nkx)  obeys Donsker's 
invariance principle and the functional LIL "approximately". Roughly speaking, 
the smaller the z in (1.7) is, the more precisely f (nkx)  satisfies the above mentioned 
limit theorems. (For precise details of this statement via "z-limit theorems" 
see [2], w 4.) 
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Let us say that a rational number r > 0  is of  order k if in the reduced form 
r =p/q the greater o fp  and q is k. The following lemma is easy to prove (cf. the proof  
of Lemma (3.1) in [2]): 

LEMMA (1.1). The (set-theoretic) union of the sequences {nk} , {2nk} , . . . ,  {mnk} 
satisfies the Hadamard gap condition i f  and only i f  for any subsequenees nk,, n h and 
any rational number r > 0  of  order <-m the relations 

are impossible. 

n k . lira n--~Z = r,  "~ # r ( i = 1 , 2  . . . .  ) 
i ~  t'll~ n i l  

The condition of Lemma (1.1) is satisfied e.g. if 

a) nk+l/n k > m  ( k = l : , 2 , . . . ) ,  

b) l im nk+l/n k = ~ where e is a rational number of order > m. 

Since the Hadamard gap condition implies condition B2, in examples a), b) 
the sequence {nk} belongs to Din. For  examples for sequences D~ see [3] or [2], w 3. 

It follows from example a), Theorem 2 and our remarks above that if {nk} 
satisfies (1.3) with a large q then f (nkX ) almost satisfies the CLT, the LIL and their 
functional versions (this was also proved in [2], w 4). Example b) shows that the 
same conclusion holds if nk+l/n k tends to a rational number of great order (e.g. 
to a rational number very close to an integer). 

20 Two preparatory lemmas 

In what follows, i[ fit and [1 f][= will denote the L 2 and L= norm of f,  resp. 
For  two numerical sequences a,, b,, the relation a,,~b, means l im a,/bn= 1. 

LEMMA (2.1). Let g(x) ( - - ~ < x <  +~o) be a measurable function such that 

1 

g(x~-l)  = g(x), f g(x)dx = O. 
0 

Then for any real a<b and 2 > 0  we have 

b 2 1 

f =To f ~  ' g(~x)  dx  < ]~, (x) t dx. 
a 

This is Lemma (3.2) of [1]. 
For  the formulation of the next 1emma we notice that if f satisfies (1.1) and 

the Lipschitz ~ condition then 

(2.1) ][f--s,,(f)[{~ <= An -~/2 

where A is a positive constant and s n ( f )  denotes the n-th partial sum of the Fourier- 
series of fl  (See [9], p. 64.) 
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LEMMA (2.2). Let f ( x )  satisfy (1.1) and the Lipschitz ~ condition and let 
1-<_n~<n2< . . .<n N be a sequence of  positive numbers satisfying (1.3). Then, if  
N>=No where No depends on f ( x )  and q, we have for any real a 

(2.2) 

and 

/ [k~f(n~x)J dx ~ C~({IIP+IIfII%{IIII)N 

(2.3) / [ ~  f(nkx))4dx <= C3N 2 
0 = 

where C2 depends on q and on the numbers A, c~ in (2.1) and Ca depends on f (x) and q. 
In view of the remark preceding Lemma (2.2), relation (2.2) follows from 

Lemma (3.3) of [1]; on the other hand, by Lemma (3.4) of [1] we have for N>=No 

N 

(2.4) ~ f(nk x) = ~1 + g2 
k = l  

where r and ~.2 are random variables (functions) on [0, 1] such that, if P denotes 
the Lebesgue measure, then we have 

(2.5) P(ICII >= Y I/-~) <: Ca e-cSy (Y ~ O) and IIC211~ ~ 1 

where C4 and C5 depend on f ( x )  and q. (As a matter of fact, Lemma (3.4) of [1] 
assumes II f - s , ( f ) { I  <-An -~ instead of (2.1) and states correspondingly 11421t -< t 
instead of Ii~dt~<_-1 but the proof there applies with trivial changes in the present 
case too.) Evidently (2.4) and (2.5) imply (2.3). 

3. Main lemma 

We first approximate the functions f(nkx) by step-functions (pk(x) as follows. 
By assumption, f ( x )  satisfies in [0, 1] the Lipschitz a condition for some 0<c~-<1. 

- 1  

Let now 2t<=nk<2 l+x, put p = l l + ~ l o g k  I and let q~k(x) denote the function 

in [0, 1] which is constant in the intervals [i2 -p, ( i+ 1)2 -p) (0<=i<_-2 p -  1) and these 
constant values coincide with the respective values of f(nkx) at the points i2 -p 
(0<=i<_-2P-1). By the Lipschitz c~ condition we have 

(3.1) [f(nkx)--q)k(x)[ < C nk < C = = 2 / + ( 2 0 / ~ g k _ / )  ~ C "  2 -201~ ~ C k  -10.  

(Here and in the sequel, C will denote positive constants, not always the same, 
depending (at most) on f ( x )  and q.) Let us now divide the set of positive integers 
into disjoint blocks/1,  J i , /2 ,  J2, ... in such a way that I k contains [k 1/~] integers, 
Jk contains [k 1/4] integers ( k = l ,  2, ...). Let 

(3.2) T~= Xf(nvx), D~ = X ev(x). 
vCIk vCIk 
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Then by (3.1) 

(3.3) 

and thus using 

(3.4) 

Now we formulate our 

MAIN LEMMA. We have 

(3.5) 

(3.6) 

(3.7) 

(3.0 
N 

where dN = ~ ED~. 
k = l  

IDk--Tk[~C Zv-~~ Z v-~~ 
1/ 

v C I  k v=[(k--1)  21 

[DkI<-Ck ~/~, ITk[<=Ck ~/~ and the mean value theorem we get 
2 2 4 4 = tnk--T~l ~ C. [Dk-- T~ [ < C, 

IE(D ID , . . . ,  Dk-O]  ~ Ck -2 

E(D~ID~ . . . .  , Dk-1) <= Ckl/2 

N 

Y__~ E(D~ID1 . . . .  ,Dk-O ~ dN a.s. 
k = l  

ED~ <= Ck (k >- ko) 

Also, CN~/2<-dN<-CN 3/2 for N>=No . 

(k >-_ ko) 

(k >- ko) 

as N ~oo 

PROOF. We begin with the proof of (3.5). Let Y~-I  denote the a-field generated 
by D1, . . . ,  Dk_l. In view of (3.3) it suffices to show that 

(3.9) [E(TkI~-O] <= Ck-L 

Let b=b(k)  denote the largest integer of the block Ik_~, let l be an integer such 

2t<=nb<2/+1 and put w=[l+Z--~ log b I .  From the definition of q~k it follows that 

that every (Pv, 1 <=v<=b takes a constant value on each interval of the form 

(3.10) [i2 -w, ( i + 1 ) 2 - ' )  (0 -<_ i -<_ 2W--l) 

and thus every set {Dz=al, . . . ,  Dk_~=ak_~} where a~ . . . .  , ak-~ are constants, 
can be obtained as an union of intervals of the form (3.10). In other terms, ~-~-1 
is purely atomic and each of its atoms is a union of intervals of the form (3.10). 
Hence to prove (3.9) it suffices to show that 

( i+1)  2 - w  

(3,10 12 TM f Tkdxl<=Ck-2 (0=<i<=2w-1).  
i 2 - w  

Let e=c(k)  denote the smallest integer of the block Ik. By (1.3) we have 

and 

_ _  <_ <= - - ( 1  + q - 1 + q - ~ + . . . )  - 
v E I  k rl v .= n c q - - I  H c 

__rib <== q - - ( c - - b )  = q- - [ (k - -1 ) l /4 ] - - I  =< q - ( k - l W  4 

rt c 
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Hence applying Lemma (2.1) and using the trivial relation b<-2k 3/2 we get 

( i + 1 ) 2  - w  ( i + 1 ) 2  - w  

(3.12) 12 w f Tkdx[ = 12 f 2 f(nvx) Idx <= 
i 2 - w  i2 -w vElk 

2 < 2 w 2 l+(20/a)l~ 
<= 2wC .~ ~ = C <- C <= Cnb b 2~ <= Cq-(k-lW* k3~ <-- Ck -2 

vEI~ Fly tic 1"lc tic 

and thus (3.11) is proved. 
To prove (3.6) it suffices to show (in view of (3.4)) that E(T~r~k_a)<=Ck 1/~ 

and since ~k-X is atomic and each of  its atoms is a union of  intervals of the form 
(3.10), the last relation will follow if we show that 

( i + 1 ) 2  - w  

2 w f T~dx <=Ck~/2 ( 0 < = i ~ 2 w - 1 ,  k>=ko). 
i 2 - w  

The integral on the left hand side is equal to 
( i + 1 )  ' a - w  i + 1  

(3.13) (~e~'i~ f(n~x))~dx= [. (ve,~Z f ( m J ) )  2dt 

where m,=2-Wn,.  Evidently m,+l/m~>=q>l for all the v's appearing here. If  
c=e(k) denotes the smallest integer of Ik as above, then the smallest of the m~'s 
is rn~=nd2 ~ which is at least 1 (in fact it is >=Ck 2 by a part of  the estimate (3.12)). 
Hence by Lemma (2.2) the integral on the right side of (3.13) is <-Ck 1/2 for k>-ko 
which was to be proved. 

To prove (3.8) it suffices to remark that, by Lemma (2.2), we have ET~,<=Ck 
which, together with (3.4), implies (3.8). 

We now turn to the proof of  (3.7). We proceed in three steps. 
a) Let ~ l C ~ . a c  ... be any increasing sequence of o--fields such that D k is 

s176 k measurable. Then the relations 

N 

~ D~ ~ d N a.s. 
k = l  

(3.14) 

and 

(3.15) 
N 

~'E(D~,[~k_I) ~ d N a.s. 
k = l  

2 2 are equivalent. Indeed, the sequence Hk=Dk--E(Dkl~k-1) is a square integrable 
martingale difference sequence (and consequently orthogonal) with EH~,<= 

4ED~,~-Ck by Minkowski's inequality and (3.8). Hence the Rademacher--Mensov 

convergence theorem implies the a.s. convergence of ~ k-a/2Hk and thus by the 
k = l  

Kronecker lemma we have 
1 N 

(3.16) N8/2 z~ Hk ~ 0 a.s. 
k = l  

By condition (1.4) of the theorem ET~,>=Ck 1/~ for k~ko  hence by (3.4) ED~= 
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>=Ck ~/2 and thus dN>=CN ~/2 for N>-_No . Also, by Lemma (2.2), ET~,<=Ck ~/2 
for k>=ko, hence by (3.4) ED~<=Ck ~/2 and dNNCN a/z. (We thus proved the 

N 

last statement of the main lernma.) Therefore (3.16) implies ~ Ht`=o(dN) which 
k = l  

really shows that (3.14) and (3.15) are equivalent. 
b) We now prove (3.7) in the special case when f is a trigonometric polynomial: 

m 

(at` cos  (3.17) f = " 2~kx + bt  ̀sin 27rkx). 
k = l  

By a) it suffices to show (3.1.4) or, what is the same, 

N 

(3.18) .~  (D~-ED~,) = o(dN) a.s. 
k = l  

By (3.4) and dN>=CN z/~, (3.18) will follow from 

N 

(3.19) .~  (T~--ET~,) = o(N 3/2) a.s. 
k=~ 

Let us express the left side of  (3.19) as a trigonometric polynomial, using (3.17). 
By (3.17), 

m 

f (n,,x) = ~ (at, cos 2rcjn~x + bk sin 2rCjnvx ) 
j = l  

and thus 

(3.20) T k = ~ f ( n , x )  = ~ (cl cos 2rc2tx+dtsin 2rc2zx) 
v E ll~ 

where all the 2z's are of the form tn~, l~=t<-m, VCIk. Denoting by Nm the (set- 
theoretic) union of  the sequences {nt`}, {2rig}, ... ,  {rank}, this means that all the 
2is belong to Nm. Also, for the coefficients cz, dz in (3.20) we have 

(3.21) Icz/<-- -M, Jd, l ~ 

where _M depends only on f ( x )  and {nk}. Indeed, the trigonometric sums f (n~x) 
and f(n~,x), V<l~ can overlap (i.e. contain a term with the same frequency) only 
if n~,<=mn~ i.e. overlapping is impossible if / z - v ~ p  where p is the smallest in- 
teger such that qPz-m. This remark shows that ]cz]<=pM~, [dt[<=pM1 where 
M~=max (lair, Ibal . . . . .  [a~I, Ibm[) and hence (3.21) is valid. 

We notice also that the trigonometric sums in (3.20) are pairwise non-over- 
lapping for k>=ko . This follows from the fact that the largest 21 in Tt`_~ is mnb 
and the smallest )l z in T k is n~ where b and e are the largest integer of  the block 
It`_a and the smallest integer of the block Ik, resp. By the separation of Ia-~ and 
It` by the block Jt`-i of length [ (k -1 )  1/4] and because of (1.3) we have mnb-<n~ 
for k >=ko . 

Squaring (3.20) and using well known trigonometric identities we get 

1 
(3.22) T~ = ~- ~ (c~+d~)+~ (e~ cos 2rcQix+ fi  sin 2re,ix) 
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where ]ei[<=M 2, [fil<_-)~ 2 and the 0i's are the numbers of the form 2~___2~ with 
the 2's appearing in (3.20). Hence summing (3.22) for M+I<=k<=M+N (but not 
collecting the terms with equal frequencies) we get that 

M + N  
(3.23) ~ Tg = B+ ~ (r i cos 2z~Oix + si sin 2rcO~x) 

k=Mq-1 

where B is a constant, [rl[ <=_M'~, [si[<=Mr 2 and the 0i's are the numbers of the form 
).~+_2, where ~ and 2~ are from the same :irk, M+I<=k<=M+N. Since the Tk's 
are non-overlapping for k>=ko and N,, satisfies condition B2, there is a constant 
(71 such that at most Cx of the 0~'s can be equal. Hence collecting the terms with 
equal frequency on the right hand side of (3.23) we get 

M + N  
(3.24) Z 

k = M + l  
7~ = B + ~ (uj cos 27cjx + vj sin 2zcjx) 

where the sum on the right hand side is finite an < --3 < --2 d luil=QM, I@=CIM. Also, 
the number of terms on the right hand side of (3.20) is <=ink ~/2, hence in the 

M+N 
second sum of (3.22) is <=m2k and on the right side of (3.23), (3:24)is <= Z rn2k<- 

k~M4-1 
<=m2N(M+N)<-m2[(M+N)2-M2]. The number B in (3.24) is evidently equal 

M+N 
to the expectation of ~ T~ (since the integral of the trigonometric sum on 

k=M+l  
the right hand side is 0). Hence (3.24) implies 

[ M.q-N )2 
2 2 1 e 2 

<__1 C~m~((M+N)2  M2 )=C2((M+N)2 M2). 
- 2  

Applying the Gal- -Koksma law of large numbers (see [6], p. 134) for the variables 
2 2 T{,-ET{,, we get 

N 

~(T~-ET~) = O(NlogaN) a.s. 
k = l  

and thus (3.19) is proved. 
c) Let now f be any function satisfying (1.1) and the Lipschitz e condition 

and fix an e>0. Since the Fourier series of f converges uniformly to f (even (2.1) 
is valid) we can write f=fl+f~ where f l  is a suitable partial sum of the Fourier 
:series of f (hence it is a trigonometri c polynomial) and II/~Ll=<_-~. (Evidently f~ 
and f~ also satisfy (1.1) and they are also Lipschitz c~ functions.) In the same way 
as we constructed the step-function g0k(X ) from f(nkX), we can construct ~0ka)(x) 
and gok(2)(x) from fl(nkX ) and f2(nkx ), resp. Then we have 

Tk = T (1)k + T(2)k and Dg = Dk (1) +D~ (2) 
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where 
I) = 2g fl(n x), T} 2) = X A(n x) 

v~Ik v E I  k 

Dk (1) = Z q?~l) (x), Dk (2) = Z g ~ (x). 
v~lk  v~Ik 

Evidently (3.3), (3.4) hold for the Dk, Tk's with superscripts, too: 

D(1)_T(i)] < -4, [(D~~ ( ) [ <  C, k . tk  ~- C k  i) 2 -~_ 

(3.25) 
](Dk(0)4--(Tk(0) 4] ~ C i = 1, 2. 

If  b = b ( k ) i s  the largest integer of Ik_,, 2z--<,,<2 '+~, w=[l+2-~Oalogb ] then, 

as we showed, every %,  l<=v<=b and therefore also Dk-~, takes a constant value 
on each interval of the form (3.10). In other words, if (r denotes the a-field 
generated by the intervals (3.10), then Dk-~ is (r measurable. Since ~o~ (1) and 
r are step-functions with the same intervals of constancy as (p~, not only Dk-1 
but also n(~) and n(23 ~'k-~ ~'k-1 are (~k-~ measurable. 

N 

Let d(N ~) = ~ E(Dk(1)) 2. Since fx is a trigonometric polynomial, the relation 
k = l  

N 

(3.26) Z (Dk(1)) ~ ~ d(N ~) a.s. 
k = i  

is exactly what we proved in b). As we remarked above, Dk a) is ~r measurable and 
hence by the equivalence statement of a) (3.26) implies 

N 

(3.27) ~E((D~I))2]Nk_I) ~ d~ ~) a.s. 
k = l  

We now prove two simple estimates 

(3.28) E((D~)) 21 ~r <= Ck~/2 (k >- ko) 

(3.29) E((D(k2))~[Nk_~) <= Czk ~/2 (k >= ko) 

which, together with (3.27), will easily lead to our aim (3.7). 
The proofs of (3.28) and (3.29) are the same, we prove e.g. (3.29). In view of 

(3.25) it suffices to show 

E((T~2))2[~qk_~) <_- C~k ~/~ (k >= ko) 

and since fqk-x is atomic with atoms of the form (3.10), the last inequality is 
equivalent t o  

( / + 1 )  2 - w  

(3.30) 2 TM f dx <- Cek ~/~ (0 ~ i <- 2 T M -  1, k >- ko). 
i 2 - w  

Here the left-hand side can be written as 
( i + 1 )  2 - w  q-{- 1) 2 - w  i- l-1 

(3.31)2  f (r  ))2dx=2 w f f 
i2 - w  i2 - w  v~Ik  i v~ll,: 
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where m,=nv/2'L Exactly in the same way as in the case of the second integral 
in (3.13), the numbers my are all greater than 1 and they satisfy m~+l/m~>=q>l. 
Let us also observe that since f l  is a partial sum of the Fourier series of  f i.e. 
f 2 = f - s k ( f )  with a certain k, (2.1) is inherited for f~ with the same A, e. Since 
II frail =< II f~ll ~ <--~, an application of Lemma (2.2) gives that the last integral in (3.31) 
is at most C~k 1/~ for k>=ko and thus (3.30) is valid. 

To deduce (3.7) from (3.27), (3.28), (3.29) let us first integrate (3.29) to get 
E(D~2))2<=C~k 1/2 for k>=ko . On the other hand, by assumption (1.4) of  the 
theorem we have ETg>=Ck 1/2 for k~ko and thus (3.4) implies ED~>=Ck 1/2. We 
thus get E(D~Z))2/ED~, <- C~ (k>-ko) whence we obtain, using Dk=D~ ~) +D~ ~) and 
Minkowski's inequality, 

1 -- C t/~ ~ E(D~I))~/ED~ <= 1 + C l/-~ (k >= ko) 
and consequently 

(3.32) ( 1 - - C ~ ) d  N < d (1) < ( l+Cl/~)dN ( N ~  No). 

Summing up (3.29) for k =  l, 2, .. . ,  N and using dN~CN 3/2 we obtain 

N 

(3.33) Z E((D~2))e] ~k-1) ~ CedN (iV >= No). 
k = l  

Also, (3.28), (3.29) and Schwarz's inequality imply [E(D(k~)D(k2)l~k_l)l<=C ~[k ~/'~ 
whence 

(3.34) ~ E [ 2 D  (1)n(2) )l<- 1/~dN k ~'k I (r 1 C (N => No). 

Adding (3.27), (3.33), (3.34) and using *-'kn _--n(~)• 7- , and (3.32) we see that 

N 

(1 - C ~)  dN <= Z E(D~I ~9k_1) <- (1 + C l/~) aN 
k = l  

a.s. for sufficiently large N which implies, since e > 0  was arbitrary, 

N 

~'E(D~,If#k_I) ~ d N a.s. 

Since D k is fgk measurable, the last relation implies (3.14) and (3.7) by the equivalence 
statement of  a). Hence the proof  of  the main lemma is complete. 

REMARK 1. In the proof  of  the lemma above, the assumption {nk}CD~, was 
used only in the proof of  (3.7); relations (3.5), (3.6), ~ (3.8) are valid under the mere 
assumption (1.3). We also see that if f is a trigonometric polynomial of  order m: 

f = ~ '  (a~ cos 2rckx + bk sin 2rckx) 
k = l  

then for the validity of  (3.7) it suffices to assume {nk}~Dm instead of {nk}CD= 
(see step b) of the proof  of (3.7)). Together with step c), this shows that if {nk}ED, 
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and [[f-sm(f)H==eo then instead of (3.7) we have 

N 

(3.35) (1 --  C V~o) d N ~ 2 E ( D ~ I ~ k - 1 )  ~ (1  --~ C ~ o )  dN 
k = l  

a.s. for sufficiently large N where f#k is the a-field defined above. Since Dg is ffk 
measurable and by step a) we have (under (1.3)) 

N N 
Z D~,- Z E(D~,l~q~k-1) = O(dN) a.s. 

k=l k=l 

for any increasing sequence s k of a-fields such that D k is s measurable, (3.35) 
implies 

N 

(1 -- C t/~oo) d N ~ .~  E(D~[D 1 . . . .  , Ok- 1) <= (1 § C t/~0) d N 
k = l  

a.s. for sufficiently large N. In other words, if {nk}ED,, for a large m (here "large" 
depends also on f )  then (3.7) is satisfied "approximately". 

Let 
Dk = Dk -- E(Dk [D1 . . . .  , Dk- 1)" 

Then for the Ok'S the main lemma implies the following 

LEMMA (3.2). We have 

(3.36) E(/~k[~-l)  = 0 

E ( O k [ ~  ~ C k  1/2 (k  ~ ko) (3.37) -2 

N 

(3.38) ~ 'E(B~[~_I )  ".~ dN a.s. 
k=l.  

EDk = Ck (k >= ko) (3.39) -4 _< 

where ~ - 1  denotes the a-field generated by B1 . . . .  , Dk-1. 

PROOF. We have IDk--Dk]<=Ck -2 (see (3.5)), lOk[<=fk 1/~, I~kl<=fk 1/~ and 
hence by the mean value theorem 

(3.40) IB~-D~I <- C, [B~-D~I <-- C. 

The second relations of (3.40) and (3.8) evidently imply (3.39), furthermore (3.6) 
and the first relation of (3.40) imply E(B~IDa, . . . ,  Dk_O<=Ck ~/~ from which (3.37) 
follows by taking conditional expectations of both sides with respect to ~ - 1  
(which is contained in the a-field generated by D~ . . . . .  Dk-0. In step a) of the proof 

N 
of (3.7) we saw that (3.7) is equivalent to ~D~. .~d  N a.s.; now the first relation 

k = l  
N 

of (3.40) and dN>=CN 3/~ show that also ~ O ~ d N  a.s. is an equivalent state- 
k = l  

ment. Finally, the martingale argument of step a) and (3.39) show that 
N 

B~,~dtr implies (3.38). 
k = 1  
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REMARK 2. The main lemma concerns the "long" block sums D k and T k. 
Defining the "short"  block sums 

(3.41) T~ = z~ f(n~x), D~, = 2 q)~(x) 
V6Jk  v E J  k 

an analogous statement holds for these sums: 

]E(D~I~:_~)[ <= Ck -~, E((D;,)=I~-k'_,)<---- Ck ~/a, 

N 
* 2  o~'t ,' Z E((D0 la~ a.s., <- Ck 11~ 

k = l  

N 
where o~, , , , 2k-~ denotes the a-field generated by D, . . . .  ,Dk-~ and d } =  ~ ,  E(D'k)L 

k = l  

Also, CNS/4<=d~(~<=CN 5/4 for N>--No. The analogue of Lemma (3.2) also holds 
for the centered sums D~,=D~,--E(D~,I.~[_I). 

4. Conclusion of the proof 

Using the main lemma and Lemma (3.2) we can complete the proofs of  The- 
orem 1, 2 in a standard way, following [1] or [6]. We prove here Theorem 1; the 
proof  of  Theorem 2 is the same (see Remark 1 after the proof  of the main lemma). 
Let 

N 

= Z E(o ]ol . . . .  ; 
k = l  

then VN~dN a.s. by (3.38). Also, using (3.39) and dN>=CN 3/~ (see the main lemma) 

we see that the sum ,~ ds is convergent, By Beppo Levi's theorem:this 
k = l  

implies the a.s. convergence of the series 

d ; Z / 2 E ( D ~ 1 0 1  . . . . .  D k - a )  
k = l  

and since the general term of the series 

V~/~I f.a , xz dP(Ok xI01 ...... Dk-*) (4.1) ~ -< 
k 1 

= x2>_Vk/ 

can be majorized by 

1 +=  1 - 4 -  f x4dP(Dk < xl01, ..,D~-I) = ~ E ( D k l D a  .. . .  , Dk- i )~  
v U  r lc 

: - - 4  - -  E(oklOl, ...,  k-O, 

it follows that the series (4.1) is also a.s. convergent. Thus we can apply Theorem 
(4.4) of  [7] to the martingale difference sequence Ok with f ( x ) = x  3/4 and we get 
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l?hat there exists a Wiener-process ~(t) such that 

(4.2) Ol- l - . , .@J~k = ~(Vk)+o(Vl/~-") a.s. 

with an absolute constant r/>0. (Strictly speaking, we first have to redefine the 
sequence bk on a new, larger probability space and ~(t) will be defined over this 
new space; in the sequel, however, we will speak as if (4.2) were valid for the original 
sequence. This little inaccuracy essentially simplifies the formulas (we do not 
have to use stars or superscripts for the "redefined" variables) and does not cause 
any trouble.) Replacing ./~l'q-..."{-J~ k with T~+. . .+T  k on the left hand side of 
(4.2), we commit an error O(1) (since I~k--Tkl<--_l~k--Dd+TOk--Z~l=O(k-9 by 
(3.3) and (3.5)); hence (4.2) and Vk~'dk a.s. imply 

(4.3) TI +... + Tk = ((Vk)+O(d~/2-~) a.s. 

(In what follows t/ will denote positive absolute constants, possibly different at 
different places.) We also remark that by replacing the left hand side of  (4.3) by 
T~+T;+.. .  +Tk+T[ (T[ are the short block sums defined in (3.41))we only add 
a term which is o(d~/2-"), so it does not bother the right side of (4.3). (Indeed, (4.3) 
has the exact analogue 

(4.4) T ; + . . . + T {  = ((V[)+o(d~ ~/2-') a.s. 

k k 
t ---'3 --t --," t for the short block sums where V[ = ~ '  E(Dj ]D1, ..., D j_l), d[ = z~ E(D~) z, cf. 

j = J .  j = l  

Remark 2 at the end of  w 3. Now it is sufficient to observe that the analogue of 
(3.37) to the 'pr imed '  variables D k-' i.e. --t,--kit?[g'2If'i k-l) = ~-'r~a<c'la/4 implies Vs 5/4) 
and thus d{<-_Ck 5/4 and the standard estimate ~(t)=o(?/~log t) show that the 
right hand side of  (4.4) is o(k 5Is log k)+o(k 5/s-") which is dominated by the re- 
mainder term o(d~/~-O=o(k 3/4-3~/~) in (4.3) if r/ is small enough.) Hence (4.3) 
implies 

T~ + T; + ... + T~ + T[~ = ~ (V~) + o(d],/~-") a.s. 

which can be rewritten as 

(4.5) sN~ = ~.(VD+o(d~/~-~) a.s. 

N k 2 
where SN= ~ f ( n ~ x )  and Nk= ~ '  ([i!/2]+[i~/4])~ 7 k 3/~. Since CN3/~<=dN<=CN 8/~ 

v = l  i = l  

the remainder term in (4.5) can be als0 written as o(N~/~-~). Hence if we define 
a sequence % of random variables by 

[ % = 0 
(4.6) [ 'cN~=V k for k =  1 ,2 , . . .  

['c, is linear in the intervals N~ <= n <_- Nk+l for k = 0, 1 . . . .  (No = 0) 

~then (4.5) simply says that the relation 

(4.7) SN = ~(zN)+o(N 1/~-~) a.s. 
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is valid for the indices N - - N  k. To get (4.7) for general N it suffices to show 

(4.8) max [SN--SN,,I = o(N~,/2-~) a.s. 
Nk ~-N~-Nk + 1 

and 

(4.9) max [~(ZN)--((~Nk)[ : o(N~/2-") 
Nk ~--N~--Nk + 1 

The first relation is trivial since 

a . s .  

N 

[SN-SN~[ =- .~  f (nvx)  ~- C ( N - N k )  <- C(Nk+l -Nk)  : 
v = N k + l  

-- C([(k+ 1)x/~]+[(k+ 1)1/41) - Ck 1/2 <- CN~/2-". 

To see (4.9) let us note that 
~N~ = Vk = O(k 3/2) a.s. 

and 
m a x  [ZN--ZNkl = T N k + I - - T N  k = V k + l - - V k  =" O(kl/2) a . s .  

Nk ~-N~-N~ + 1 

by (3.37) and thus Lemma (3.6) of [I] (with r=3/2, s=1/2) shows the left side 
of (4.9) is O(k I/4 log k)=O(N~/2-~) a.s. Hence (4.7) is proved and it remains to 
show that ZN/bN--I a.s. where b N is defined in (1.6). To this end we notice that 
zN/eN--I a.s. where eN is the numerical sequence defined (in analogy with (4.6)) by 

e 0 = 0  
eN~=dk for k = l , 2 , . . .  
e, is linear in the intervals N k <= n <: Ark+ 1 for k = 0, 1, . . . .  

(This follows trivially from the piecewise linearity of  % and e, and the relation 
2 3"2 V d d k - I  a.s. which is identical with (3.38).) Since N k ~ - ~ k  / and eNk=dk>-Ck 3/2 

we have e,>=Cn and thus the remainder term in (4.7) can also be written as 
o(e~/2-"). Hence (4.7) and z,,-~e, a.s. imply that the distribution of  SN/I/-~N tends 
to the standard normal distribution. Since the L4 norm of  SN/I/-~N remains bounded 
(this follows from the second relation of  Lemma (2.2) and e.>-_Cn), the second 
moment of  SN/}/-e-N converges to the second moment of  the standard normal distribu- 
tion, i.e. to 1. In other words, ES~/eN-*-I and since here ES~=bN (see (1.6)), 
we see that the sequences e~ and bN are asymptotically equal. Thus zN/eN--1 a.s. 
implies zN/bN-+I a.s. and this completes the proof  of  Theorem 1. 
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