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MAXIMAL CIRCUITS OF GRAPHS. I

By
D. R. WOODALL (Nottingham)

1. Introduction. All graphs considered are finite, undirected, and without
loops or multiple edges. Circuits and paths are ‘clementary’, i.e., have no repeated
vertices. V' (G) denotes the set of vertices of G. [x] denotes the greatest integer less
than or equal to x.

In [2, Theorem (2.7)], ERDOs and GALLAI proved that, if d=2 and G is a graph on
# vertices with more than é—d (n—1) edges, then G contains a circuit of length at least

d+1. They pointed out that this result is best possible when n is of the form r(d— 1)+ 1,
in view of the graph consisting of ¢ copies of K, all having exactly one vertex in com-
mon. Here I obtain the slight improvement:

THEOREM L. If d=2, and n=t(d—1)+p+1 where t=0 and 0=p<d—1, and G

d 1
is a graph on n vertices with more than t(2)+(p~2f- ) edges, then G contgins a
circuit of length at least d+1.

This result is best possible for every value of n, in view of the graph consisting
of t copies of K; and one copy of K,,.;, all having exactly one vertex in common.

An exactly analogous situation holds for paths, where ERDOS and GALLAI
12, Theorem (2.6)] proved that, if d=0 and G is a graph on » vertices with more than
% dn edges, then G contains a path of length at Ieast d+ 1. This is best possible when #
is of the form #(d+1), in view of the graph consisting of ¢ disjoint copies of K, ;.
The analogous improvement, best possible for all values of #, is given in Corollary
1.1. (This result was first proved by FAUDREE and ScHELP [3, Theorem 5], who also
-characterized the extremal graphs.)

CoROLLARY 1.1. If d=0, and n=1t(d+1)+p where t=0 and O0=p~<d-+1, and G

] d
is a graph on n vertices with more than t{ ;—1) + (12’) edges, then G contains a path of

Jength at least d+1.

Proor. Add a new vertex to G, joined to all the vertices of G by edges, to form
-a new graph G* with n+1=¢(d+1)+p+1 vertices and more than

d+1 d+2 1
(2 (8= (15708
edges. By Theorem 1, G* contains a circuit of length at least 443, and so G contains
a path of length at least d+ 1. This completes the proof.

Acta Mathematica Academiae Scientiarum Hungaricge 28, 1976



78 D. R. WOODALL

If a, b, =0, let K(a, b, ) denote the graph consisting of K, ., and K, . with b
of the vertices of K, 1dent1ﬁed with the ‘first’ b vertices of X, . (so that K (a, b, ¢)

has a+b+c vertices). If d=2, ]f—d and n=d+1—j, let

segady={"E i n—a- e

the number of edges in the graph K(d—2j+1, j, j+n—d—1), which has n vertices and
in which the longest circuit has length d(if J é—;—d). The proof of Theorem 1 uses:
THEOREM 2. Ifd=2andn %—Z—d —1, and G is a 2-connected graph on n vertices with
more than f (n, —;—d, d) edges, then G contains a circuit of length at least d+ 1.
Note that this bound agrees (in effect) with that of Theorem 1 if p =%d -1,

%d —% or %d; otherwise it is less than that of Theorem 1. If 4 is even, Theorem 2 is

best possible except for the restricfion on the value of n. The following conjecture
would be best possible for all values of #, in view of the graphs K(d—2j+1,,

jAn—d-1) (k=j=[%d]).

CONJECTURE. If d=2, Zéké—;-d and n=d+1, and G is a 2-connected graph on n
vertices with more than

max ( f(n, k, d), f{n, |5 d}, d))
edges in which each vertex has valency at least k, then G contains a circuit of length at
least d-+1. (If nothing is known about the valencies, replace k by 2.)
Note that f(n, k, d)=f (n, [—;— d], d) whenever k is greater than about %—(Sd —4n),
so that the bound in the conjecture is always equal to f (n, [—lz-d], d] if n>~i~d. The

conjecture is true for any values of n and d(=: n—r—1) for which the conjecture on
page 747 of [4] is true. (I have recently noticed that the latter conjecture can be false

ifn= ——d +2, in view of graphs consisting of three or more copies of K [ [ ], [%(d +

+10)]), disjoint except for two vertices which appear among the [4 (d+10)]

vertices in each copy.)
Theorem 2 has the following corollary, which was proved by ERDOs and GALLAX
[2, Theorem (3.4)] subject to the stronger restriction that n>k2—k+6.

CoROLLARY 2.1. If n=3k+2 and k=0, and G is a connected graph on n vertices
with more than (k]+k(n—k) edges, then G contains a path of length at least 2k+1.

ProoF. Add a new vertex to G, joined to all the vertices of G, to form a 2-con-
nected graph G* with n+1 vertices and more than

(§]+k("—k)+n=[k+2)+(k+1)((n+1) k—2)

* Throughout the paper the symbol := or =: indicates that the equation in which it occurs
acts as the definition of (some part of) the expression on the same side of the equality sign as the colon.
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edges. By Theorem 2 with d=2k+2, G* contains a circuit of length at least 2k +3,
and so G contains a path of length at least 2k +1.

2. Proofs of the theorems. LEMMA. If d=2 and d+1=n=2d—1, and G is a

d —d
graph on n vertices with more than (2) + [n 2+ 1) edges, then G contains a circuit

of length at least d+1.
Proor. Put d+1=n-rin Corollary 11.1 of [4].

il

PROOF OF THEOREM 2 by induction on n. If n=3%d—1, then f(n,34d, d)

Il

1
= (‘zi] + [—éd ] and the result follows by the Lemma. If n:-—Z—d_%, then f(n, % d d)

1
= {g] + [?(d;— 1)] +—81—, and the result follows similarly. So the induction starts.

If every vertex of G has valency at least —;—(d +1), then the result follows by Theo-
rem 4 of DirAc [1]. If G contains a vertex v with valency =—d, then G\ {v} has more

than f (n~l,%d, d) edges, and the result follows by the induction hypothesis if
G\ {v} is 2-connected. So we may suppose that G contains at least one vertex with
valency é—;—d, and that, if v is any such vertex, then G\ {v} is not 2-connected.

Let {a, b} be a separating set of two vertices, and let L be a lure of G attached at:
a and b, i.e., a subgraph with |V(L){=3 such that @ and b are the only vertices of L
joined to anything outside L, and L\ {a, b} is connected; and choose g, b and L so-
that L is minimal (by inclusion). Suppose first that L\ {a, b} contains a vertex v with
valency §—;—d, and consider the possibilities for a vertex w such that {v, w} is a sepa-
rating set. Certainly w¢ L, or there would be a smaller lune within L, attached at »
and w. But if w¢ L, the only way in which we can avoid {v, a} or {v, b} being a
separating set (giving a smaller lune) is to have L={a, b, v, (a, v), (v, b)}, and now
{(a, BYUG\ {v, (4, v), (v, b)} satisfies the hypotheses of the theorem and the result.
follows by induction. So we may suppose that every vertex of L\ {a, b} has valency
at least %(d—k 1). By Lemma 12.4 of [5], a and b are connected by a path of length at.
least 3(d-+1) in L.

Let L’ be another minimal lune of G, attached at ¢ and d. (Possibly {c, d}=
={a, b}.) By the same argument, ¢ and d are connected by a path of length at least
—;—(d +1) in L’. Since G is 2-connected, {a, b} is connected to {c, d} by two disjoint
paths, which clearly do not contain any vertices of L or L’ apart from a, b, ¢, d
themselves. So G contains a circuit of length at least d+ 1. This completes the proof.

Proor oF THEOREM 1 by induction on . The result is (vacuously) true if n=d,
and it follows from the Lemma if d+1=n=2d—1; so suppose that n=2d. If G is.
2-connected, the result follows from Theorem 2; so we may suppose that G=G,UG,,
where G; and G, either are disjoint or have exactly one vertex in common. Let G;
have »; vertices, where
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Then n,+n,=n or n+1, and either

i+t =1 and p;+p, =p—1 or p,
or
h+t,=1t—1 and py+p,=d—-1+p—-1 or d—1+p.

Suppose that neither G, nor G, satisfies the hypotheses of the theorem. Then
the number of edges in G is at most

) o

If t,+1, =¢ then (p+1)+(p+1)=p+2, and p,+1=p+1 and p,+1=p+1,

and so
_ () [(p+1 1 d)y (p+1
w3+ (134 ()= () 02)
contrary to hypothesis. If, on the other hand, f; +2,=t—1, then (p, + 1)+ (po+1)=
=d+p+1, and p,+1<d and p,+1<d, and so

dY (d 1 d 1
R NEURTENEY)
again contrary to hypothesis. Thus one of G, and G, must in fact satisfy the hypotheses
of the theorem, and the result follows by induction.
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