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MAXIMAL CIRCUITS OF GRAPHS. I 

By 

D. R. WOODALL (Nottingham) 

1. Introduction. All graphs considered are finite, undirected, and without 
loops or multiple edges. Circuits and paths are 'elementary', i.e., have no repeated 
vertices. V(G) denotes the set of  vertices of  G. Ix] denotes the greatest integer less 
than or equal to x. 

In [2, Theorem (2.7)], ERD6S and GALLAI proved that, if d=>2 and G is a graph on 
n vertices with more than l d ( n -  1) edges, then G contains a circuit of length at least 
d +  1. They pointed out that this result is best possible when n is of the form t (d -  1) + i, 
in view of the graph consisting of t copies of Ka all having exactly one vertex in com- 
mon. Here I obtain the slight improvement: 

TrrEORE~ 1. I f  d>-2, and n=t (d -1)+p+l  where t~=O and 0 ~ p < d - 1 ,  and G 

is agraph on nvertices with more than tl2]+[p~-'" ---1}" edges, then O contains a 

.circuit of length at least d+ 1. 

This result is best possible for every value of  n, in view of the graph consisting 
o f  t copies of  Ka and one copy of  Kp+l, all having exactly one vertex in common. 

An exactly analogous situation holds for paths, where ERo6s and GALLAI 
[2, Theorem (2.6)] proved that, if d=>0 and G is a graph on n vertices with more than 

dn edges, then G contains a path of  length at least d +  1. This is best possible when n 
is of  the form t(d+ 1), in view of the graph consisting of t disjoint copies of Ka+~. 
The analogous improvement, best possible for all values of n, is given in Corollary 
1.1. (This result was first proved by FAUDREE and Sct-rELI" [3, Theorem 5], who also 

characterized the extremal graphs.) 

COROLLARY 1.1. I f  d~O, and n=t(d+ l)+p where t~O and 0 ~ p < d + l ,  and G 

Jeegth at least d+ L 

PROOF. Add a new vertex to G, joined to all the vertices of G by edges, to form 
a new graph G* with n + 1 = t (d+  l) + p  + 1 vertices and more than 

edges. By Theorem l, G* contains a circuit of length at least d+3, and so G contains 
a path of length at least d +  1. This completes the proof, 
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If a, b, c=>0, let K(a, b, c) denote the graph consisting of Ka§ b and Kb, c with b 
of the vertices of K,+b identified with the 'first' b vertices of Kb, c (so that K(a, b, c) 

"-~Z 1 has a + b + c vertices)�9 If d =  > 2 ,  j = ~ d  and n => d +  I - j ,  let 

f ( n , j , d ) : =  (d-J2+ l ) + j ( j + n - d -  l),* 

the number of edges in the graph K ( d - 2 j  + 1, j, j + n - d -  1), which has n vertices and 
�9 - < :  1 in which the longest circuit has length d (if j = ~ d). The proof of Theorem 1 uses: 

THEOREM 2. I f  d>=2 and n >=-} d -  l, and G is a 2-conneeted graph on n vertices with 

more than f(n,  ~d,1 d) edges, then G contains a circuit of length at least d+ 1. 

Note that this bound agrees (in effect) with that of Theorem 1 if p = ~ d - 1 ,  
t 1 1 . T d - T  or yd ,  otherwise it is less than that of Theorem 1. If d is even, Theorem 2 is 
best possible except for the restriction on the value of n. The following conjecture 
would be best possible for all values of n, in view of the graphs K ( d - 2 j + l , j ,  

CONJECTURE. I f  d>=2, < < 1 > 2 = k  =-~d and n=d  + 1, and G is a 2-connected graph on n 
vertices with more than 

max(f(n,k,d),f(n, [�88 
edges in which each vertex has valency at least k, then G contains a circuit of  length at 
least d+ 1. ( I f  nothing is known about the valencies, replace k by 2.) 

Note that f(n, k, d)<=f(n, [-~ d], d) whenever k is greater than about ~-(5d-4n), 

so that the bound in the conjecture is always equal to f (n,  [{d] ,  d}" s if n > ~-d. The 
conjecture is true for any values of n and d(=:  n - r - 1 )  for which the conjecture on 
page 747 of [4] is true. (I have recently noticed that the latter conjecture can be false 

> 8  �9 �9 �9 1 1 if n =~-d + 2, m vmw of graphs consisting of three or more copras of K{0, [u  ], [u 

+1o)1), disjoint except for two vertices which appear among the 
vertices in each copy.) 

Theorem 2 has the following corollary, which was proved by ERD6S and GALLAI 
[2, Theorem (3.4)] subject to the stronger restriction that n >k  2 -  k + 6. 

COROLLARY 2.1. I f  n>=3k + 2 and k>:O, and G is a connected graph on n vertices 

withmore than t k ) + k ( n - k )  edges, then G contains a path of  length at least 2k+l .  

PROOF. Add a new vertex to G, joined to all the vertices of G, to form a 2-con- 
nected graph G* with n + 1 vertices and more than 

�9 T h r o u g h o u t  t h e  p a p e r  t he  s y m b o l  : =  o r  = :  i n d i c a t e s  t h a t  t h e  e q u a t i o n  i n  w h i c h  i t  o c c u r s  
a c t s  a s  t h e  d e f i n i t i o n  o f  ( s o m e  p a r t  o f )  t h e  e x p r e s s i o n  o n  t h e  s,~me s ide  o f  t h e  e q u a l i t y  s i g n  a s  t h e  c o l o n .  
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edges. By Theorem 2 with d = 2 k + 2 ,  G* contains a circuit of length at least 2 k + 3 ,  
and so G contains a path of  length at least 2k + 1. 

2. Proofs of the theorems. LEM~A. I f  d~2  and d+ 1 <=n<=2d - l, and G is a 

graph on n vertices with more than (d)+(n-d2+ l} edges, then G contains a circuit 

of length at least d+ 1. 

PROOF. Put d +  1 = n - r  in Corollary l l.1 of [4]. 

PROOF OF THEOREM 2 by induction on n. If  n = T d - 1 ,  then f{n,~d, d)= 

[d}  {~'d} a 1 then f[n ,~d ,d)= = n = T d - - s  2 + 2 and the result follows by the Lemma. If 

= +--if, and the result follows similarly. So the induction starts. 

ff  every vertex of G has valency at least i f (d+  1), then the result follows by Theo- 
. < 1  rem 4 of DmAc [1]. If  G contains a vertex v with valency =-~d, then G \  {v} has more 

than f { n - 1 ,  ~d, d) edges, and the result follows by the induction hypothesis i f  
G \  {v} is 2-connected. So we may suppose that G contains at least one vertex with 

_~:1 valency = ~ d ,  and that, if v is any such vertex, then G \  {v} is not 2-connected. 
Let {a, b} be a separating set of two vertices, and let L be a lune of G attached a t  

a and b, i.e., a subgraph with {V(L)I_->3 such that a and b are the only vertices of L 
joined to anything outside L, and L \  {a, b} is connected; and choose a, b and L so  
that L is minimal (by inclusion). Suppose first that L \  {a, b} contains a vertex v with 

.~z 1 valency =-~d, and consider the possibilities for a vertex w such that {v, w} is a sepa- 
rating set. Certainly w(~ L, or there would be a smaller lune within L, attached at v 
and w. But if w~L, the only way in which we can avoid {v, a} or {v, b} being a 
separating set (giving a smaller lune) is to have L =  {a, b, v, (a, v), (v, b)}, and now 
{(a, b)}C G \  {v, (a, v), (v, b)} satisfies the hypotheses of the theorem and the result 
follows by induction. So we may suppose that every vertex of L \  {a, b} has valency 
at least ~-(d+ 1). By Lemma 12.4 of [5], a and b are connected by a path of length at: 

least -~(d+ 1) in L. 
Let L" he another minimal lune of  G, attached at c and d. (Possibly {e, d}= 

= {a, b}.) By the same argument, e and d are connected by a path of length at least 
~-(d+ 1) in L'. Since G is 2-connected, {a, b} is connected to {c, d} by two disjoint 
paths, which clearly do not contain any vertices of  L or L'  apart from a, b, c, d 
themselves. So G contains a circuit of length at least d +  1. This completes the proof. 

PROOF OF THEOREM 1 by induction on n. The result is (vacuously) true if n<=d, 
and it follows from the Lemma if' d+l<=n<=2d-1; so suppose that n>=2d. If  G is. 
2-connected, the result follows from Theorem 2; so we may suppose that G = G1 U G2, 
where G1 and G~ either are disjoint or have exactly one vertex in common. Let G~ 
have nl vertices, where 

ni= t i (d-1)+pi+l  ( 0 < _ - p i < d - 1 ;  i =  1,2). 
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Then nl + n2 = n or n + 1, and either 

t l+t~ = t and px+p~ = p - 1  or p, 
o r  

t ~ + t 2 = t - 1  and p ~ + p e = d - l + p - 1  or d - l + p .  

Suppose that neither G1 nor G~ satisfies the hypotheses of the theorem. Then 
the number  of  edges in G is at most 

i f  t t + t  ~ = t, then ( p ~ + l ) + ( p z + l ) < = p + 2 ,  and p l + l ~ p + l  and p z + l < = p + l ,  
:and so 

contrary to hypothesis. If, on the other hand, tl + t,,. = t -  1, then (p~ + 1) + (Pc + 1) 
~ d + p + l ,  a n d p l + l < d  a n d p 2 + l < d ,  and so 

again contrary to hypothesis. Thus one of G~ and G2 must in fact satisfy the hypotheses 
o f  the theorem, and the result follows by induction. 
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