
Animation of
fracture by
physical modeling

Alan Norton, Greg Turk*,
Bob Bacon, John Gerth,
and Paula Sweeney

IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598, USA

The breaking of solid objects, like glass
or pottery, poses a complex problem for
computer animation. We present our
methods of using physical simulation to
drive the animation of breaking objects.
Breakage is obtained in a three-dimen-
sional flexible model as the limit of elastic
behavior. This article describes three prin-
cipal features of the model: a breakage
model, a collision-detection/response
scheme, and a geometric modeling meth-
od. We use networks of point masses con-
nected by springs to represent physical ob-
jects that can bend and break. We present
efficient collision-detection algorithms, ap-
propriate for simulating the collisions be-
tween the various pieces that interact in
breakage. The capability of modeling real
objects is provided by a technique of build-
ing up composite structures from simple
lattice models. We applied these methods
to animate the breaking of a teapot and
other dishware activities in the animation
Tipsy Turvy shown at Siggraph '89. Ani-
mation techniques that rely on physical
simulation to control the motion of objects
are discussed, and further topics for re-
search are presented.

Key words: Modeling - Animation - De-
formation - Collision detection - Simula-
tion - Dynamics

* Current address: Department of Computer Science,
University of North Carolina, Chapel Hill,
NC 27514, USA

210

Introduction
Realism in computer animation depends on having
objects move in a natural way. Computer simula-
tion of physical behavior, or physically based mo-
deling, has recently been successfully applied to
various aspects of generating realistic motion. Ri-
gid body simulation has been used to drive the
animation of colliding objects (Hahn 1988). Flex-
ible objects have been modeled as two- and three-
dimensional meshes (Miller 1988; Platt and Barr
1988; Terzopoulos and Witkin 1988; Terzopoulos
et al. 1987; Terzopoulos and Fleischer 1988)using
either finite elements or springs.
In this paper we present a physically based model
that was designed to animate solid objects break-
ing. The model we use for breakage of solids is
similar to the 2 D breakage model reported by Ter-
zopoulos and Fleischer (1988). We model breakage
as the limit of elastic behavior: when objects are
sufficiently deformed, they will break at the place
where the stress is greatest. Fractures therefore
emerge dynamically as a natural result of stress
accumulating and being released in breakage.
For such a model to succeed, we determined that
it was necessary to handle a number of interrelated
phenomena in a coherent way. Not only did elastic
behavior and fracture need to be included in the
model, but it was also necessary to incorporate
a collision-detection/response model sufficiently
robust to show realistic interaction between the
broken fragments resulting from the breakage. Re-
alistic object behavior requires other forces, such
as gravity and friction. The materials we simulated
needed to be molded into shapes appropriate to
represent everyday objects, e.g., teapots, which
could then be ray traced to show distortion and
fragmentation of their structure.
We present a framework for physical modeling that
meets these objectives. The physical behavior of
solids is approximated by a three-dimensional grid.
Masses are associated with vertices of the grid; in-
teractions between neighboring vertices are ob-
tained by simulating spring-like forces.
The individual components of this model are gen-
erally not unique; we have used various aspects
of simulation, modeling, and collision detection
previously presented (Miller 1988; Terzopoulos
and Fleischer 1988; Hahn 1988; Moore and Wil-
helms 1988). Our contribution is integrating a vari-
ety of established techniques in physically based
modeling, showing how they can be applied togeth-
er to achieve 3 D breakage of brittle structures and
other animation capabilities. In this process, we
made pragmatic choices and learned lessons that

The Visual Computer (1991) 7:210-219
�9 Springer-Verlag 1991

will be of value to others interested in realistic com-
puter animation.
The last section of this paper discusses several ma-
jor issues that need further work before flexible/
breaking object simulation is an established com-
puter-animation technique. We give suggestions for
research directions and present the techniques we
developed for animation control of flexible objects.

Physical modeling of solid struc-
tures

Dynamic solid models

To model realistic physical behavior by computer,
it is necessary to establish a structure that will be
used for the simulation. We define here a model
that combines a geometric and dynamic descrip-
tion of objects and can be used to drive both simu-
lation and computer graphics animation.
A dynamic solid model consists of a network or
graph

N (t) = {ni(t) , b i j (t)}

consisting of nodes {n~(t)} as the vertices of the
graph and bonds {bi j (t)} as the edges of the graph.
The network can vary as a function of time t by
associating a number of time-dependent parame-
ters with nodes and bonds. For discrete-time simu-
lation, the values of such time-varying parameters
are updated each time step.

Each node n~ has associated with it:
- Mass m i.
- P o s i t i o n R~, a 3-vector.
- Velocity Vii, another 3-vector.

Both Ri and V~ are functions of time. These values
are chosen to be consistent with a system of physi-
cal units; we have used centimeter-gram-second
(cgs) units. One may optionally associate additional
parameters with nodes, depending on the structure
being simulated.
A bond b~j connects node n~ with node n~. We
allow at most one bond between a given pair of
nodes (hi, n j). Each bond has an associated force
function Fq representing the mutual attraction or
repulsion associated with the pair (n~, n j). This force
is derived from the physical model being used. For
example, we compute the force from a number of
scalar functions (of time) associated with bonds,
including:

- lij, a natural or equilibrium length such that
nodes n~ and nj will experience an attractive force
when their separation is greater than lij and a re-
pulsive force when the separation is smaller. Usual-
ly, the length is constant in time; however, a person
can simulate plastic deformations of the solid by
allowing the length to vary.
- lq~, a spring constant resulting in a force of mag-
nitude rkq when the two nodes are displaced a
distance of r from their equilibrium length.

dij, a damping constant resulting in a force of
magnitude vdzj when the relative velocity of the
two nodes is v. This can be used to dissipate inter-
nal vibrations in the material.
- A breaking threshold t~j, which determines how
much the bond is stretched before it "breaks."
Breakage occurs when the ratio of stretched length
to equilibrium length is more than 1 § With
large values of tij, the substance can be made un-
breakable, and small values can cause it to crumble
under slight deformation. The breaking thresholds
can be randomly varied within a homogeneous so-
lid so as to cause irregular fracture patterns.
- A Boolean variable sq indicates whether the giv-
en bond has been broken or not. A broken bond
will not exert an attractive force when the nodes
are separated beyond the equilibrium length, but
continues to exert a repulsive force when the nodes
become sufficiently close.

Geometry

In the above definition of dynamic solid model no
mention was made of geometry. To construct a
dynamic solid model of a given object requires that
both the macrogeometry (shape of the object) and
microgeometry (or local internal structure) be mo-
deled. Such a model could be regarded as a coarse
approximation to the atomic structure of a solid.
Computational limits force us to have nodes
(atoms) representing volumes as large as a cubic
centimeter of the material, and the choose bonds
approximating the interaction between small (but
not infinitesimal) nearby volumes.
We have chosen to start with a microgeometry
based on a cubic lattice and use this structure as
basic material for constructing larger objects. We
have illustrated one cube in such a lattice in Fig. 1.
The eight nodes associated with such a cube are
labelled A, B, C, D, E, F, G, H. The 12 edges of
the cube have associated bonds connecting each

211

H G H ~-,,.. G

A B A B
1 2 3

Fig. 1. Cube with associated bonds. A spring is associated with each of the 12 edges of the cube as well as with each
of the four internal diagonals

Fig. 2. Cube with face-diagonals. A spring is associated with each of the 12 edges of the cube as well as with a diagonal
on each of the six faccs. Symmetry (but not more stability) can be obtained by associating springs with the other six face

diagonals

Fig. 3. A cylinder is modeled with a lattice of deformed cubes

Fig. 4. A flexible teapot deforms as it collides with the floor

Fig. 5. A teapot lurches as if in response to a hiccup when gravity is increased and then suddenly decreased

Fig. 6. A teapot is propelled vertically as a consequence of tightening its springs

Fig. 7. A teapot breaks when it falls on its spout

212

vertex to three others; e.g., A is connected to B,
D, and E. In addition, we introduce four bonds
between diagonally opposite vertices occurring be-
tween A and G, B and H, C and E, D and F.
These bonds on internal diagonals add rigidity to
the structure, although the four diagonals shown
here are not adequate to constrain all degrees of
freedom of a cubic lattice. (There is a 3D set of
deformations of the cube vertices that is opposed
quadratically but not linearly by the 16 springs.)
We also experimented using bonds on face diago-
nals in a configuration that does constrain all de-
grees of freedom, as shown in Fig. 2. The more
stable configuration showed only minor differences
in behavior under simulation.
Multiple cubes can be adjoined to form a lattice.
One construction technique is to approximate any
given shape with cubes in a lattice based on the
Euclidean coordinate system. This method, how-
ever, results in staircase-like objects, and immense
models would be required to mask grid effects. In
order to construct objects of various shapes, we
relax the requirement that the lattice elements be
precise cubes, i.e., the edges are not required to
be of equal length. We can distort the lattice ele-
ments so as to approximate nonrectilinear surfaces.
For example, a cylinder can be constructed by ro-
tating a set of squares about an axis. The resulting
lattice elements are only approximately cubic, as
shown in Fig. 3.

Dynamics

Suppose we are given an environment consisting
of various geometric shapes realized as dynamic
solid models. Assuming Newtonian mechanics, we
compute the evolution of such a system in time
by integrating Newton's second law, F=ma. All
the masses in such a system are associated with
nodes of the dynamic solid model. Newton's law
requires that each node be accelerated according
to the total forces applied to it. We have chosen
to compute this solution by Euler's method: at
each time step t and for each node n~, the total
applied force F is computed based on spring forces,
gravity, friction, etc. This determines the accelera-

F
tion a = - - of that node, resulting in a change in

mi
the velocity

V/(t +At)= Vi(t)+aAt.

The position is updated based on the current veloc-
ity

Ri(t + At) = Ri(t) + V~(t) At.

Many forces must be included to model a realistic
physical object. These include the interconnecting
forces Fq as required of a dynamic solid model.
In addition, there are other forces outside the net-
work structure, including gravity, friction, collision
interactions, and forces imposed by objects exter-
nal to the model.
We have used the following approximations for
the forces in our model:

Gravity. This is taken to be a constant down-
ward force of magnitude mig, i.e., mass times the
acceleration of gravity.
- Internal forces. The force of interaction between
two adjacent nodes in the model is modeled after
Hooke's law for springs. Suppose that the equilibri-
um distance between two nodes is D. The spring
force between them is the sum k X +dV where X
is a vector in the direction of the difference in posi-
tion between the nodes and has a magnitude equal
to the difference between the current separation
of the nodes and their original separation D. The
spring constant k must be chosen appropriate to
the stiffness of the material; as k becomes larger,
the substance becomes stiffer Vector V is the com-
ponent of the vector difference in the velocities of
the two nodes in the direction of the vector X, and
represents the rate at which the nodes are moving
apart. It is multiplied by the damping constant d
to procedure a force that tends to resist the contin-
ued relative motion. The damping force tends to
dissipate the internal vibrations of the system and
can be chosen appropriate for the material. [See
Feynman (1965) for a general discussion of the use
of spring forces in modeling the internal dynamics
of materials.]
- External forces. We use another spring model
to represent interactions with immovable objects,
e.g., the upward force exerted force exerted by the
floor. Such objects provide a repulsive force of the
form kX+dV, where the vector X is taken to be
the distance that the node intrudes into the immov-
able object and V is the velocity of that intrusion.
There is no force applied if the node does not in-
trude. The spring constant in this case defines the
stiffness of the immovable object and can be tuned
to model for example the difference between a vinyl
and concrete floor.

213

- Collisions. In addition to interacting with exter-
nal objects, it is necessary to model the interaction
when different chunks of dynamic solid model
come in contact. If this force was not modeled,
pieces of a breaking object would travel right
through the object without interacting. Our col-
lision model uses a variant of the penalty method:
a repulsive (spring-like) force is applied when it
is determined that two objects have interpenetrated
one another. The collision-detection algorithms
will be described in the next section.

Friction. When two objects have been deter-
mined to intrude into one another, e.g., parts of
a dynamic solid model or immovable objects, a
force is introduced in the direction opposing lateral
motion between them and proportional to the
magnitude of the intrusion. (In physics friction be-
tween two rigid objects ordinarily modeled as pro-
portional to the normal component of the applied
force. In our model the same effect is obtained,
because the magnitude of intrusion is the conse-
quence of and proportional to the normal compo-
nent of the force between them.)

Collision detection

Collision detection and response is an important
aspect of simulation systems for computer graph-
ics. Real-world objects do not pass through one
another, but instead bounce off each other or cause
stress that may result in breaking. The major issue
in collision detection is speed: the naive algorithm
compares all parts of one objects against all parts
of another object to determine whether the two
objects are interpenetrating. Detecting collisions
can be the dominating factor in execution speed
in a simulation system (Hahn 1988), so it is impor-
tant to reduce the time complexity of the detection
algorithm.
The method we have chosen for detecting and re-
sponding to collisions is node based rather than
polygon based. Our model for collisions has each
node repel all other nodes that belong to different
pieces of a dynamic solid model. The method is
simple in that the forces acting on a node due to
collisions can just be summed with other forces
that act upon the node. A drawback is that it is
difficult to position objects in stable continuous
contact with one another, as is the case when one
object rests on top of another.

214

We require that collisions be detected not only be-
tween separate objects but also between pieces of
objects that were once part of the same object. Col-
lision forces should not, however, be generated be-
tween points that lie near each other within the
same object. We consider the collection of all ob-
jects in a scene as a graph consisting of the nodes
connected by the bonds that are the graph's edges.
Two nodes may repel each other if they belong
to disjointed components of this graph. Therefore,
we must label each node to specify to which graph
component it belongs. The graph must be relabeled
any time bonds have been broken to identify any
piece that may have broken of from dynamic solid
model. A depth-first search can be used to label
the connected components of a graph.
Once each node is labeled, a locality search is per-
formed to find nodes that are within the repulsive
range of a given node. Because the nodes in our
models are relatively uniform in density, we use
uniform spatial subdivision for this locality search.
We partition the space into a cubic lattice in which
each cube of the lattice contains a pointer to all
nodes that fall within the cube. (These cubes should
not be confused with the cells that form the struc-
ture of a dynamic solid model.) The size of the
cubes is chosen to be large enough so that all nodes
that could be repelled by a given node will lie in
the same cube or in an adjacent cube to the cube
containing the node. Once the nodes have been
placed in the cubic partition, a search of nearby
cubes is performed for each node to find nodes
that should be repelled. Only those nearby nodes
that are from a different component than the given
node will be repelled. To speed this search for
nearby nodes from other components, each cube
has a tag specifying the component labels of the
nodes it contains. This tag helps avoid comparing
a node with the nodes in a cube that are all from
the same component. To save space, the cubes are
stored in a hash table instead of in a three-dimen-
sional array [see, for example, Bentley and Fried-
man (1979)]. In the simulations performed, we have
found that the time required to complete collision
detection grows linearly with the number of nodes
in the scene.
Once it is determined that two nodes are in col-
lision, a collision response force is applied. Each
of the two nodes has a radius associated with it
that was the distance to the nearest neighbor in
its original position in the model. The force be-
tween two nodes is a spring-like repulsive force,

as if a spring of natural length equal to the sum
of the two radii were interposed between the two
nodes.
The above model does not detect collisions be-
tween different parts of the same connected compo-
nent. We have also implemented a version where
we allow nodes within the same component to re-
pel each other. This prevents self-intersection of
objects that can bend back on themselves, such
as a rope or cloth, at the expense of detecting addi-
tional collisions between nodes.

Breakage modeling

Our approach to dynamic simulation using dy-
namic solid models was designed to accommodate
simulation of breaking objects. We use a simplified
fracture model to provide a rough approximation
of fracturing materials.
To model accurately how macroscopic shape dis-
tortions result in microscopic structural changes
in microsecond time intervals would require exces-
sive computation. We therefore accept limits in the
smallest time and distance scales used in the simu-
lation; the distance scale is the distance between
nodes in a dynamic solid model and the time scale
is the simulation step size required for the stiffness
of the object.
Given these constraints, the model we describe
should not be expected to model accurately the
finest details of fracture, but only to show convinc-
ingly the coarser aspects of how the physical distor-
tion of a structure can result in its destruction.

Breakage threshold. A simple model for breakage
defines a threshold such that when the force ap-
plied to a bond is greater than the threshold, then
the bond breaks. Studies have shown that materials
are much more easily broken when stretched than
when compressed [see, e.g. Crandall et al. (1978)].
Therefore, we chose to make bonds break only on
stretching, and not on compression. The breakage
threshold tij is compared with the stretch of the
bond. If the bond is stretched more than (1 +tij)
this its starting length, then we say it is broken
and set the appropriate Boolean variable sij at 1.
The breakage of real objects is not usually along
regular seams, but tends to be jagged, unless the
object is crystalline and breaks along the symmetry
of a crystal. Breakage normally tends to occur at
weak spots or defects in the structure. We simulate

this effect by randomly varying the breakage
threshold for the various bonds. If a bond has an
unusually low threshold, that represents a defect
in the structure that will easily fracture if subjected
to a big force.

Cells. The breakage model described above, with
individual bonds breaking when sufficiently dis-
torted, is not adequate. If some, but not all, bonds
of a cube break, then the cube loses much of its
structural stability. This can result in flexible
strings of material remaining after a fracture. This
defect was remedied by introducing the notion of
a cell. A cell is a set of nodes together with all
the bonds that connect two nodes in the cell. A
cell should be thought of as the basic structural
entity that disintegrates under breakage.
Whenever any one bond in a cell is broken, that
cell itself is said to be broken. Conversely, whenev-
er all cells containing a bond are broken, we cause
that bond to break as well. The result of this algo-
rithm is that the fragmentation of the structure oc-
curs in cellular units rather than just among indi-
vidual bonds.
For dynamic solid models based on cubic lattices,
the appropriate notion of a cell is the set of bonds
and nodes associated with the vertices, edges, and
diagonals of one cube, as pictured in Figs. 1 or
2.

Collision effects. Spurious effects can emerge during
fracture if the collision response model is not de-
signed to be consistent with the internal bonds of
the structure. When fracture occurs, collision forces
instantly replace the internal forces of the material.
If those forces are greater than the binding forces,
a chain reaction can be set off, ripping the structure
apart. This problem is solved by designing the frac-
ture model to guarantee that breakage does not
result in an increase in kinetic energy. We specify
the repulsive collision force to be a spring force
based on a spring of natural length no greater than
the distance to the nearest node in the original
solid model. If a material is to break, the spring
constant used in collision response must be chosen
to be no greater than the constant of the material's
internal bonds.

Geometric modeling

It is simple to create a dynamic solid model of
simple objects, such as a hollow cylinder or a rect-

215

angular block. We can build these shapes directly
from elements of a cubic lattice, perhaps slightly
distorted to match the given shape. We allow the
lattice to deviate from exact cubes so that the sur-
face of an object is smooth instead of staircased,
as this issue becomes important for rendering. A
more complex object is built by joining together
more than one such cubic lattice by a "gluing"
operation. In this way dynamic solid models of
arbitrary topology can be created.
We currently have a small set of simple shapes
that we use to build models. All of these shapes
are topologically equivalent to either a solid cube
or a hollow cylinder with thick walls. Two useful
modeling shapes that are variants of a solid cube
are a rectilinear slab of arbitrary dimensions and
the solid formed by creating a lattice between two
parallel Bezier patches, which we call a thickened
Bezier patch. A wide range of variations on a cylin-
der can be created by specifying an inside and an
outside surface of revolution that can be joined
to create a solid region. The thickened cylinder
of Fig. 3 is a simple example of such a solid.
To model more complex objects, we define a gluing
operation that allows two or more simple shapes
to be joined. Shape A is glued to shape B by first
positioning the two shapes so that the regions to
be glued together are adjacent or coincident with
one another. Then those nodes from shape A that
are to be joined to shape B are specified; call them
ai. Each of these nodes a~ is paired with another
node b~ in shape B that is nearest to it. Gluing
is completed by having each bond containing one
of the nodes ai altered by having ai replaced by
the node b~ from shape B. Each of these bonds is
called a glue bond. If a bond from shape A joins
two of the specified gluing nodes a~ and a j, then
the spring constant and damping constant of the
bond are both set to zero so as to not duplicate
bonds already in shape B. All of the nodes a~ are
then dropped from the model. Now shapes A and
B have been joined to form a larger dynamic solid
model that will act as one object.
The Utah teapot model was made by gluing to-
gether six separately modeled shapes. The main
body of the teapot was obtained by revolving two
profile curves (inside and outside profile curves
made from Bezier splines) about a vertical axis.
A cylindrical rim (needed to keep the lid from fall-
ing into the teapot) was glued to the inside of the
upper opening. The teapot handle was constructed
from two curved solid cylindrical shapes that were

glued end-to-end, then both ends glued to the main
teapot body. The teapot spout was constructed
from two curved slabs forming each side of the
spout. The two slabs were glued together along
their edge, then the base of the spout was glued
to the main teapot body. The teapot lid is the vol-
ume of revolution between two revolved Bezier
curves.

Rendering

A dynamic solid model is composed solely of nodes
and bonds, and many possible rendering tech-
niques can be used to create images of such a struc-
ture. To date we have chosen to create a polygonal
description that matches the node positions with
vertices. Some alternatives to this would be to
render each node as a sphere or to create a level
surface of a potential field where each node con-
tributes to the value of the field.
To create a polygonal image at a given time step,
each face of each unbroken cell of a model is exam-
ined to see if it lies on the surface or in the interior
of the model. If it is on the surface, a matching
polygon is created. Normal vectors are calculated
for the vertices of each surface face and are used
for Phong shading. At each step in a simulation,
all nodes in a model are identified as either isolated
or as being connected to other nodes within a
structure or fragment. Once all bonds that link a
point to its neighbors have been severed, the node
is isolated and will remain so throughout the dura-
tion of the simulation. Isolated nodes are the small-
est particles resulting from breakage. Currently, we
render such nodes as simple tetrahedra, although
clearly more cosmetic choices are available.
We render images from the polygonal description
using a ray-tracing renderer written by Kay (Kay
and Kajiya 1986) that uses a hierarchy of bounding
volumes to speed up the intersection calculations.

Discussion

The model described above was applied to animate
a teapot breaking in the video Tipsy Turvy (Figs. 4 -
7). Other actions of dishware (e.g., hiccups and
sneezing !) were animated using the flexibility of dy-
namic solid models. There are many ways in which
the model can be improved to make it a more
powerful animation technique. We discuss some of

216

them below so that they can be used as topics for
future research.

Differential equation solution methods

It is an immense computational task to solve the
equations of motion for complex flexible objects.
Therefore, an important research problem is to find
more efficient methods for such simulation. A
problem in simulating ceramics as flexible objects
is that the models (and the resulting differential
equations) must be so stiff that the computation
time becomes prohibitive. The speedups to flexible
body simulation proposed by Pentland and Wil-
liams (1989) and Witkin and Welch (1990) do not
readily apply to the problem of animating fracture.
For the Tipsy Turvy animation, we chose to make
the teapot softer than real ceramics in order to
complete the simulation within a two-month peri-
od.
We used Euler's method to solve the equations of
motion, even though Euler's method is known to
be inferior to other techniques (e.g., Runge-Kutta
or implicit methods) for accuracy and stability in
solving stiff differential equations (Recipes 1988).
However, we chose not to apply such methods,
because the system of equations would potentially
be restructured at each time step as a consequence
of the fracture model we used. In retrospect, it is
likely that with some effort Runge-Kutta or other
techniques could be successfully applied, if, for ex-
ample, the integration method whenever a fracture
occurs was modified.

pie, some additional adjustment is necessary to
cause realistic breakage of a larger structure. A
small number of trials was usually sufficient to ob-
tain the desired value.
In order to have better control over the breakage
processm it is desirable to express the relationship
between stiffness and breaking threshold scales
with model resolution. Another problem is that
uniform material properties cannot be easily ap-
proximated with nonuniform grids. Understanding
the scaling aspects of fracture and stiffness should
help to construct models that do not show the ef-
fects of nonuniform grid approximations.

Breakage appearance

Two undesirable artifacts of the current implemen-
tation are the staircasing of the fractured edges and
the large number of isolated shards (rendered as
tetrahedra) that emerge from the breakage. The
former problem has been dealt with effectively by
using splines to smooth the broken edge (Hart and
Norton 1990). The latter problem is more complex
and may require changing the behavior of cells in
the breaking process.

Friction and damping

The current models for friction and damping are
linear and do not sufficiently dissipate the energy
of slow vibrations or gradual sliding. An improved
model should provide more damping and friction
with slower motion

Breakage tuning

The breaking threshold is a single parameter to
control a complex phenomenon. The appropriate
value is affected by stiffness and the resolution of
the model. We tuned the breakage threshold by
first selecting the stiffness and damping constants
appropriate for the behavior of the material. Then
experiments were performed by colliding small cyl-
inders of material at moderate velocity with an im-
movable surface. The desired breakage threshold
will cause a cylinder to break in response to the
internal distortion of the material after the col-
lision, rather than crumbling upon initial impact
with the immovable surface. Once an appropriate
breakage threshold is found for the cylindrical sam-

Collision detection

Our methods of collision detection were potentially
problematic in two respects: our use of the penalty
method and the node-based approach. Either of
these leads to imprecision in locating collisions,
and potentially can result in visible problems. The
penalty method did not appear to cause a problem
with any of the animation sequences. However, the
node-based approach did lead to problems when
grid spacing was not uniform. For example, parti-
cles can pass undetected through the center of long,
narrow grid cells if they stay far from the end ver-
tices. We conclude that our approach is a practical
technique for generating realistic animations with

217

c~;~g i~c~ e

 emp l er
many colliding pieces; however, it is very impor-
tant to construct uniform or nearly uniform grids
during the modeling process.
We were pleased with the efficiency of the collision-
detection search algorithm: the cost of collision de-
tection appears to grow linearly. This efficiency was
a requirement for animating the products of frac-
ture, and indicates that the inclusion of collision
detection is not an intrinsic obstacle to very com-
plex animation problems. We discovered an impor-
tant principle for using collision and breakage in
physically based models: it is necessary to ensure
that the collision-response forces are no greater
than the internal binding forces; otherwise explo-
sion can occur.

positions, but such motion would not show the
realistic flexing and fragmentation we desired.
Based on our experience, a more appropriate goal-
directed approach is the methodology of control
theory (Raibert et al. 1984). Control forces could
be applied during the course of the simulation in
response to the current state of the system, with
the magnitude of such forces chosen to push the
system toward position or motion objectives. Such
an approach is tractable computationally and ca-
pable of compensating for the instability of the sim-
ulation process, although not necessarily capable
of achieving precise space-time constraints.

Conclusion

Control of flexible models

We were able to manipulate the teapot and other
models by varying the physically defining parame-
ters and introducing invisible characters. The tea-
pot appeared to hiccup when gravity was tempor-
aily increased to 5 g, then returned to 1 g (Fig. 5).
A sneeze was simulated (see Fig. 6) by softening
the constituent springs of the teapot (i.e., reducing
the spring constants by two orders of magnitude),
allowing the teapot to sag under the influence of
gravity, the returning the springs to their original
stiffness. The vases in the scene were made to wob-
ble (an apparent response to the teapot) by causing
invisible spheres to collide with them.
All the above techniques required some trial and
error. This process would be greatly facilitated by
more interactivity (i.e., faster simulation). However,
regardless of the speed of computers there will be
a continuing need to cause physically based models
to behave in a desired way. This experience causes
us to see much value in physically based modeling
methods that direct simulation toward motion or
positional goals. (Barr (Barzel and Barr 1987) refers
to this general approach as "teleological model-
ing. ")
Unfortunately most methods of goal-directed phys-
ically based modeling are difficult to apply to flex-
ible/breaking object simulation. For example, the
complexity of our models and interactions would
prohibit the use of constraint methods (Witkin and
Kass 1988; Platt and Barr 1988) except on the sim-
plest of the animated actions (e.g., wobbling vases).
The methods of "dynamic constraints" (Barzel and
Barr 1987) could be used to move shapes to desired

We have presented a model for animating breakage
of materials and applied it to the breaking of a
ceramic teapot. We believe that our general ap-
proach to breakage modeling is appropriate and
have found the model to be successful in meeting
its original objectives. This further confirms the
value of physically based modeling for animation
of physical phenomena. The realism of the model
should be improved in varions ways. Our experi-
ence with the teapot animation has suggested sev-
eral refinements and areas for further research.

Acknowledgements. Charles Bennett helped formulate the physi-
cal model for breakage. Jakub Wejchert read this manuscript
thoroughly and offered valuable scientific and literary criticism.

References

Barzel R, Barr A (1988) A modeling system based on dynamic
constraints. ACM Comput Graph SIGGRAPH 22(4)

Bentley JL, Friedman JH (1979) Data structures for range
searching. Comput Surveys 11 (4)

Crandall SH, Dahl NC, Lardner TJ (1978) An introduction
to the mechanics of solids, 2nd Ed. McGraw-Hill, New York

Feynman RP, Leighton RB, Sands M (1965) The Feynman lec-
tures on physics, Vol. 2. Addison-Wesley, Reading, Mass
(esp chapters 38 and 39)

Hahn JK (1988) Realistic animation of rigid bodies. Comput
Graph 22(4) 299-308

Hart J, Norton A (1990) Use of curves in rendering fractures.
Proc Curves and Surfaces, Comput Graph

Kay T, Kajiya JT (1986) Ray tracing complex scenes. Comput
Graph 20(4) 269578

Miller GSP (1988) The motion dynamics of snakes and worms.
Comput Graph 22(4) 169 178

Moore M, Wilhelms J (1988) Collision detection and response
for computer animation. Comput Graph 22(4) 289-298

218

Pentland A, Williams J (1989) Good vibrations: modal dynam-
ics for graphics and animation. ACM Comput Graph SIG-
GRAPH 23{3) 215-222

Platt J, Barr A (1988) Constraint methods for flexible models.
Comput Graph 22(4) 219-288

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988)
Numerical recipes in C: the art of scientific computing. Cam-
bridge University Press, Cambridge

Raibert M, Brown HB Jr, Chepponis M (1984) Experiments
in balance with a 3D one-legged hopping machine. Int J
Robotics Research 3(2)

Terzopoulos D, Platt J, Barr AH, Fleischer K (1987) Elastically
deformable models. Comput Graph 21 (4) 205 214

Terzopoulos D, Fleischer K (1988) Modeling inelastic deforma-
tion: viscoelasticity, plasticity, fracture. Comput Graph
22(4) 269-278

Terzopoulos D, Witkin A (1988) Physically based models with
rigid and deformable components. IEEE Comput Graph
Appl 8 (6)

Witkin A, Kass M (1988) Spacetime constraints. Comput Graph
22(4) 159-168

Witkin A, Welch W (1990) Fast animation and control of nonri-
gid structures. ACM Comput Graph SIGGRAPH 24(4)
243 252

ALAN NORTON. Alan Nor-
ton was born in Salt Lake City,
UT on August 20, 1947. He re-
ceived the B.A. degree from the
University of Utah in 1968, and
the Ph.D. from Princeton Uni-
versity in 1976, both in mathe-
matics. He was instructor at the
University of Utah, 1976-79,
and Assistant Professor at Ha-
milton College 1979-80, before
joining IBM Research. He first
worked with B. Mandelbrot,

developing algorithms for generating fractals and making im-
ages of them. Then, from 1982 to 1987 he worked on the RP3
project, doing research on parallel algorithms, architectures and
performance analysis.
Currently at IBM Research, Hawthorne, New York, he man-
ages a project in computer animation and rendering. His re-
search interests include computer graphics and animation, par-
allel architectures, and fractals. He is a member of the IEEE
computer society, ACM and the American Math Society.

PAULA SWEENEY has been
working at IBM since 1984. She
has worked on the design and
implementation of operating
systems and animation systems.
Currently her interest is in real-
istic animation using physics
and control theory. Paula has
a B.A. in Mathematics from
Manhattanville College and an
M.S. in computer science from
New York University. She is a
member of the ACM and SIG-
GRAPH.

GREG TURK is a graduate
student in the Computer Sci-
ence Department at the Univer-
sity of North Carolina at Cha-
pel Hill. At UNC he has been
involved in the development of
rendering algorithms for the
Pixel-Planes graphics engine.
He worked in the computer
graphics group at the IBM T.J.
Watson Research Center dur-
ing the summer of 1988. He is
currently supported by an IBM
Graduate Fellowship. His inter-
ests include physically-based
modelling, collision detection,

synthetic texture generation and constructive solid geometry.
Turk received a BA in mathematics from UCLA in 1984 and
an MS in computer science from UNC in 1989.

ROBERT BACON only recent-
ly discovered that he has been
working on visualization
throughout most of his profes-
sional career. Following gradu-
ate studies at the University of
Chicago, Mr. Bacon began
working with computers in such
diverse endeavors as process
control, machine tool control,
computer typesetting, image
synthesis, and computer gener-
ated animation. He has been a
frequent contributor to anima-
tion exhibits since 1985. He is
a member of IEEE Computer
Society and SID.

JOHN GERTH graduated
from MIT in 1970 but left sci-
ence to help found an elementa-
ry school as its kindergarten
teacher. From 1974~78 he was
an instructor in architecture at
Virginia Tech. Exposure to
APL led him to IBM, working
first as a developer and later
joining the design team. Mov-
ing to the Watson Research
Center in 1986, he has studied
computer graphics since
1988.
His research interests include
high performance rendering

and the qualitative display of quantitative information.

219

