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The breaking of solid objects, like glass 
or pottery, poses a complex problem for 
computer animation. We present our 
methods of using physical simulation to 
drive the animation of breaking objects. 
Breakage is obtained in a three-dimen- 
sional flexible model as the limit of elastic 
behavior. This article describes three prin- 
cipal features of the model: a breakage 
model, a collision-detection/response 
scheme, and a geometric modeling meth- 
od. We use networks of point masses con- 
nected by springs to represent physical ob- 
jects that can bend and break. We present 
efficient collision-detection algorithms, ap- 
propriate for simulating the collisions be- 
tween the various pieces that interact in 
breakage. The capability of modeling real 
objects is provided by a technique of build- 
ing up composite structures from simple 
lattice models. We applied these methods 
to animate the breaking of a teapot and 
other dishware activities in the animation 
Tipsy Turvy shown at Siggraph '89. Ani- 
mation techniques that rely on physical 
simulation to control the motion of objects 
are discussed, and further topics for re- 
search are presented. 
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Introduction 
Realism in computer animation depends on having 
objects move in a natural way. Computer simula- 
tion of physical behavior, or physically based mo- 
deling, has recently been successfully applied to 
various aspects of generating realistic motion. Ri- 
gid body simulation has been used to drive the 
animation of colliding objects (Hahn 1988). Flex- 
ible objects have been modeled as two- and three- 
dimensional meshes (Miller 1988; Platt and Barr 
1988; Terzopoulos and Witkin 1988; Terzopoulos 
et al. 1987; Terzopoulos and Fleischer 1988)using 
either finite elements or springs. 
In this paper we present a physically based model 
that was designed to animate solid objects break- 
ing. The model we use for breakage of solids is 
similar to the 2 D breakage model reported by Ter- 
zopoulos and Fleischer (1988). We model breakage 
as the limit of elastic behavior: when objects are 
sufficiently deformed, they will break at the place 
where the stress is greatest. Fractures therefore 
emerge dynamically as a natural result of stress 
accumulating and being released in breakage. 
For such a model to succeed, we determined that 
it was necessary to handle a number of interrelated 
phenomena in a coherent way. Not only did elastic 
behavior and fracture need to be included in the 
model, but it was also necessary to incorporate 
a collision-detection/response model sufficiently 
robust to show realistic interaction between the 
broken fragments resulting from the breakage. Re- 
alistic object behavior requires other forces, such 
as gravity and friction. The materials we simulated 
needed to be molded into shapes appropriate to 
represent everyday objects, e.g., teapots, which 
could then be ray traced to show distortion and 
fragmentation of their structure. 
We present a framework for physical modeling that 
meets these objectives. The physical behavior of 
solids is approximated by a three-dimensional grid. 
Masses are associated with vertices of the grid; in- 
teractions between neighboring vertices are ob- 
tained by simulating spring-like forces. 
The individual components of this model are gen- 
erally not unique; we have used various aspects 
of simulation, modeling, and collision detection 
previously presented (Miller 1988; Terzopoulos 
and Fleischer 1988; Hahn 1988; Moore and Wil- 
helms 1988). Our contribution is integrating a vari- 
ety of established techniques in physically based 
modeling, showing how they can be applied togeth- 
er to achieve 3 D breakage of brittle structures and 
other animation capabilities. In this process, we 
made pragmatic choices and learned lessons that 
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will be of value to others interested in realistic com- 
puter animation. 
The last section of this paper discusses several ma- 
jor issues that need further work before flexible/ 
breaking object simulation is an established com- 
puter-animation technique. We give suggestions for 
research directions and present the techniques we 
developed for animation control of flexible objects. 

Physical modeling of solid struc- 
tures 

Dynamic solid models 

To model realistic physical behavior by computer, 
it is necessary to establish a structure that will be 
used for the simulation. We define here a model 
that combines a geometric and dynamic descrip- 
tion of objects and can be used to drive both simu- 
lation and computer graphics animation. 
A dynamic solid model consists of a network or 
graph 

N (t) = {ni(t) ,  b i j ( t )}  

consisting of nodes {n~(t)} as the vertices of the 
graph and bonds {bi j ( t )}  as the edges of the graph. 
The network can vary as a function of time t by 
associating a number of time-dependent parame- 
ters with nodes and bonds. For discrete-time simu- 
lation, the values of such time-varying parameters 
are updated each time step. 

Each node n~ has associated with it: 
- Mass m i. 
- P o s i t i o n  R~, a 3-vector. 
- Velocity Vii, another 3-vector. 

Both Ri and V~ are functions of time. These values 
are chosen to be consistent with a system of physi- 
cal units; we have used centimeter-gram-second 
(cgs) units. One may optionally associate additional 
parameters with nodes, depending on the structure 
being simulated. 
A bond b~j connects node n~ with node n~. We 
allow at most one bond between a given pair of 
nodes (hi,  n j). Each bond has an associated force 
function Fq representing the mutual attraction or 
repulsion associated with the pair (n~, n j). This force 
is derived from the physical model being used. For 
example, we compute the force from a number of 
scalar functions (of time) associated with bonds, 
including: 

- lij, a natural or equilibrium length such that 
nodes n~ and nj will experience an attractive force 
when their separation is greater than lij and a re- 
pulsive force when the separation is smaller. Usual- 
ly, the length is constant in time; however, a person 
can simulate plastic deformations of the solid by 
allowing the length to vary. 
- lq~, a spring constant resulting in a force of mag- 
nitude rkq when the two nodes are displaced a 
distance of r from their equilibrium length. 

dij, a damping constant resulting in a force of 
magnitude vdzj  when the relative velocity of the 
two nodes is v. This can be used to dissipate inter- 
nal vibrations in the material. 
- A breaking threshold t~j, which determines how 
much the bond is stretched before it "breaks." 
Breakage occurs when the ratio of stretched length 
to equilibrium length is more than 1 §  With 
large values of tij, the substance can be made un- 
breakable, and small values can cause it to crumble 
under slight deformation. The breaking thresholds 
can be randomly varied within a homogeneous so- 
lid so as to cause irregular fracture patterns. 
- A Boolean variable sq indicates whether the giv- 
en bond has been broken or not. A broken bond 
will not exert an attractive force when the nodes 
are separated beyond the equilibrium length, but 
continues to exert a repulsive force when the nodes 
become sufficiently close. 

Geometry 

In the above definition of dynamic solid model no 
mention was made of geometry. To construct a 
dynamic solid model of a given object requires that 
both the macrogeometry (shape of the object) and 
microgeometry (or local internal structure) be mo- 
deled. Such a model could be regarded as a coarse 
approximation to the atomic structure of a solid. 
Computational limits force us to have nodes 
(atoms) representing volumes as large as a cubic 
centimeter of the material, and the choose bonds 
approximating the interaction between small (but 
not infinitesimal) nearby volumes. 
We have chosen to start with a microgeometry 
based on a cubic lattice and use this structure as 
basic material for constructing larger objects. We 
have illustrated one cube in such a lattice in Fig. 1. 
The eight nodes associated with such a cube are 
labelled A, B, C, D, E, F, G, H. The 12 edges of 
the cube have associated bonds connecting each 
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Fig. 1. Cube with associated bonds. A spring is associated with each of the 12 edges of the cube as well as with each 
of the four internal diagonals 

Fig. 2. Cube with face-diagonals. A spring is associated with each of the 12 edges of the cube as well as with a diagonal 
on each of the six faccs. Symmetry (but not  more stability) can be obtained by associating springs with the other six face 

diagonals 

Fig. 3. A cylinder is modeled with a lattice of deformed cubes 

Fig. 4. A flexible teapot deforms as it collides with the floor 

Fig. 5. A teapot lurches as if in response to a hiccup when gravity is increased and then suddenly decreased 

Fig. 6. A teapot is propelled vertically as a consequence of tightening its springs 

Fig. 7. A teapot breaks when it falls on its spout 
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vertex to three others; e.g., A is connected to B, 
D, and E. In addition, we introduce four bonds 
between diagonally opposite vertices occurring be- 
tween A and G, B and H, C and E, D and F. 
These bonds on internal diagonals add rigidity to 
the structure, although the four diagonals shown 
here are not adequate to constrain all degrees of 
freedom of a cubic lattice. (There is a 3D set of 
deformations of the cube vertices that is opposed 
quadratically but not linearly by the 16 springs.) 
We also experimented using bonds on face diago- 
nals in a configuration that does constrain all de- 
grees of freedom, as shown in Fig. 2. The more 
stable configuration showed only minor differences 
in behavior under simulation. 
Multiple cubes can be adjoined to form a lattice. 
One construction technique is to approximate any 
given shape with cubes in a lattice based on the 
Euclidean coordinate system. This method, how- 
ever, results in staircase-like objects, and immense 
models would be required to mask grid effects. In 
order to construct objects of various shapes, we 
relax the requirement that the lattice elements be 
precise cubes, i.e., the edges are not required to 
be of equal length. We can distort the lattice ele- 
ments so as to approximate nonrectilinear surfaces. 
For example, a cylinder can be constructed by ro- 
tating a set of squares about an axis. The resulting 
lattice elements are only approximately cubic, as 
shown in Fig. 3. 

Dynamics 

Suppose we are given an environment consisting 
of various geometric shapes realized as dynamic 
solid models. Assuming Newtonian mechanics, we 
compute the evolution of such a system in time 
by integrating Newton's second law, F=ma. All 
the masses in such a system are associated with 
nodes of the dynamic solid model. Newton's law 
requires that each node be accelerated according 
to the total forces applied to it. We have chosen 
to compute this solution by Euler's method: at 
each time step t and for each node n~, the total 
applied force F is computed based on spring forces, 
gravity, friction, etc. This determines the accelera- 

F 
tion a = - -  of that node, resulting in a change in 

mi 
the velocity 

V/(t +At)= Vi(t)+aAt. 

The position is updated based on the current veloc- 
ity 

Ri(t + At) = Ri(t) + V~(t) At. 

Many forces must be included to model a realistic 
physical object. These include the interconnecting 
forces Fq as required of a dynamic solid model. 
In addition, there are other forces outside the net- 
work structure, including gravity, friction, collision 
interactions, and forces imposed by objects exter- 
nal to the model. 
We have used the following approximations for 
the forces in our model: 

Gravity. This is taken to be a constant down- 
ward force of magnitude mig, i.e., mass times the 
acceleration of gravity. 
- Internal forces. The force of interaction between 
two adjacent nodes in the model is modeled after 
Hooke's law for springs. Suppose that the equilibri- 
um distance between two nodes is D. The spring 
force between them is the sum k X +dV where X 
is a vector in the direction of the difference in posi- 
tion between the nodes and has a magnitude equal 
to the difference between the current separation 
of the nodes and their original separation D. The 
spring constant k must be chosen appropriate to 
the stiffness of the material; as k becomes larger, 
the substance becomes stiffer Vector V is the com- 
ponent of the vector difference in the velocities of 
the two nodes in the direction of the vector X, and 
represents the rate at which the nodes are moving 
apart. It is multiplied by the damping constant d 
to procedure a force that tends to resist the contin- 
ued relative motion. The damping force tends to 
dissipate the internal vibrations of the system and 
can be chosen appropriate for the material. [See 
Feynman (1965) for a general discussion of the use 
of spring forces in modeling the internal dynamics 
of materials.] 
- External forces. We use another spring model 
to represent interactions with immovable objects, 
e.g., the upward force exerted force exerted by the 
floor. Such objects provide a repulsive force of the 
form kX+dV,  where the vector X is taken to be 
the distance that the node intrudes into the immov- 
able object and V is the velocity of that intrusion. 
There is no force applied if the node does not in- 
trude. The spring constant in this case defines the 
stiffness of the immovable object and can be tuned 
to model for example the difference between a vinyl 
and concrete floor. 
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- Collisions. In addition to interacting with exter- 
nal objects, it is necessary to model the interaction 
when different chunks of dynamic solid model 
come in contact. If this force was not modeled, 
pieces of a breaking object would travel right 
through the object without interacting. Our col- 
lision model uses a variant of the penalty method: 
a repulsive (spring-like) force is applied when it 
is determined that two objects have interpenetrated 
one another. The collision-detection algorithms 
will be described in the next section. 

Friction. When two objects have  been deter- 
mined to intrude into one another, e.g., parts of 
a dynamic solid model or immovable objects, a 
force is introduced in the direction opposing lateral 
motion between them and proportional to the 
magnitude of the intrusion. (In physics friction be- 
tween two rigid objects ordinarily modeled as pro- 
portional to the normal component of the applied 
force. In our model the same effect is obtained, 
because the magnitude of intrusion is the conse- 
quence of and proportional to the normal compo- 
nent of the force between them.) 

Collision detection 

Collision detection and response is an important 
aspect of simulation systems for computer graph- 
ics. Real-world objects do not pass through one 
another, but instead bounce off each other or cause 
stress that may result in breaking. The major issue 
in collision detection is speed: the naive algorithm 
compares all parts of one objects against all parts 
of another object to determine whether the two 
objects are interpenetrating. Detecting collisions 
can be the dominating factor in execution speed 
in a simulation system (Hahn 1988), so it is impor- 
tant to reduce the time complexity of the detection 
algorithm. 
The method we have chosen for detecting and re- 
sponding to collisions is node based rather than 
polygon based. Our model for collisions has each 
node repel all other nodes that belong to different 
pieces of a dynamic solid model. The method is 
simple in that the forces acting on a node due to 
collisions can just be summed with other forces 
that act upon the node. A drawback is that it is 
difficult to position objects in stable continuous 
contact with one another, as is the case when one 
object rests on top of another. 
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We require that collisions be detected not only be- 
tween separate objects but also between pieces of 
objects that were once part of the same object. Col- 
lision forces should not, however, be generated be- 
tween points that lie near each other within the 
same object. We consider the collection of all ob- 
jects in a scene as a graph consisting of the nodes 
connected by the bonds that are the graph's edges. 
Two nodes may repel each other if they belong 
to disjointed components of this graph. Therefore, 
we must label each node to specify to which graph 
component it belongs. The graph must be relabeled 
any time bonds have been broken to identify any 
piece that may have broken of from dynamic solid 
model. A depth-first search can be used to label 
the connected components of a graph. 
Once each node is labeled, a locality search is per- 
formed to find nodes that are within the repulsive 
range of a given node. Because the nodes in our 
models are relatively uniform in density, we use 
uniform spatial subdivision for this locality search. 
We partition the space into a cubic lattice in which 
each cube of the lattice contains a pointer to all 
nodes that fall within the cube. (These cubes should 
not be confused with the cells that form the struc- 
ture of a dynamic solid model.) The size of the 
cubes is chosen to be large enough so that all nodes 
that could be repelled by a given node will lie in 
the same cube or in an adjacent cube to the cube 
containing the node. Once the nodes have been 
placed in the cubic partition, a search of nearby 
cubes is performed for each node to find nodes 
that should be repelled. Only those nearby nodes 
that are from a different component than the given 
node will be repelled. To speed this search for 
nearby nodes from other components, each cube 
has a tag specifying the component labels of the 
nodes it contains. This tag helps avoid comparing 
a node with the nodes in a cube that are all from 
the same component. To save space, the cubes are 
stored in a hash table instead of in a three-dimen- 
sional array [see, for example, Bentley and Fried- 
man (1979)]. In the simulations performed, we have 
found that the time required to complete collision 
detection grows linearly with the number of nodes 
in the scene. 
Once it is determined that two nodes are in col- 
lision, a collision response force is applied. Each 
of the two nodes has a radius associated with it 
that was the distance to the nearest neighbor in 
its original position in the model. The force be- 
tween two nodes is a spring-like repulsive force, 



as if a spring of natural length equal to the sum 
of the two radii were interposed between the two 
nodes. 
The above model does not detect collisions be- 
tween different parts of the same connected compo- 
nent. We have also implemented a version where 
we allow nodes within the same component to re- 
pel each other. This prevents self-intersection of 
objects that can bend back on themselves, such 
as a rope or cloth, at the expense of detecting addi- 
tional collisions between nodes. 

Breakage modeling 

Our approach to dynamic simulation using dy- 
namic solid models was designed to accommodate 
simulation of breaking objects. We use a simplified 
fracture model to provide a rough approximation 
of fracturing materials. 
To model accurately how macroscopic shape dis- 
tortions result in microscopic structural changes 
in microsecond time intervals would require exces- 
sive computation. We therefore accept limits in the 
smallest time and distance scales used in the simu- 
lation; the distance scale is the distance between 
nodes in a dynamic solid model and the time scale 
is the simulation step size required for the stiffness 
of the object. 
Given these constraints, the model we describe 
should not be expected to model accurately the 
finest details of fracture, but only to show convinc- 
ingly the coarser aspects of how the physical distor- 
tion of a structure can result in its destruction. 

Breakage threshold. A simple model for breakage 
defines a threshold such that when the force ap- 
plied to a bond is greater than the threshold, then 
the bond breaks. Studies have shown that materials 
are much more easily broken when stretched than 
when compressed [see, e.g. Crandall et al. (1978)]. 
Therefore, we chose to make bonds break only on 
stretching, and not on compression. The breakage 
threshold tij is compared with the stretch of the 
bond. If the bond is stretched more than (1 +tij) 
this its starting length, then we say it is broken 
and set the appropriate Boolean variable sij at 1. 
The breakage of real objects is not usually along 
regular seams, but tends to be jagged, unless the 
object is crystalline and breaks along the symmetry 
of a crystal. Breakage normally tends to occur at 
weak spots or defects in the structure. We simulate 

this effect by randomly varying the breakage 
threshold for the various bonds. If a bond has an 
unusually low threshold, that represents a defect 
in the structure that will easily fracture if subjected 
to a big force. 

Cells. The breakage model described above, with 
individual bonds breaking when sufficiently dis- 
torted, is not adequate. If some, but not all, bonds 
of a cube break, then the cube loses much of its 
structural stability. This can result in flexible 
strings of material remaining after a fracture. This 
defect was remedied by introducing the notion of 
a cell. A cell is a set of nodes together with all 
the bonds that connect two nodes in the cell. A 
cell should be thought of as the basic structural 
entity that disintegrates under breakage. 
Whenever any one bond in a cell is broken, that 
cell itself is said to be broken. Conversely, whenev- 
er all cells containing a bond are broken, we cause 
that bond to break as well. The result of this algo- 
rithm is that the fragmentation of the structure oc- 
curs in cellular units rather than just among indi- 
vidual bonds. 
For dynamic solid models based on cubic lattices, 
the appropriate notion of a cell is the set of bonds 
and nodes associated with the vertices, edges, and 
diagonals of one cube, as pictured in Figs. 1 or 
2. 

Collision effects. Spurious effects can emerge during 
fracture if the collision response model is not de- 
signed to be consistent with the internal bonds of 
the structure. When fracture occurs, collision forces 
instantly replace the internal forces of the material. 
If those forces are greater than the binding forces, 
a chain reaction can be set off, ripping the structure 
apart. This problem is solved by designing the frac- 
ture model to guarantee that breakage does not 
result in an increase in kinetic energy. We specify 
the repulsive collision force to be a spring force 
based on a spring of natural length no greater than 
the distance to the nearest node in the original 
solid model. If a material is to break, the spring 
constant used in collision response must be chosen 
to be no greater than the constant of the material's 
internal bonds. 

Geometric modeling 

It is simple to create a dynamic solid model of 
simple objects, such as a hollow cylinder or a rect- 
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angular block. We can build these shapes directly 
from elements of a cubic lattice, perhaps slightly 
distorted to match the given shape. We allow the 
lattice to deviate from exact cubes so that the sur- 
face of an object is smooth instead of staircased, 
as this issue becomes important for rendering. A 
more complex object is built by joining together 
more than one such cubic lattice by a "gluing" 
operation. In this way dynamic solid models of 
arbitrary topology can be created. 
We currently have a small set of simple shapes 
that we use to build models. All of these shapes 
are topologically equivalent to either a solid cube 
or a hollow cylinder with thick walls. Two useful 
modeling shapes that are variants of a solid cube 
are a rectilinear slab of arbitrary dimensions and 
the solid formed by creating a lattice between two 
parallel Bezier patches, which we call a thickened 
Bezier patch. A wide range of variations on a cylin- 
der can be created by specifying an inside and an 
outside surface of revolution that can be joined 
to create a solid region. The thickened cylinder 
of Fig. 3 is a simple example of such a solid. 
To model more complex objects, we define a gluing 
operation that allows two or more simple shapes 
to be joined. Shape A is glued to shape B by first 
positioning the two shapes so that the regions to 
be glued together are adjacent or coincident with 
one another. Then those nodes from shape A that 
are to be joined to shape B are specified; call them 
ai. Each of these nodes a~ is paired with another 
node b~ in shape B that is nearest to it. Gluing 
is completed by having each bond containing one 
of the nodes ai altered by having ai replaced by 
the node b~ from shape B. Each of these bonds is 
called a glue bond. If a bond from shape A joins 
two of the specified gluing nodes a~ and a j, then 
the spring constant and damping constant of the 
bond are both set to zero so as to not duplicate 
bonds already in shape B. All of the nodes a~ are 
then dropped from the model. Now shapes A and 
B have been joined to form a larger dynamic solid 
model that will act as one object. 
The Utah teapot model was made by gluing to- 
gether six separately modeled shapes. The main 
body of the teapot was obtained by revolving two 
profile curves (inside and outside profile curves 
made from Bezier splines) about  a vertical axis. 
A cylindrical rim (needed to keep the lid from fall- 
ing into the teapot) was glued to the inside of the 
upper opening. The teapot handle was constructed 
from two curved solid cylindrical shapes that were 

glued end-to-end, then both ends glued to the main 
teapot body. The teapot spout was constructed 
from two curved slabs forming each side of the 
spout. The two slabs were glued together along 
their edge, then the base of the spout was glued 
to the main teapot body. The teapot lid is the vol- 
ume of revolution between two revolved Bezier 
curves. 

Rendering 

A dynamic solid model is composed solely of nodes 
and bonds, and many possible rendering tech- 
niques can be used to create images of such a struc- 
ture. To date we have chosen to create a polygonal 
description that matches the node positions with 
vertices. Some alternatives to this would be to 
render each node as a sphere or to create a level 
surface of a potential field where each node con- 
tributes to the value of the field. 
To create a polygonal image at a given time step, 
each face of each unbroken cell of a model is exam- 
ined to see if it lies on the surface or in the interior 
of the model. If it is on the surface, a matching 
polygon is created. Normal  vectors are calculated 
for the vertices of each surface face and are used 
for Phong shading. At each step in a simulation, 
all nodes in a model are identified as either isolated 
or as being connected to other nodes within a 
structure or fragment. Once all bonds that link a 
point to its neighbors have been severed, the node 
is isolated and will remain so throughout the dura- 
tion of the simulation. Isolated nodes are the small- 
est particles resulting from breakage. Currently, we 
render such nodes as simple tetrahedra, although 
clearly more cosmetic choices are available. 
We render images from the polygonal description 
using a ray-tracing renderer written by Kay (Kay 
and Kajiya 1986) that uses a hierarchy of bounding 
volumes to speed up the intersection calculations. 

Discussion 

The model described above was applied to animate 
a teapot breaking in the video Tipsy Turvy (Figs. 4 -  
7). Other actions of dishware (e.g., hiccups and 
sneezing !) were animated using the flexibility of dy- 
namic solid models. There are many ways in which 
the model can be improved to make it a more 
powerful animation technique. We discuss some of 
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them below so that they can be used as topics for 
future research. 

Differential equation solution methods 

It is an immense computational task to solve the 
equations of motion for complex flexible objects. 
Therefore, an important research problem is to find 
more efficient methods for such simulation. A 
problem in simulating ceramics as flexible objects 
is that the models (and the resulting differential 
equations) must be so stiff that the computation 
time becomes prohibitive. The speedups to flexible 
body simulation proposed by Pentland and Wil- 
liams (1989) and Witkin and Welch (1990) do not 
readily apply to the problem of animating fracture. 
For the Tipsy Turvy animation, we chose to make 
the teapot softer than real ceramics in order to 
complete the simulation within a two-month peri- 
od. 
We used Euler's method to solve the equations of 
motion, even though Euler's method is known to 
be inferior to other techniques (e.g., Runge-Kutta 
or implicit methods) for accuracy and stability in 
solving stiff differential equations (Recipes 1988). 
However, we chose not to apply such methods, 
because the system of equations would potentially 
be restructured at each time step as a consequence 
of the fracture model we used. In retrospect, it is 
likely that with some effort Runge-Kutta or other 
techniques could be successfully applied, if, for ex- 
ample, the integration method whenever a fracture 
occurs was modified. 

pie, some additional adjustment is necessary to 
cause realistic breakage of a larger structure. A 
small number of trials was usually sufficient to ob- 
tain the desired value. 
In order to have better control over the breakage 
processm it is desirable to express the relationship 
between stiffness and breaking threshold scales 
with model resolution. Another problem is that 
uniform material properties cannot be easily ap- 
proximated with nonuniform grids. Understanding 
the scaling aspects of fracture and stiffness should 
help to construct models that do not show the ef- 
fects of nonuniform grid approximations. 

Breakage appearance 

Two undesirable artifacts of the current implemen- 
tation are the staircasing of the fractured edges and 
the large number of isolated shards (rendered as 
tetrahedra) that emerge from the breakage. The 
former problem has been dealt with effectively by 
using splines to smooth the broken edge (Hart and 
Norton 1990). The latter problem is more complex 
and may require changing the behavior of cells in 
the breaking process. 

Friction and damping 

The current models for friction and damping are 
linear and do not sufficiently dissipate the energy 
of slow vibrations or gradual sliding. An improved 
model should provide more damping and friction 
with slower motion 

Breakage tuning 

The breaking threshold is a single parameter to 
control a complex phenomenon. The appropriate 
value is affected by stiffness and the resolution of 
the model. We tuned the breakage threshold by 
first selecting the stiffness and damping constants 
appropriate for the behavior of the material. Then 
experiments were performed by colliding small cyl- 
inders of material at moderate velocity with an im- 
movable surface. The desired breakage threshold 
will cause a cylinder to break in response to the 
internal distortion of the material after the col- 
lision, rather than crumbling upon initial impact 
with the immovable surface. Once an appropriate 
breakage threshold is found for the cylindrical sam- 

Collision detection 

Our methods of collision detection were potentially 
problematic in two respects: our use of the penalty 
method and the node-based approach. Either of 
these leads to imprecision in locating collisions, 
and potentially can result in visible problems. The 
penalty method did not appear to cause a problem 
with any of the animation sequences. However, the 
node-based approach did lead to problems when 
grid spacing was not uniform. For example, parti- 
cles can pass undetected through the center of long, 
narrow grid cells if they stay far from the end ver- 
tices. We conclude that our approach is a practical 
technique for generating realistic animations with 
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  emp l er 
many colliding pieces; however, it is very impor- 
tant to construct uniform or nearly uniform grids 
during the modeling process. 
We were pleased with the efficiency of the collision- 
detection search algorithm: the cost of collision de- 
tection appears to grow linearly. This efficiency was 
a requirement for animating the products of frac- 
ture, and indicates that the inclusion of collision 
detection is not an intrinsic obstacle to very com- 
plex animation problems. We discovered an impor- 
tant principle for using collision and breakage in 
physically based models: it is necessary to ensure 
that the collision-response forces are no greater 
than the internal binding forces; otherwise explo- 
sion can occur. 

positions, but such motion would not show the 
realistic flexing and fragmentation we desired. 
Based on our experience, a more appropriate goal- 
directed approach is the methodology of control 
theory (Raibert et al. 1984). Control forces could 
be applied during the course of the simulation in 
response to the current state of the system, with 
the magnitude of such forces chosen to push the 
system toward position or motion objectives. Such 
an approach is tractable computationally and ca- 
pable of compensating for the instability of the sim- 
ulation process, although not necessarily capable 
of achieving precise space-time constraints. 

Conclusion 

Control of flexible models 

We were able to manipulate the teapot and other 
models by varying the physically defining parame- 
ters and introducing invisible characters. The tea- 
pot appeared to hiccup when gravity was tempor- 
aily increased to 5 g, then returned to 1 g (Fig. 5). 
A sneeze was simulated (see Fig. 6) by softening 
the constituent springs of the teapot (i.e., reducing 
the spring constants by two orders of magnitude), 
allowing the teapot to sag under the influence of 
gravity, the returning the springs to their original 
stiffness. The vases in the scene were made to wob- 
ble (an apparent response to the teapot) by causing 
invisible spheres to collide with them. 
All the above techniques required some trial and 
error. This process would be greatly facilitated by 
more interactivity (i.e., faster simulation). However, 
regardless of the speed of computers there will be 
a continuing need to cause physically based models 
to behave in a desired way. This experience causes 
us to see much value in physically based modeling 
methods that direct simulation toward motion or 
positional goals. (Barr (Barzel and Barr 1987) refers 
to this general approach as "teleological model- 
ing. ") 
Unfortunately most methods of goal-directed phys- 
ically based modeling are difficult to apply to flex- 
ible/breaking object simulation. For example, the 
complexity of our models and interactions would 
prohibit the use of constraint methods (Witkin and 
Kass 1988; Platt and Barr 1988) except on the sim- 
plest of the animated actions (e.g., wobbling vases). 
The methods of "dynamic constraints" (Barzel and 
Barr 1987) could be used to move shapes to desired 

We have presented a model for animating breakage 
of materials and applied it to the breaking of a 
ceramic teapot. We believe that our general ap- 
proach to breakage modeling is appropriate and 
have found the model to be successful in meeting 
its original objectives. This further confirms the 
value of physically based modeling for animation 
of physical phenomena. The realism of the model 
should be improved in varions ways. Our experi- 
ence with the teapot animation has suggested sev- 
eral refinements and areas for further research. 
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