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A Degenerate Stavpt-Cravsen Theorem

By L. Carvirz in Durham, N. (.

1. Put
z o ™
(1) T = 2 P g =1,
so that 8,,(4) is a polynomial in A with rational coefficients. Comparison of (1.1) with
(2 A= e

which defines the BERNouLLI numbers, suggests that j,,(1) may have some arith-
metic properties analogous to those of B,,. We shall see that this is indeed the casc
for rational 4.

To begin with, if we put y = (14+42)* —1, then Az = (14+y)* —1, so that

y iy Shk+ k
zkzk%rl(/l;1>,,2 1)t a() 2 (su)lm o
Comparison with (1.1) yields

iy j;( 1 (3) (s 27

_<l—l)é( 4= () s(s—1) ... (s—(m—1) 2),

where (z),, = z(z—1) ... (z—m +1). This explicit formula for f,(1) may be
compared with the well-known formula for the BErRNoULLI numbers

m 1 k
(14 Bo= 2 gt 2 L)
incidentally we see that

(15) Bu(0) = B
Tt also follows immediately from (1.1) that

(1.6) Bu)=0  (m=1)

Bn(d) =
(1.3)

m

1
2 EF
m

1
= 2T
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and
(1.7 Bo(—2) = (—1) ™8,.(A) (m = 2);
note that g (2) = (1 — 1)/2.

2. Suppose now that 1 is a rational number a/b, where (a,h) = 1. Since

i (=D (§) sG6—2) ... (s — (m—1) 2)

is the k-th difference of a polynomial with integral coefficients (primes dividing b
are ignored), it is divisible by k! By a familiar argument %!/(k 4 1) is integral except
}Vhen kF4+1=4ora prime p. In the latter case, if p -{" &, the corresponding term
™ the right member of (1.3) becomes

(2.1) ; [ty ,,2: (=0 (PN s (s—2) .. (s—(m—1)A),

which ig certainly integral (mod p) unless p | @, in which case (2.1) reduces to
1 S
LS4,
Ve =0

Where 4 jg integral (mod p). Finally it is clear that we get —1/p if p —1 | m while
Oth,erWise (2.1) is integral (mod p). Taking next the case k + 1 = 4 we may evidently
assume that 2 | a. In place of (2.1) we now have

3
(2.2) 1 (ﬂ ;1) Z (—1)3~¢ (3) s(s—4) ... (s—(m—1)4).
§=0
4+ 4 we find that (2.2) is integral (mod. 2), while if 4 | a we get

3
T Z (—1)3~¢ (3> §™ = 1 (3™—3.2™ 4 3-1™);
#=0
for m eyep this is integral, while for m odd > 1 we get a contribution of 1/2. Summing
P we may state the following

Theorem 1. Let 4 = a/b, (a,b) = 1. Then for m even
1
@3) falD) = dn— 3
p—-lim
rla
where Ay, s a rational number whose denominator contains only primes occuring in b.

For m oda g,(7y = (1—1)/2 and
(2.9) B() = A, —} (m>1)

Provideq 9 |a, 41 a, while if 24 a or 4 |a then 8,,(3) = A,,. In particular when
'8 @ rational integer then A, 1s also an infeger.



50 L. CarviTz ARCH. MATH.

The theorem, particularly (2.3), may be compared with the SrauvpT-CLAUSEN
theorem

1

B :An - Z

2m )
p—12m p

2m

where A,,, denotes an integer; for the proof eompare {3; p. 32]. It may be of interest

to note that a result like Theorem 1 holds also for the cocfficients b,,(2) defined by
).

= 2,

m

3. Consider next
1 «

(1 /lx)"/“ 1 (1 4iz)f—1

— S ] kuja .
a +Ax)" {Zo A

S
E RIS (1 + 2zl —

1t follows that if the integer a is not divisible by the prime p and 2 is integral (mod p),

then the extreme right member is of the form

i A, 2™ m!,

m=<0

where the 4,, are integral (mod p). Hence applying (1.1) we infer that

(3.1) @ " P (@ h) =By (B

is integral (mod p). This implies that if p” | m then
(3.2) Bn(ad) = a™ B,.(2) (mod p") .

When p — 1| m and p | A, each member of (3.2) is fractional (mod p); however the
difference is divisible by 9", as is clear from (3.1). Tn this case (3.2) may be written
in the simpler form

(8.3) Bulad) = B, (3) (mod p")  (p—1|m).
Sinee when p | b, (3.2) implies

4" Bu(2) = Bulal) = 0™ B, (alfb) (mod p’)
we may state the following

Theorem 2. Lel 4 be integral (mod p) and p 4 ab; also let p" | m. Then we have
(3.4) Bu(ad[b) = (a/b)" B,,(2) (mod p7).
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In particular if 2 % 0 (mod p), (3.4) implies
(;;.r)) /jm(}‘) = }'m ﬂm(l) =0 (Inod pr) (mZU
& result that will be improved below.

4. In place of the explicit expression (1.3), a formula of a different type can be
vbtained as follows: Let A be a positive integer; then we have

i-1
€X 1 kn
R I +A2)"
A +dzg—1 A ;Za( )
| 1A %ow ku 3
— ( ) Z?n x?) .
A 1.2-»-‘0 ')7LL=:JU "

It follows that

-1
Buld) = 5 A(phn
T k=0
(4.1)

= ;L Zi k(e—2) (k—224) ... (k — (m—1) 2).

This formula is a good deal simpler than (1.8) but is of course only meaningful for
Integral 4. For example by means of (4.1) it is evident that the only primes \occm'ing
@ the denominator of f,,(4) must divide Z; indeed it is casy by means of (4.1) tg
§lve another proaf of Theorem 1 for the case of itegral A.

If we put
m—1
‘ 3(7}&1) B (x_ 'm,—}—l) == (”“1)7 S(m,?‘) T,
=0
and recall that
ot B o) — By
DI

E=0
Where B, . () is the BernouLL polynomial of degree m +- 1, then (4.1) becomes

e Br+1 (A) — Br+1

(42) ﬂm(l) == } Z (_l)mvr S(mwm____,'.) Anz‘r i + 1/

Mnking use of
B,(4) = ZU <:) BT,

We get

(43) Bl = 3 e 3N (1) sonm—).
5=0 r=#
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Since both members of (4.3) are polynomials and the equality holds for infinitely
many values of 4, it follows that (4.3) holds for all A. The same is true of (4.2) also.
1f we prefer, the coefficients in (4.3) can be expressed in terms of BERNOULLI numbers
of higher order. Incidentally (4.3) shows that 8,,(4) is a polynomial of degree < m.

Returning to (4.1) we shall prove a divisibility property of g,,(4). In the first
place if p T A then the quotient

k(k—2) . .. (k—(m—1) A)/m!

is integral (mod p). Consequently if 2* is the highest power of p dividing m! it follows
that

(4.4) Bu(h) =0 (modpy  (pf2)
which may be compared with (3.5). It should however by observed that (4.4) has
been proved only for integral A.

Let us now cxamine the case p | A. 1t is convenient to assume first that 2 =p/,
t = 1. We shall require the following

Lemma. Let p" |m, p =3, t =1, then

m—1
(4.5) J] (z—sp') =« (mod p" ) .
8=0
Indeed LusELskr [2] has proved the identical congrucnee (p = 3)
-1
(4.6) H (x—sp) = o (mod "ty .
Putting (4.6) in homogeneous form, we get
-1
T (z—spy) = " (mod p™*1 y).
§=0
If now we take y = p'~%, we get
pr -1
(4.7) TI (z—sp" = ¥ (mod p" %) .
=0
Finally we have
npf—1 n—1 p'-—1
I] (@—sp)=]J] [] (@—(s+kp")p)
5=} k=0 s=0
n—1 p'—1
= [I 1] (e—sp)
k=0 38=0
n—1
= o = o (mod p"t*),

&
(=1

which proves the Lemma.
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By the Lemma and (4.1) it is clear that

pt—-1
(48) P Balp) = > k" (mod ™).
¥=0
Provided P |m, p= 3,t=1. But
pl=1 mw Bmi1 () — By i1
,,é\:o L
=p'B,, +tmp* B,y + ...
= p‘ Bm (mod pr+2t) ,

S0 that (4.8) becomes
(4.9) Bn(?) = B, med#7)

Now if p— 1§ m, 7 |m, it is known that B,, =0 (mod p"). Consequently (4.9)
reduces tg

(4.10) @) =0 (modp) (p—1fm).
On the other hand, if (p—1) p" | m then [1; Theo’rem 3l
B+ }17 _'1 =0 (mod p") .
Thus in this case we get
(417 fult) + 5 —1=0 (mody) (p—1|m).
Finally, using (3.4), (4.10) and (4.11) can be stated in the following more general form,
Theorem 3. Let p=3, 9" |m, p'| 4 t=1. Then

(4.19) Bu(h) =0 (mod p") (p—1+ m)

while

(4.13) Bul®) + ; —1=0 (modp) (p—1|m).
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