A Degenerate STAUDT'CLAUSEN Theorem

By L. CARLITZ in Durham, N. C.

1. Put

(1.1)
$$
\frac{x}{(1+\lambda x)^{\mu}-1}=\sum_{m=0}^{\infty}\beta_m(\lambda)\frac{x^m}{m!}\qquad (\lambda\mu=1),
$$

so that $\beta_m(\lambda)$ is a polynomial in λ with rational coefficients. Comparison of (1.1) with

(1.2)
$$
\frac{x}{e^x - 1} = \sum_{m=0}^{\infty} B_m \frac{x^m}{m!},
$$

which defines the BERNOULLI numbers, suggests that $\beta_m(\lambda)$ may have some arithmetic properties analogous to those of B_m . We shall see that this is indeed the case for rational λ .

To begin with, if we put $y = (1 + \lambda x)^{\mu} - 1$, then $\lambda x = (1+y)^{\lambda} - 1$, so that

$$
\begin{split} \frac{x}{y} &= \frac{(1+y)^{\lambda}-1}{\lambda y} = \sum_{k=0}^{\infty} \frac{1}{k+1} \left(\frac{\lambda-1}{k}\right) y^{k} \\ &= \sum_{k=0}^{\infty} \frac{1}{k+1} \left(\frac{\lambda-1}{k}\right) \sum_{s=0}^{\infty} \left(-1\right)^{k-s} \left(\frac{k}{s}\right) \sum_{m=k}^{\infty} \left(\frac{s\,\mu}{m}\right) \lambda^{m} \, x^{m} \, .\end{split}
$$

Comparison with (1.1) yields

(1.3)

$$
\beta_m(\lambda) = \sum_{k=0}^m \frac{1}{k+1} { \lambda - 1 \choose k} \sum_{s=0}^k (-1)^{k-s} {k \choose s} (s \mu)_m \lambda^m
$$

$$
= \sum_{k=0}^m \frac{1}{k+1} { \lambda - 1 \choose k} \sum_{s=0}^k (-1)^{k-s} {k \choose s} s(s-\lambda) \dots (s-(m-1)\lambda),
$$

where $(x)_m = x(x-1) \ldots (x-m+1)$. This explicit formula for $\beta_m(\lambda)$ may be compared with the well-known formula for the BERNOULLI numbers

(1.4)
$$
B_m = \sum_{k=0}^m \frac{1}{k+1} \sum_{s=0}^k (-1)^s {k \choose s} s^m ;
$$

incidentally we see that

(1.5) $\beta_m(0) = B_m.$

It also follows immediately from (1.]) that

(1.6) $\beta_m(1) = 0 \qquad (m \ge 1)$

and

(1.7)
$$
\beta_m(-\lambda) = (-1)^m \beta_m(\lambda) \qquad (m \ge 2);
$$

note that $\beta_1(\lambda) = (\lambda - 1)/2$.

2. Suppose now that λ is a rational number a/b , where $(a,b) = 1$. Since

$$
\sum_{s=0}^k (-1)^{k-s} {k \choose s} s(s-\lambda) \ldots (s-(m-1) \lambda)
$$

is the k-th difference of a polynomial with integral coefficients (primes dividing b are ignored), it is divisible by k ! By a familiar argument $k!/(k+1)$ is integral except when $k + 1 = 4$ or a prime p. In the latter case, if $p \nmid b$, the corresponding term in the right member of (1.3) becomes

$$
\frac{(2.1)}{p} \qquad \frac{1}{p} \left(\begin{matrix} \lambda & -1 \\ p & -1 \end{matrix}\right) \sum_{s=0}^{p-1} (-1)^{p-1-s} \left(\begin{matrix} p-1 \\ s \end{matrix}\right) s (s-\lambda) \ldots (s-(m-1)\lambda),
$$

which is certainly integral (mod p) unless $p \mid a$, in which case (2.1) reduces to

$$
\frac{1}{p} \sum_{s=0}^{p-1} s^m + A ,
$$

where A is integral (mod p). Finally it is clear that we get $-1/p$ if $p-1 \mid m$ while otherwise (2.1) is integral (mod p). Taking next the case $\tilde{k} + 1 = 4$ we may evidently assume that $2 \mid a$. In place of (2.1) we now have

(2.2)
$$
\frac{1}{4} \binom{\lambda - 1}{3} \sum_{s=0}^{3} (-1)^{3-s} \binom{3}{s} s(s-\lambda) \ldots (s-(m-1) \lambda).
$$

If $4 \uparrow a$ we find that (2.2) is integral (mod. 2), while if $4 | a$ we get

$$
\frac{1}{4}\sum_{s=0}^{3}(-1)^{3-s}\binom{3}{s} s^m = \frac{1}{4}(3^m-3\cdot 2^m+3\cdot 1^m);
$$

for *m* even this is integral, while for *m* odd > 1 we get a contribution of 1/2. Summing up we may state the following

Theorem 1. Let $\lambda = a/b$, $(a,b) = 1$. Then for m even (2.3) $\beta_m(\lambda) = A_m - \sum_{n=0}^{n} \frac{1}{n},$ $p - \prod_{p|a} m$

where A_m is a rational number whose denominator contains only primes occuring in b. *Por m odd* $\beta_1(\lambda) = (\lambda - 1)/2$ *and* (9.4)

(2.4)
$$
\beta_m(\lambda) = A_m - \tfrac{1}{2} \qquad (m > 1)
$$

Provided 2 | a, 4 \uparrow a, while if 2 \uparrow a or 4 | a then $\beta_m(\lambda) = A_m$. In particular when λ i^s a rational integer then A_m is also an integer.

30 **L. CARLITZ L. CARLITZ ABCH. MATH.**

The theorem, particularly (2.3) , may be compared with the STAUDT-CLAUSEN theorem

$$
B_{2m}=A_{2m} \mathop{- \sum_{p=1+2m} \frac{1}{p}}\,,
$$

where A_{2m} denotes an integer; for the proof compare [3; p. 32]. It may be of interest to note that a result like Theorem 1 holds also for the coefficients $b_m(\lambda)$ defined by

$$
\frac{e^{\lambda x}-1}{\lambda(e^x-1)}=\sum_{m=0}^\infty b_m(\lambda)\frac{x^m}{m!}.
$$

3. Consider next

$$
(1 + \lambda x)^{\mu/a} - 1 \t (1 + \lambda x)^{\mu} - 1
$$

=
$$
\frac{1}{(1 + \lambda x)^{\mu} - 1} \left\{ \sum_{k=0}^{a=1} (1 + \lambda x)^{k\mu/a} - a \right\}
$$

=
$$
\frac{(1 + \lambda x)^{\mu/a} - 1}{(1 + \lambda x)^{\mu} - 1} \sum_{k=1}^{a-1} \frac{(1 + \lambda x)^{k\mu/a} - 1}{(1 + \lambda x)^{\mu/a} - 1}.
$$

It follows that if the integer a is not divisible by the prime p and λ is integral (mod p), then the extreme right member is of the form

$$
\sum_{m=0}^{\infty} A_m x^m/m!
$$
,

where the A_{m} are integral (mod p). Hence applying (1.1) we infer that

$$
(3.1)\qquad \qquad a^{-m}\beta_m\left(a\lambda\right) \longrightarrow \beta_m\left(\lambda\right) \qquad m
$$

is integral (mod p). This implies that if $p^r \mid m$ then

(3.2)
$$
\beta_m(a\lambda) \equiv a^m \beta_m(\lambda) \quad (\text{mod } p^r).
$$

When $p = 1 | m$ and $p | \lambda$, each member of (3.2) is fractional (mod p); however the difference is divisible by p^r , as is clear from (3.1). In this case (3.2) may be written in the simpler form

(3.3)
$$
\beta_m(a\lambda) \equiv \beta_m(\lambda) \quad (\text{mod } p^r) \quad (p-1 \mid m).
$$

Since when $p \mid b$, (3.2) implies

$$
a^m \beta_m(\lambda) \equiv \beta_m(a\lambda) \equiv b^m \beta_m(a\lambda/b) \qquad (\text{mod } p^r)
$$

we may state the following

Theorem 2. Let λ be integral (mod p) and $p \nmid ab$; also let $p^r \mid m$. Then we have (3.4) $\beta_m(a\lambda/b) \equiv (a/b)^m \beta_m(\lambda)$ (mod p^r).

In particular if $\lambda \neq 0 \pmod{p}$, (3.4) implies

(3.5)
$$
\beta_m(\lambda) \equiv \lambda^m \beta_m(1) \equiv 0 \quad (\text{mod } p^r) \quad (m \ge 1)
$$

a result that will be improved below.

4. In place of the explicit expression (1.3), a formula of a different type can be obtained as follows: Let λ be a positive integer; then we have

$$
\frac{x}{(1+\lambda x)^{\mu}-1} = \frac{1}{\lambda} \sum_{k=0}^{\lambda-1} (1+\lambda x)^{k\mu}
$$

= $\frac{1}{\lambda} \sum_{k=0}^{\lambda-1} \sum_{m=0}^{\infty} {k\mu \choose m} \lambda^m x^m.$

It follows that

$$
\beta_m(\lambda) = \frac{1}{\lambda} \sum_{k=0}^{\lambda-1} \lambda^m (k\mu)_m
$$

 (4.1)

$$
= \frac{1}{\lambda} \sum_{k=0}^{\lambda-1} k(k-\lambda) (k-2\lambda) \ldots (k-(m-1)\lambda).
$$

This formula is a good deal simpler than (1,3) but is of course only meaningful for integral λ . For example by means of (4.1) it is evident that the only primes occuring in the denominator of $\beta_m(\lambda)$ must divide λ ; indeed it is easy by means of (4.1) to give another proof of Theorem 1 for the case of integral λ .

If we put

$$
x(x-1)...(x-m+1)=\sum_{r=0}^{m-1}(-1)^rS(m,r)x^{m-r},
$$

and recall that

$$
\sum_{k=0}^{\lambda=1} k^m = \frac{B_{m+2}(\lambda) - B_{m+1}}{m+1},
$$

where $B_{m+1}(\lambda)$ is the BERNOULLI polynomial of degree $m + 1$, then (4.1) becomes

(4.2)
$$
\beta_m(\lambda) = \frac{1}{\lambda} \sum_{r=1}^m (-1)^{m-r} S(m, m-r) \lambda^{m-r} \frac{B_{r+1}(\lambda) - B_{r+1}}{r+1}.
$$

Making use of

$$
B_r(\lambda) = \sum_{s=0}^r \binom{r}{s} B_s \lambda^{r-s},
$$

w{; get

(4.3)
$$
\beta_m(\lambda) = \sum_{s=0}^m B_s \lambda^{m-s} \sum_{r=s}^m \frac{(-1)^{m-r}}{r+1} {r+1 \choose s} S(m, m-r).
$$

32 **L, CARLITZ L, CARLITZ ARCHI, MATH**,

Since both members of (4.3) are polynomials and the equality holds for infinitely many values of λ , it follows that (4.3) holds for all λ . The same is true of (4.2) also. If we prefer, the coefficients in (4.3) can be expressed in terms of BERNOULLI numbers of higher order. Incidentally (4.3) shows that $\beta_m(\lambda)$ is a polynomial of degree $\leq m$.

Returning to (4.1) we shall prove a divisibility property of $\beta_{m}(\lambda)$. In the first place if $p \nmid \lambda$ then the quotient

$$
k(k-\lambda)\ldots(k-(m-1)\lambda)/m!
$$

is integral (mod p). Consequently if p^t is the highest power of p dividing m! it follows that

(4.4)
$$
\beta_m(\lambda) \equiv 0 \quad (\text{mod } p') \quad (p \uparrow \lambda),
$$

which may be compared with (3.5) . It should however by observed that (4.4) has been proved only for integral λ .

Let us now examine the case $p \mid \lambda$. It is convenient to assume first that $\lambda = p'$, $t \geq 1$. We shall require the following

Lemma. Let $p^r | m, p \geq 3, t \geq 1$; then

(4.5)
$$
\prod_{s=0}^{m-1} (x-sp^t) \equiv x^m \qquad (\text{mod } p^{r+t}).
$$

Indeed LUBELSKI [2] has proved the identical congruence ($p \ge 3$)

(4.6)
$$
\prod_{s=0}^{p^r-1} (x-sp) \equiv x^{p^r} \qquad \qquad \text{(mod } p^{r+1}).
$$

Putting (4.6) in homogeneous form, we get

$$
\prod_{s=0}^{p^r-1} (x \rightarrow s p y) \equiv x^{p^r} \quad (\text{mod } p^{r+1} y).
$$

If now we take $y=p^{t-1}$, we get

(4.7)
$$
\prod_{s=0}^{p^r-1} (x-sp^t) \equiv x^{p^r} \qquad (\text{mod } p^{r+t}).
$$

Finally we have

$$
\prod_{s=0}^{np^r-1} (x-sp^t) = \prod_{k=0}^{n-1} \prod_{s=0}^{p^r-1} (x-(s+kp^r) p^t)
$$

\n
$$
\equiv \prod_{k=0}^{n-1} \prod_{s=0}^{p^r-1} (x-sp^t)
$$

\n
$$
\equiv \prod_{k=0}^{n-1} x^{p^r} \equiv x^{np^r} \qquad (\text{mod } p^{r+t}),
$$

which proves the Lemma.

By the Lemma and (4.1) it is clear that

(4.8)
$$
p^t \beta_m(p^t) \equiv \sum_{k=0}^{p^t-1} k^m \qquad (\text{mod } p^{r+t}),
$$

provided $p^r \mid m, p \geq 3, t \geq 1$. But

$$
\sum_{k=0}^{p^t-1} k^m = \frac{B_{m+1} (p^t) - B_{m+1}}{m+1}
$$

= $p^t B_m + \frac{1}{2} m p^{2t} B_{m-1} + \cdots$
\equiv $p^t B_m$ (mod p^{r+2t}),

so that (4.8) becomes

m.

$$
\beta_m(p^t) \equiv B_m \qquad \qquad \text{(mod } p^r) \ .
$$

Now if $p - 1 \nmid m, p^* \mid m$, it is known that $B_m \equiv 0 \pmod{p^r}$. Consequently (4.9) reduces to

$$
\beta_m(p^t) \equiv 0 \quad (\text{mod } p^r) \quad (p-1 \nmid m).
$$

On the other hand, if $(p-1)$ $p^r \mid m$ then [1; Theorem 3]

$$
B_m + \frac{1}{p} - 1 \equiv 0 \quad (\text{mod } p^r).
$$

Thus in this case we get

(4.11)
$$
\beta_m(p^t) + \frac{1}{p} - 1 \equiv 0 \pmod{p^r} \quad (p-1 \mid m).
$$

 F^{44} ¹¹⁶¹¹y, using (3.4), (4.10) and (4.11) can be stated in the following more general form.

(4.13)
$$
\beta_m(\lambda) + \frac{1}{p} - 1 \equiv 0 \pmod{p^r} \quad (p-1 \mid m).
$$

References

[1] L. CAnLITz, Some congruences for the Bernoulli numbers. Amer. J. Math. 75, 163--172 (1953). [2] S. LUBELSKI, Zur Theorie der höheren Kongruenzen. J. reine angew. Math. 162, 63-68 (1930). [3] N. E. N6aLUND, Vorlesungen fiber Differenzenreohnung. Berlin 1924.

Eingegangen am 8. 8. 1955