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1. Put 

~ Xtl~ 
* #m(h) ,,,:( (a s = 1 ) ,  (1.:[) ( i - + i 7  '~ ---~ = ~ o  

so that tim(h) is a polynomial in h with rational coefficients. Comparison of (2.1) with 
Oo xm 

(1.2)  ~ - 1  m=O 

which defines the BERNOULLI numbers, suggests that tim(h) may have some arith- 
metic properties analogous to those of B m. We shall see that this is indeed the case 
for rational 4. 

To begin with, if we put y = (1-4-2x) ' --  1, then 2 x =  ( l + y ) a - - 1 ,  so that 

x __ (1 +y)a- -1  ~ 1 ( Z )  
k = O  

-- k 1 ,,,:=o ~:1-] ( ) 'k l )  ..,=o ~' (--1)k-~' (sk) m=k ~ (~*))Yx"~" 

Comparison with (1.1) yields 
k 

tim(k) = k 1 (). -~ l) Z (--1) k-'' (s k) (S~t)m).m 
k=0 s=O 

(1.3) I,, 

;') Z 
where (X)m= x ( x - - 1 ) . . .  ( x - - r e + l ) .  This explicit formula for tim(h) may be 
compared with the well-known formula for the BERNOULLI numbers 

(1.4) 

incidentally we see that 

(1.5) 
It also follows immediately from (1.]) that 

(2.6) tim(l) = 0 

Bm=~--~ok+l= s=o2(--1)~ Sin" 

t 3 A o )  = B,,~. 

(m _> 1) 
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and 

(1.7) ~ ( - ~ )  -- (--1) '%.(,~) (m -> 2); 
note that f l1(2)= ( 2 -  1)/2. 

2. Suppose now that 2 is a rational number a/b, where (a,b) ~-- 1. Since 

is the k-th difference of a polynomial with integral coefficients (primes dividing b 
are ignored) , it is divisible by k [ By a familiar argument k !/(k + 1) is integral except 
when k + 1 -~ 4 or a prime p. In the latter case, if p ~ b, the corresponding term 
in the right member of (1.3) becomes 

(2.1) 1 ~-1 ~ ( ~ _ _ _ ] ) ~ ,  ( - -1 )  p - I - s  (~gT])8(S-- '2~ ) . . .  ($ - - (n ' t - -1 )~ ) ,  
.~o 

which is certainly integral (rood p) unless p l a, in which ease (2.1) reduces to 

S~0 

where A is integral (rood p). Finally it is clear that  we get - - l i p  if p - -  1 ] m while 
otherwise (2.1) is integral (rood p). Taking next the case k + 1 = 4 we may evidently 
asSUme that 2 I a. In place of (2.1) we now have 

3 

If 4 -~ a we find that  (2.2) is integral (rood. 2), while if 4 I a we get 

3 
+ Z (-~)~-" (I) s- = + (3m-3.2 - +3.1"); 

S~0 

for m even this is integral, while for m odd > i we get a contribution of 1/2. Summing 
up we may state the following 

'Theorem 1. Let 2 ~ a/b, (a,b) ~ 1. Then/or m even 

1 
(2.3) ~m(a) = Am-- ~ -p-, 

p- - I  Im 
pIa 

where Am is a rational number whose denominator contains only primes oecuring in b. 
Pot m odd ill(A) = ( ; ~ 1 ) / 2  and 

(2.4) fl,,(Jl) -~ Am ~ -~ (m > 1) 

Provided 2 I a, 4 "~ a, while i/ 2 ~ a or 4 [ a then flm(2) = Am. In  particular when 2 
is a rational integer then A m is also an integer. 



30 L. CAnL,rZ AaCH. ~lwr.. 

The theorem particularly (2.3), may be compared with the STAUDT-CLAUSEN 
theorem 

1 B~,a=A.,,~-- ~ . ,  
p--I 1 2 m  

where A,,,~ denotes an integer; for the proof compare [3; p. 32]. It  may be of interest 
to note that a result like Theorem 1 holds also for the coefficients b,~() 0 defined by 

Z(e,*--l) --  -- /--" b,,,(2) ~,it- �9 
m = 0 

3. Consider next 

1 (I 

(1 +~x)14'*--1 (1 + 2 x ) t ' - - I  

(1 + 2x)m!a-- I ax'71 (1 -4- 2x)l"t~/a--1 
(1 +2x)~ ' - - i  k=l (1 +2x)~'/a--1 Z ,  

It follows that if the integer a is not divisible by the prime p and 2 is integral (rood p), 
then the extreme right member is of the form 

s A.~ :c~/m! , 
m ~ 0 

where the A,~ are integral (rood p). Hence applying (1.1) we infer that 

(3 .  I ) a "* &~ (, ~) - -  3"* (~) 

is integral (rood p). This implies that if p~ ] m then 

(3.2) fl~(a,~) ~ a" fl"*(2) (rood p~). 

When p - -  1 I m and p ] 2, each member of (3.2) is fractional (rood p); however the 
difference is divisible by p% as is clear from (3.1). In this case (3.2) may be written 
in the simpler form 

(3.3) fl,,~(a~) --/~,~(x) (rood p~) (p- - l l~) .  

Since when p [b, (3.2) implies 

,~" fl,.(.z) - 5"*(a~) =-- l)" f l , g a ~ / b )  (rood p~) 
we may state the following 

Theorem 2. Let 2 be integral (meal p) and p -~ ab; also let p~ ] m. Then we have 

(3.4) fl~(a2/b) =_ (a/b)"* fl"*().) (mod p~). 



V,}I. VJJ, 1956 A Degencr~tc 8"rAm)-r-UD~usl.:n Theorem 31 

In particular if 2 ~ 0 (rood p), (3.4) implies 

(3.5) fl.,().) -~ 2"flm(1) ~ 0 (modp  *) (m~.l.) 

result that will be improved below. 

4. In place of the explicit expression (1.3), a formula of a different type can be 
obl;ained as fol~ws: Let ~ be a positive integer; then we have 

2-1  x 1 
(1 4- X-x-y*- I = ~ k~--O (1 -~-2X)~V' 

;~--1 oo 
1 v ( : ~ " / z m z  '' �9 

It follows that 

(4.~.) 

2--1 
1 

k=0 

).--1 
1 = ~, 22 k( l~ - -Z)  @ - - 2 2 )  . . .  (k - -  0 n - - l )  4). 

k=0 

This formula is a good deal simpler than (1,3) but is of course only meaningful for 
integral 2. For example by means of (4.1) it is evident that the only primes ocenring 
ia tire denominator of tim(X) mus~ divide 2; ittdeed it is ca, sy by means of (4,7) ~{) 
give another proof of Theorem 1 for the c~se of integral 2. 

If we put 

X ( X ~ I )  . . . ( X - -  ,~-~1) ~- 2 ( - -1)rs(?n ' r )  xm-r '  
r~O 

aad recall that 
~ = :  / ~ + ,  (~) - -  B in+  ~ 

m + 1  
k=0 

where B,,+~(Z) is the, ]~EB.NOULLI polynomial of degree m d- 1, then (4.1) becomes 

] ~ ,  ( - - l )m-- r8(~9~, ,  m - ? ' )  2 ' n - r  B r + l  ( ) ~ ) - - B r +  1 
(4.2) t im(2) = -)" r = l  r ~- 1 

Making use of 

w{; get 

(4.3) 
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Since both members of (4.3) are polynomials and the equality holds for infinitely 
many values of ~t, it follows that  (4.3) holds for all )t. The same is true of (4.2) also. 
if we prefer, the coefficients in (4.3) can be expressed in terms of BEnl~OULL! numbers 
of higher order. Incidentally (4.3) shows that  fl,~(~) is a polynomial of degree ~ m. 

Returning to (4.1) we shall prove a divisibility property of fl,~(2). In the first 
place if p ~ )L then the quotient 

k ( k - - ~ )  . . .  ( k - - ( m - - 1 ) , ~ ) / m !  

is integral (rood p). Consequently if pt is the highest power of p dividing m[ it follows 
that 

(4.4) fl,n(~) = 0 (rood pt) (p J" ).), 

which may be compared with (3.5). It should however by observed that (4.4) has 
been proved only for integral 4. 

Let us now examine the ease p] 2. It is convenient to assume first that  ;t =pt ,  
t _~ 1. We shall require the following 

Lemma.  Let p* I m, p ~_ 3, t ~ 1; then 
m - - 1  

(4.5) 1I  (x-sp ~) -- ~'' (mod p~+'). 
s ~ O  

Indeed LUBELSKI [2] has proved the identical congruence (p _> 3) 
p r  1 

(4.6) 1 I  ( x - - s p )  = x "~ (rood pr+l) . 
-',' = 0 

Putting (4.6) in homogeneous form, we get 
pr 1 

1-]  ( x - - s p y )  ---- x p~ (rood p~+l y). 
s = 0  

If now we take y - - p ~ - t ,  we get 
pr 1 

(4.7) 17[ ( x - - s p  t) = x p" (mod p~+t). 
,=o 

Finally we have 
npr--1 n--1 pr--1 
/ /  (x-sp') = / - /  / - / ( x - ( s + k p  ~) p') 
~ = 0  k = O  s = O  

n - I  p r - - I  

which proves the Lemma. 

= H 1 1 ( x - s p ' )  
g = O  s = O  

n - - 1  
"~ H xpr ~--- xnpr 

k=O 
(rood pr +t) , 
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By the Lemma and (4.1) it is clear that  

pt-__l 
(4.8) p, fl,~(pt) = ~, k ~ 

provided p* I m, p _> 3, t _> 1. But  

~t_ i .B,~+I (pt) _ B~+I 
- -  m+l 

k=O 

33 

(rood p'+~), 

pt Br ~ q_ _~. mpet B~_I  q_ . . .  

= pt Bm (rood p,+~t) , 

so that  (4.8) becomes 

(4.9) fl,~(pt) ..~ B~ (mod pr).  

Now if p __ 1 -~ m, p* [ m, it is known tha t  B~ ~ 0 (rood p'). Consequently (4.9) 
reduces to 

(4.10) fl~(p') _= 0 (rood p') ( p - -1  T i n ) .  

On the other hand, if ( p - - l )  pr I m then [1 ; Theorem 3] 

B,~ q- 1 __ 1 -- 0 (rood p~). 
P 

Thus in this case we get 

(4.11) fl~(pt) q . ) _ _ l _ = O  (modp*) ( p - - l i r a ) .  
P 

Finally, using (3.4), (4.10) and (4.11) can be stated in the following more general form. 

Theorem 3. Let p ~_ 3, pr [ m, pt I '~, t ~ 1. Then 

(4.12) tim(2) ~ 0 (mod p') (p - -  1 T m) 
tchile 

(4.13) fl,n(~)+ I _ _ 1 - - 0  (modp') ( p - - l i r a ) .  
P 
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