Vol. XX, 1969 365

On Extensions and Bimultiplication Algebras of Algebras

By
C. W. KonLs and L. J. Larpy1)

. Extension theory for rings was developed by EverETT {1}, and later redescribed
n different, ways by HocuscHirp, REDEL, and MacLaNE. The approach of MACLANE
[4] was generalized by SHUKLA [6] to algebras over a commutative ring with identity.

The main section of this paper treats the bimultiplication algebra of an algebra,
“_’hich plays an important role in extension theory. We characterize the bimultiplica-
tion algebra of a commutative semiprime algebra, and describe the bimultiplication
algebra of a matrix algebra over any algebra with zero two-sided annihilator as a
Matrix algebra over a bimultiplication algebra. First we review the necessary back-
ground, and give a direct elementary development of three essentially known results
Tom the extension theory of algebras that are required for our paper [3].

L. Preliminaries. We review here the approach to extension theory used by
ACLANE [4] and SHUKLA [6]. First we introduce some conventions: All algebras will

© K-algebras, where K is a commutative ring with identity. Homomorphisms between
-algebras will always be K-homomorphisms. Unless emphasis is desired, the prefix
f[SWﬂl be omitted from both terms, The image of a set S under a mapping f is written

1.

The set, of all bimultiplications of a K-algebra 4 is a K-algebra with identity,
denoteq by M 4. Clearly the mapping »: A — M 4 onto the inner bimultiplications is
& K.algebra homomorphism, and if 4 has an identity, we have »(1) = 1. Since also

(1) OVe=Voe, VoG =Veg, and kv,= vg,

the get, v[A]is a two-sided ideal in the K-algebra M 4. The quotient algebra M 4/v{A4]
of outer bimultiplications of 4 is denoted by P4, and the kernel of » by C4. We thus
ave the exact sequence of K-algebras

0>Cy—>A5 My—>Ps—0.

When C4 = 0, so that v is an injection of 4 into M4, it follows from (1) and the
%sociative law in M4 that any two bimultiplications are permutable. Any mapping
nto 34 or P4 whose range consists of mutually permutable elements will be called
Tegulayr.
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For given K-algebras 4 and A, an extension of 4 by A is an exact sequence

0>4A5E5 A0 of K-algebras and K-homomorphisms. We depart from t.he
convention in [4] and [6] for the case that A has an identity ; we do not wish to requll’e
that E also have an identity. There are naturally induced regular homomorphisms

u:E— My and 0: A > P4; po coincides with ». Two extensions 0 — 4 % E—~

AA50and 045 B 5 A0 are equivalent if there is a K-homomorphism
¢: B — E’ such that f = f'¢ and o’ = pa. These equations imply that ¢ is a7
somorphism of ¥ to E'.

For given K-algebras 4 and A let the regular function ¢ assign to each z € A &
bimultiplication o, of A, with oo = 0. Let k(z, %), h(x|y), and g(k, ) be functions
from Ax A and Kx A to A related to o by

@) 0z + oy = vh(2, ¥) + Ozty, 0z0y=_7’h(ﬂ’ly)+0’zy,
koz=vgk,x) + okz,

and satisfying the normalization conditions

(3) h(0,y) = k(z,0) = h(0]y) = h(x|0) = g(k,0) = g(0,2) =0,

forallw, y € A and k € K. Thenif &, g, and o satisfy certain identities [6, pp.200——203]’

there exists an extension 0 — A -% E -5 A — 0 and elements uy € B such that

4) ﬂuxzx, HUg = Oz,

Uy + Uy = ah(Z, Y) + Usry, UzUy = — ah(x|y) + vzy,

(5)
kuy = ag(k,z) + ugsz.

One constructs B, an Everelt extension, as the set /A X 4, with operations defined by
the equations

(6) (x,a) + (y,0) = (x + gy, hix,y) + a4+ b),
(7) (, a) (y,b) = (xy, — h(x|y) + 020 + aoy + ab),
(8) k(x,a) = (kz, g(k,z) + ka).

Given an extension 0 — 4 -% E 5 A — 0, one can always make A x A into a0
Everett extension of 4 by A that is equivalent to E, by choosing oz € 0(%) and
#z € B such that (4) holds, with oo = 0 and ug = 0, and then choosing bz, y)
h(x|y), and g(k, ) in A such that (3) and (5) hold.

An Everett extension of A by A in which k(z, ) = h(z|y) = g(k, ) = 0 for all
x,ye A and ke K will be called a splitting extension.

The graph I of a regular homomorphism §: A — P, is the subalgebra of the direct
sum A @ M consisting of all pairs (x, o) such that o e 0(z). When C4 = 0, the
homomorphisms & — (0, va) and (z, o) — 2 yield an extension 0 — 4 — 1" — A0

Let o be any category. For K, L € ), if there exist ¢: K — L and y: LK
such that @y is the identity for L, then L is called a retract of K, and ¢ is called
a retraction of K onto L.
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2. Some basic results on extensions.

Proposition 1. Let A and A be K -algebras. Each regular homomorphism a: A — M4
determines splitting extension of A by A. Conversely, each splitting extension of A by
A determines a regular homomorphism a: A — M 4.

Proof. Let o be a regular homomorphism. Let ¥ be the set A x A, with algebra
Operations defined by (6), (7), and (8), where g, = () for all x € A and h(x, y) =
= h(wly) =gk, @) =0forallz, yc Aand k € K. It is easy to verify directly that £
8 & K-algebra, from which it follows that E is a splitting extension of 4 by 4.

Conversely, if a splitting extension of 4 by A is given, then the associated set of
jbiIHultip]ications is permutable. Let o: A — M4 be defined by o(x) = 0; then ¢
18 a regular homomorphism.

We can immediately deduce from Proposition 1 that if A is a K-algebra with
4% = 0,and 6: A — P4isagiven regular homomorphism, then there exists a splitting
extension of 4 by A inducing 6 [6, Theorem 4]. For in this case, we have P4 — M 4.

We now show that the concepts of retraction and splitting extension are essentially

the same. The result is well-known in the case of extensions of algebras A with
4% =

_ Theorem 1. A homomorphism B: E — A is a retraction of E onto A if and only
i E s equivalent to a splitting extension of the kernel of £ by .

Proof. Assume that §is a retraction of E onto A, withy: A — E a homomorphism
Such that fy is the identity on A. Let 4 be the kernel of 8, and «: A — E the
Identity. The homomorphism ¢ = wy is regular. Thus, by Proposition 1, it deter-
Mines a splitting extension Z’. Let p: E — B’ be defined by the equation g(e) =
= (B(e), e — yB(e)). Since By is the identity on A, B(e — pB(e)) = 0, whence
®(e) e B'. A straightforward calculation shows that @ is a homomorphism. It then
follows easily that E’ is equivalent to E.

Now assume that 0 — A4 % E £ A 0, where « is the identity, is equivalent
under p to 0 >4 5 E' %, A 0, where B is splitting. Then by (5), the mapping
¥t A — B’ defined by 3’ (#) = u, is & homomorphism, and f'y’ is the identity on .
Define the homomorphism y: A —E by y = yy’. Then fy = Byy’' =gy It
follows that B is a retraction of E onto A.

The following result is essentially [4, Corollary to Theorem 7], but we need the
'S;&tement with no restrictions on the extensions or homomorphisms when A has an
dentity,

Proposition 2. I f Ca = 0, then there is a one-to-one correspondence befween equivalence
tlasses of extensions of A by A and regular homomorphisms 0 from A to P4. Each
eurvalence class contains the graph of the corresponding 0.

Proof. With each extension, we associate the induced homomorphism from A
to Py Tt is easy to verify that equivalent extensions induce the same homomorphism,
and that if 6 is any given regular homomorphism from A to P4, then the extension
Osapsas 0, where I is the graph of 0, induces 6.
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Now suppose that the extension 0 — 4 — E — A — 0 induces the homomorphism
0: A — P4, and consider the extension 0 — 4 — I'— A — 0. Define the mapping
@: E — I' by @(e) = (Be, pe). It follows readily from section 1 that ¢ is a homo-
morphism and that Z is equivalent to 1. Thus if two extensions induce the same
homomorphism, then they are equivalent.

3. Characterizations of certain bimultiplication algebras. In this section we study
the algebra of bimultiplications of K-algebras A with C4 == 0. Recall that a two-
sided ideal I in a K-algebra 4 is said to be dense in A if the two-sided annihilator of
I in A is zero. Observe that if A has a dense ideal, then Cy = 0. Also, it is easy 10
verify that the identity automorphism is the only endomorphism of 4 whose restric-
tion to a dense ideal is the identity.

Proposition 3. Let A be a commutative K-algebra, and assume that A is a dense ideal
in the K-algebra B. Then B is commulative.

Proof. We first show that ab = ba for a € 4 and b € B. For any a’ € 4, the fact
that 4 is commutative and an ideal in B implies that a’(ab — ba) = (ab — ba)a’ =
= a(ba') — (ba)a' = (ba')a — (ba)a’ = b(a'a) — b(aad’) = 0. Since A is dense in B,
we have ab = ba. Now for b, ¥’ € B and any a € 4, it follows that a(bb’ — b'b) =
= (b — b'b)a = (ba)b’ — b’ (ba) = b’ (ba) — b’ (ba) = 0. The density of 4 in B
implies that b5’ = b'b. Thus, B is commutative.

Definition. A bimultiplication algebra of a K-algebra A is a pair (B, ¢), where B is
a K-algebra and ¢ is an injection of 4 onto a dense ideal in B. Two bimultiplication
algebras (By, ¢1) and (Bz, @2) are equivalent if there exists an isomorphism of B1
onto By such that wg; = @a. The equivalence class containing (B, @) is written
(B, @).

Note that if 4 has an identity e, then g(e) is the identity of B, and p[4] = B.

The collection of equivalence classes of all bimultiplication algebras of a given
K-algebra A can be partially ordered by defining (B, 1) < (Bs, @2) if and only if
there exists an injection p of B) into Bg such that ype; = ..

Proposition 4. For any K-algebra A with Cq =0, the pair (M4, v) is the largest
element in the collection of equivalence classes of all bimultiplication algebras of A.

Proof. Tt follows from (1) that (M4, ») is a bimultiplication algebra of 4. Let
(B, p) be an arbitrary bimultiplication algebra of 4. We define a mapping y from B
into M 4 by setting y(b)a = ¢~1(bg(a)) and ayp(b) = ¢~ (@(a)b) for each b € B and
all a € A. It is easy to check that y is an injection of B into M 4 such that @ = ¥-

The algebra of all 4-module homomorphisms of a commutative K-algebra A int0
itself will be denoted by H,. Let 7 denote the natural mapping from A4 into
Hy:n(a)e’ = aa’ for a,a’ € A. Tt is easy to verify that when 4 is a commutative
algebra with C4 = 0, (H4, %) is a bimultiplication algebra of 4.

Proposition b. Let A be a commutative K-algebra with C4 = 0, and let (B, ¢) be a
bimultiplication algebra of A. Then (B, @) = (Ha,7), and (M, v) is equivalent 10
(HA : 7])'
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Proof. For a given bimultiplication algebra (B, ) of 4, let p denote the injection
of Bjnto H 4 defined by y(b)a = p~1(bg(a)). It is easy to check that y¢@ = %. Thus
(B,¢) < (Ha4, n). By Proposition 4, (H4, %) = (M4, ).

We shall now characterize the algebra M4 of bimultiplications of a commutative
Semiprime algebra 4, and give a more definitive result in the case of an algebra of
c.Onbinuous functions. The latter information is vital in [3]. The algebra of all con-
tinuous functions from a topological space X into a topological field F is designated
by ¢(x, F).

Theorem 2. Let A be a commutative semiprime K-algebra. Asswme that A is isomorphic
o a subdirect sum of {Dg: x e X}, where each Dy is an integral domain, and let F
denote the field of quotients of Dy. Then (M4, v) is equivalent to (8, ¢), where 8 is the
Za."’gest subalyebra of the complete direct sum of {Fy: x € X} containing A as an ideal, and
L4 the natural injection of A into 8. If in addition each F coincides with the topological
lield F, X is a topological space, and A is a subalgebra of C(X, F), then M4 is iso-
morphic to a subalgebra of C(X, F).

Proof. Clearly ¢y = 0, so by Proposition 5 we may view (M4, v) as (H4, ). Let
0 e H,4 and define o* as follows: For each z € X, choose f € 4 such that f{x) +0, and
Set g* (z) = (of)(x)/f(x). To see that o* is well-defined, suppose that also g(x) +0.

hen, since (of)g = a(fg) = o(gf) = (e9)f, We have (of)(@)/f () = (0g)(x)g(x).
It f, g e 4 with f(z) + 0, then

(6*g) (x) = o*(x) g (2) = ((o]) (2)/f (%)) g (w) =
= a(fg) @)/f (&) = ((e9) @) [ ())/f (x) = (o9) (2).

Thyg, (o6*g)(z) = (og)(x) for any z e X.

Let S denote the subalgebra of all elements % in the complete direct sum of
FrizeX } such that 24 c 4 and let ¢ denote the injection of 4 into 8. Clearly § is
flhe largest subalgebra of the complete direct sum of {F;: 2 € X} containing 4 as an
Ideal, and (9, 1) is a bimultiplication algebra of A. Define the mapping w:Hq4— 8
by ¥ (o) = o*. It follows easily that y is an injection and that pn = ¢. Thus (H4,7) <
= (8, 7), and by Proposition 5 (M 4, ») is equivalent to (S, ¢).

ow assume that each F; coincides with the topological field ¥, X is a topological
S8pace, and A is a subalgebra of C'(X, F). Given any ¢* € § and any z & X, choose
/€ 4 such that f (@) + 0, and let V be a neighborhood of f(x) not containing 0. Select:
8 neighborhood U of z such that f[U] c V. Then o*(y) = (¢f)(y)/f (y) for all y € U,
80 o* is continuous at z. It follows that M 4 is isomorphic to a subalgebra of C(X, F).

_Corollary. If A is a p-ring (Boolean ring), then M 4 and P4 are also p-rings ( Boolean
Tings ).
. Proof. Any p-ring A4 is isomorphic to a subdirect sum of copies of the ring of
Integers modulo p [5, Theorem 45). By Theorem 2, M 4 is isomorphic to a subring of
the corresponding complete direct sum. Hence, by [5, Theorem 45], M4 is a p-ring;
and P, is a homomorphic image of M4, so P4 is also a p-ring.
9 The statement for Boolean rings is a special case, since a Boolean ring is simply a

“Ting,
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We note that Theorem 2 and its Corollary can be used to give an alternative proof
that every extension of a Boolean ring by a Boolean ring is also a Boolean ring
[2, Corollary 2]. Consider

(»,a)2 = (22, — h(x|x) + 0za + a0z + a?).
If A is Boolean, then so is M 4, and oza = @ o, by Theorem 2; hence o,a 4 aoz = 0.
Now vh(z|x) = 0,2 — o2; so if A is also Boolean, & (z|z) = 0. Thus, (2, @) is idem-
potent when both 4 and A are Boolean.

Example. Let R denote the set of real numbers. Let A be the subalgebra of
C(R, R) consisting of proper rational functions; that is, f € 4 if and only if f = P[Q
where P and ¢ are polynomials, deg P < deg @, and @ has no real zeroes. By
Theorem 2, M 4 is isomorphic to the largest subalgebra of C'(R, R) containing A as &
ideal. It is clear that to meet this requirement, the algebra must consist of rational
functions. One also sees quickly that the only rational functions by which one can
multiply those functions in 4 such that the degrees of the numerator and denominator
differ by one, and obtain an element of A4, are those such that the degree of the numer-
ator does not exceed that of the denominator. Thus, M4 is isomorphic to the sub-
algebra of C'(R, R) consisting of rational functions with the degree of the numeratot
not greater than the degree of the denominator. This is also the subalgebra of C (R, R)
generated by A and the identity element. Clearly P4 is isomorphic to R.

Now consider an extension of 4 by R. The induced homomorphism 6 maps A =R
into P4 = R and thus must either be the zero homomorphism or the identity homo-
morphism. Now by Proposition 2, inequivalent extensions induce different homo-
morphisms; so there are only two equivalence classes of extensions of 4 by R. The
direct sum induces the zero homomorphism, while M itself induces the identity
homomorphism.

We now consider bimultiplication algebras of matrix algebras. Let L, (A4) denote
the K-algebra of all n by n matrices over the K-algebra A. Note that an element in
L, (M) is a matrix of ordered pairs. When C4 = 0, the identification of [vagl €
€ Ly (M4) with [ay] € Ly(A) permits one to multiply elements of Ly (M) and
L,(A); thus each element of L, (M 4) operates on L,(A4) in a natural way. We shall
use this tacitly. The element of L, (4) with a € 4 in the ij-th place and 0 clsewher®
will be denoted by aEy. The symbol 8(a) will be used for the scalar matrix with
a € A along the main diagonal.

Theorem 3. Let A be a K-algebra with Ca = 0. Then My, 4, and Ly(Ma) o7
K-isomorphic.

Proof. For any element [oy] of Ly(M4), we define g([oy]) to be the element
o€ My, 4 such that o[ay] = [oy]lay] and [ay] o = [ay][oy] for all [ay] e La(4)
It is easy to verify that ¢ is a K-monomorphism into My, 4.

To prove that g is onto, consider any o € My, 4. For each a e 4, we define 0% ¢
and a gy to be the elements of 4 in the 7j-th place of ¢ (S (a)) and (S (a)) o, respectiveb’-
It is straightforward to check that each oy is in M4, whence [oy] € Ly (M 4)- It
will follow that g([0y]) = o once it is known that o[ay] = [oy][ay] and [ay) 0=
= [ay][oy] for all [ay] € L, (4). We verify only the first identity; the second can
be obtained by similar considerations.



Vol. XX, 1969 Extensions and Bimultiplication Algebras 371

For fixed 4 € A, we examine o{aBy). Write o(a Ey) = [cim), leb b € A be arbitrary,
and choose any integer k+j, 1 < k < n. Then

> b By = (o(aBey)) (b Exr) = o ((a Ey) (b Exx)) = 0(0) = 0;
11

thus ¢;b = 0. Also [bem] = (S(B))(o(aEy)) = ((S(H)) 0)(aBy), a matrix with all
entries not in the j-th column equal to zero; thus beyx = 0. Since €4 = 0, it follows
that ¢, = 0, for k+3 and 1 <1 < n. Therefore only the j-th column of o(aEy)
tan be nonzero.

Now
[oya] = 0(S(a) = a@aEm) =2 0(aEp).
2 %
In view of what has just been shown, the j-th columns of [oya] and ¢(aEy;) must
coincide, that is, o(a Ey) = > oy aByy.
1
We next consider o (aEy) when ¢+ 7. Now for any be 4,
(o(a By — aBy)) (b By +bEy) = 6(a By — aBy) (0 Ey + bEy)) = a(0)=0.
But this expression is also
(0(aBy) — o(a By (b By + bEy) =
= (Z ouaBu— D cy Elj) (b By + bEy) = (oua — cy) bEy.
7 7 ]

Thus, (oya — ci5) b = 0 for all b € A. Furthermore,
(8())(o(a By — aEy)) =
= (S(d) (}; oua ki — zcwEu> = > b(oya) Ey — X bey By,
7 T 1

which can also be written

((S(®) o) (a By — a By) = [b oim](a By — a By) = Zz (boy)aBy — Z (bou)aEy.

Hence b(cyy — opa) = 0 for all be 4. Since Oy = 0, we have ¢y = oua, 1<I<n.
It follows that o (aBy) = Z oy Ey;. Combining this with our earlier result, we have
7

. olaBy) =2 cuakly
In a]l cases. !

Finally, for all [a;]e Ln(A4), these equations and the additivity of ¢ yield
olag] = [oy][ay]. as we wished to prove.
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