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On Extensions and Bimuhiplication Algebras of Algebras 

By 

C. W. KOaLS and L. J. LARDY1) 

Extension theory for rings was developed by EVERETT [1], and later redescribed 
ia different ways by HOCItSCH1LD, R~DEI, and MAcLa_~E. The approach of MAcLA~E 
[4] was generalized by SHU~LA [6] tO algebras over a commutative ring with identity. 

The main section of this paper treats the bimultiplication algebra of an algebra, 
Which plays an important  role in extension theory. We characterize the bimultiplica- 
tion algebra of a commutative semiprime algebra, and describe the bimultiplieation 
algebra of a matrix algebra over any algebra with zero two-sided annihilator as a 
a~atrix algebra over a bimultiplication algebra. First we review the necessary back- 
ground, and give a direct elementary development of three essentially known results 
from the extension theory of algebras tha t  are required for our paper [3]. 

1. Preliminaries. We review here the approach to extension theory used by 
MAcLA~E [4] and SnUKLA [6]. First we introduce some conventions : All algebras will 
be K-algebras, where K is a commutative ring with identity. Homomorphisms between 
h:-algebras will ahvays be K-homomorphisms. Unless emphasis is desired, the prefix 
/f  will be omitted from both terms. The image of a set S under a mapping ] is written l[~']. 

The set of all bimultiplieations of a K-a|gebra A is a K-algebra with identity, 
denoted by .[ll x .  Clearly the mapping v: A --> MA onto the inner bimultipHcations is 
a/f-algebra homomorphism, and if A has an identity, we have v(i)  ---- 1. Since also 

(1) ave = ~ac, ~'ca = yea, and k v c =  vkc, 

the set v[A] is a two-sided ideal in the K-algebra M A .  The quotient algebra M A / ~ [ A ]  

of OUter bimultip]ieations of A is denoted by PA, and the kernel of v by CA. We thus 
l~ave the exact sequence of K-algebras 

O --> C A -+ A .-~ M A --> .P A -~  O . 

VChen CA ---- O, so that  v is an injection of A into -~/A, it follows from (1) and the 
aSSociative law in M A  that  any two bimultiplications are permutable. Any mapping 
into MA or PA whose range consists of mutually permutable elements will be called 
rZtular. 

1) The research of the second author was supported (in part) by Air Force Contract AF 49 
(638) ~ 1401. 
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For  given K-algebras A and A, an extension of  A by  A is an exact  sequence 

0 --~ A -~  E ~ A ~-> 0 of  K-algebras and K-homomorphisms .  We depar t  f rom the 
convention in [4] and [6] for the case tha t  A has an ident i ty  ; we do not wish to require 
t ha t  E also have an identi ty.  There are na tura l ly  induced regular homomorphisms 

/~: E -->MA and 0: A --> PA; /zcr coincides with v. Two extensions 0 - + A  -~  E L  
/~ 

--> A -+ 0 and 0 -~ A ~ E '  --> A --> 0 are equivalent  if there is a K .homomorph i sm 
9~: E - - > E '  such t h a t  fl ~ / / ' ~  and : r  ~r162 These equations imply  t h a t  ~ is an 
somorphism of  E to E ' .  

For  given K-algebras A and A let the  regular funct ion a assign to each x e A a 
bimultiplication ax of  A, with a0 --~ 0. Let  h (x, y), h (x I Y), and g (It, x) be functions 
from A • A and K • A to A related to a by  �9 

~x q- ay = v h (x, y) q- ax+y, ax ay ---- - -  ~ h (x I Y) + axy, 
(2) 

k a~ = v g (k, x) + zk~, 

and satisfying the normal izat ion conditions 

(3) h(O,y)  = h(x ,O)  -= h(0[y)  ---- h(x]0)  = g(/c, 0) = g(O,x)  : -  O, 

for all x, y e A and k e K.  Then if h, g, and a satisfy certain identities [6, pp.200--203],  

there exists an extension 0 --> A --,  ~ E _B A --> 0 and  elements u x e  E such tha t  

(4) flUx = x ,  # u x  = crx, 

u~ + Uy = r162 h (x, y) + ux+y, Ux uy = - -  ~r h (x I Y) + Uxy, 
(5) k u x  = a g ( k ,  x) q- u~x.  

One constructs  E,  an Everett  extension, as the set A X A, with operations defined by 
the equations 
(6) 
(7) 
(S) 

(x, a) q- (y, b) ---- (x -q- y, h(x ,  y) -q- a q- b) , 

(x, a) (y, b) ~ (xy ,  - -  h(x] y) q- axb  q- a a y  q- ab)  , 

k (x, a) = (l~ x, g (Ic, x) -]- ka )  . 

Given an extension 0 --> A - ~  E -~  A --> 0, one can always make A x A into arl 
Evere t t  extension of  A by  A tha t  is equivalent  to E, by  choosing a x ~  0 (x) and 
u x e  E such tha t  (4) holds, with a0 ~ - 0  and u0 : 0, and  then  choosing h(x,  Y), 
h ( x l y ) ,  and g(k, x) in A such tha t  (3) and (5) hold. 

An Evere t t  extension of A by  A in which h (x, y) z h (x I Y) -~ g (k, x) ~-- 0 for all 
x, y ~ A and k ~ K will be called a split t ing extension. 

The ffraph IP of a regular homomorph i sm 0 : A --* PA is the subalgebra of  the direct 
sum A 0 M A  consisting of  all pairs (x, a) such t h a t  a e 0 (x). W h e n  CA ~ O, the 
homomorphisms a -+  (0, va) and (x, a) --> x yield an extension 0 -+  A --> 1 ~ --> A ~ 0. 

Le t  3t ~ be any  category.  For  K, L e ~ ,  if there exist T: K --> L and ~ :  L --~/~ 
such tha t  ~ is the ident i ty  for L, then L is called a retract of K,  and ~ is called 
a retraction of K onto L. 



Vol. XX, 1969 Extensions and Bimuhiplication Algebras 367 

2. Some basle results on extensions. 

Proposition 1. Let A and A be K-algebras. Each regular homomorphism a: A --> M A 
determines a splitting extension o/ A by .4. Conversely, each splitting extension o] A by 
.4 determines a regular homomorphi~m a: A --+ MA. 

Pro o f .  Let  ~ be a regular homomorphism. Let  E be the set A •  with algebra 
Operations defined by (6), (7), and (8), where ax ~ a(x) for all x e A and h(x, y) 

h (xly) _~ g (k, x) ~ 0 for all x, y ~ A and k e K. I t  is easy to verify directly that  E 
is a K-algebra, from which it follows tha t  E is a splitting extension of A by A. 

Conversely, if a splitting extension of A by ,4 is given, then the associated set of 
bimultiplications is permutable. Let  a: A -+ MA be defined by a (x) = ax; then 
is a regular homomorphism. 

We can immediately deduce from Proposition 1 that  if  A is a K-algebra with 
A~ ~ 0, and 0 : A --> PA is a given regular homomorphism, then there exists a splitting 
extension of A by A inducing 0 [6, Theorem 4]. For in this case, we have PA ---- MA. 

We now show that  the concepts of retraction and splitting extension are essentially 
the same. The result is well-known in the case of extensions of algebras A with 
A 2 ~ 0 .  

Theorem 1. A lmmomorphism fl : E --> A is a retraction el E onto A i / a m t  only 
i / E  is equivalent to a splitting extension o/the kernel o/ f l  by A .  

Pro o f .  Assume that  t3 is a retraction of E onto A, with y : A --> E a homomorphism 
Such that  fly is the identi ty on A. Let  A he the kernel of fl, and ~ : A -+ E the 
identity. The homomorphism a ~ - / ~  is regular. Thus, by Proposition 1, it deter- 
haines a splitting extension E' .  Let  ~0 : E --> E'  be defined by the equation q0 (e) 

(fl(e), e -  ~fl(e)). Since fly is the identi ty on A, f l ( e - -y f l (e ) )  ~-O, whence 
~0(e) e E'.  A straightforward calculation shows that  ~v is a homomorphism. I t  then 
follows easily that  E'  is equivalent to E. 

Now assume that  0 - +  A ~ E ~ A - +  0, where ~ is the identity, is equivalent 

Under ~o to 0 -+A ~-~ E'~-~ A -+ 0, where E '  is splitting. Then by (5), the mapping 
? ' :  A --> E'  defined by ~' (x) ~- u~ is a homomorphism, and fl 'y'  is the identity on A. 
Define the homomorphism y: A--~-E by 7----~7' .  Then fl~----fl~oy' ~ f l ' y ' .  I t  
follows that  fl is a retraction of E onto A. 

The following result is essentially [4, Corollary to Theorem 7], but  we need the 
Statement with no restrictions on the extensions or homomorphisms when A has an 
identity. 

Proposition 2. I /CA ~ O, then there is a one-to-one correspondence between equivalence 
cla~ses o/ extensions el A by A and regular homomorphisnus 0 /rom A to P A. Each 
equivalence class contains the graph el the corresponding O. 

l~roof. With each extension, we associate the induced homomorphism from A 
to PA. I t  is easy to verify that  equivalent extensions induce the same homomorphism, 
and that  ff 0 is any given regular homomorphism from A to PA, then the extension 
0 -_> A -~ I ~ --> A --> 0, where 17 is the graph of 0, induces 0. 
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Now suppose tha t  the extension 0 --> A --> E --> A --> 0 induces the homomorphism 
0 : A --> -PA, and consider the extension 0 --> A - -> / '  -> A --> 0. Define the mapping 
9:  E - ~ / '  by ~(e) = (fie, #e). I t  follows readily from section 1 tha t  ~ is a homo- 
morphism and tha t  E is equivalent to 1". Thus if two extensions induce the same 
homomorphism, then they are equivalent. 

3. Characterizations of certain bimultiplieation algebras. In  this section we study 
the algebra of bimultiplications of K-algebras A with CA -~ O. Recall tha t  a two- 
sided ideal I in a K-algebra A is said to be dense in A if the two-sided annihilator of 
I in A is zero. Observe tha t  if  A has a dense ideal, then CA ~ O. Also, it is easy to 
verify tha t  the identi ty automorphism is the only endomorphism of A whose restric- 
tion to a dense ideal is the identity. 

Proposition 3. Let A be a commutative K-algebra, and assume that A is a dense ideal 
in the K-algebra B.  Then B ks commutative. 

P r o o f .  We first show tha t  ab ~ ba for a e A and b E B. For any a '  e A, the fact 
tha t  A is commutat ive  and an ideal in B implies tha t  a' (ab - -  ba) = (ab - -  ba)a'  ~- 
: a(ba')  - -  (ba)a' = (ba')a - -  (ba)a' ~- b(a'a) - -  b(aa')  : O. Since A is dense in B, 
we have ab ---- ba. Now for b, b' E B and any a e A, it follows tha t  a(bb'  - -  b'b) -~ 
---- (bb' - -  b 'b)a -~ (ba)b' - -  b'(ba) : b'(ba) - -  b'(ba) ~- O. The density of A in B 
implies tha t  bb' ~ b'b. Thus, B is commutative.  

Definition. A bimultiplication algebra of a K-algebra A is a pair (B, ~0), where B is 
a K-algebra and ~ is an injection of A onto a dense ideal in B. Two bimultiplication 
algebras (Bi,  ~01) and (B2, ~02) are equivalent if there exists an isomorphism ~ of B1 
onto B2 such tha t  v2~l = Te. The equivalence class containing (B, ~0) is written 
(B, ~). 

Note tha t  if  A has an identi ty e, then ~(e) is the identi ty of B, and ~[A] ----- B. 
The collection of equivalence classes of  all bimultip]ication algebras of a given 

K-algebra A can be partially ordered by defining (/~l, ~1) ~ (/~2, ~2) if  and only if 
there exists an injection v 2 of B1 into B2 such tha t  ~p~l ~ ~02. 

Proposition 4. For any  K-algebra A with CA : O, the pair ( ~ A ,  V) is the largest 
element in  the collection o/equivalence classes o / a l l  bimultiplication algebras o / A .  

P r o o f .  I t  follows from (1) tha t  (MA,  ~) is a bimultiplication algebra of A. Let 
(B, ~) be an arbi t rary bimultiplication algebra of A. We define a mapping yJ from B 
into MA by setting v2(b)a = cp -1 (b~(a)) and ay,(b) : q~-i (q~(a)b) for each b e B and 
all a e A. I t  is easy to check tha t  ~ is an injection of B into MA such tha t  ~ 0  ~ v. 

The algebra of all A-module homomorplfisms of a commutat ive K-algebra A into 
itself will be denoted by HA. Let  ~] denote the natural  mapping from A into 
HA: ~(a)a '  ~ aa'  for a, a '  e A. I t  is easy to verify tha t  when A is a commutat ive 
algebra with CA = O, (HA, ~) is a bimultiplieation algebra of A. 

Proposition 5. Let A be a commutative K-algebra with CA --~ O, and let (B,  q~) be a 
bimultiptication algebra o/ A .  Then (J~, ~) ~_ (MA, ~), and (MA, ~) is equivalent to 

(HA, V)" 
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P ro o f .  For a given bimultiplication algebra (B, ~) of A, let ~ denote the injection 
of B into HA defined by v2(b)a ~ ~-l(b~(a)).  I t  is easy to check that  F ~  ~ ~. Thus 
(/~, ~) ~ (/?~, ~). By Proposition 4, (RA, ~) = (~A, ;). 

We shall now characterize the algebra MA of bimultiplications of a commutative 
semiprime algebra A, and give a more definitive result in the case of an algebra of 
continuous functions. The latter information is vital in [3]. The algebra of all con- 
tiauous functions from a topological space X into a topological field F is designated 
by C(X, F). 

Theorem 2. Let A be a commutative semiprime K-algebra. Assume that A is isomorphic 
to a 8ubdirect sum o[ {Dx: x ~ X},  where each Dx is an integral domain, and let Fx 
denote the field o/quotients el Dx. Then (MA, ~) is equivalent to (S, t), where S is the 
largest subalgebra o/the complete direct sum el {Fx: x ~ X}  containing A as an ideal, and 
tie the natural injection of A into S. I / i n  addition each Fx coincides with the topological 
field F, X is a topological space, and A is a subalgebra o/ C (X, F), then MA is i6'o- 
morphie to a subalgebra o / C ( X ,  F). 

Proof .  Clearly CA ~- O, so by Proposition 5 we may view (MA, v) as (HA, ~l)" Let 
a ~ HA and define a* as follows: For each x E X, choose / e A such t h a t / ( x )  ~:0, and 
set a*(x) = (a/)(x)//(x). To see that  a* is well-defined, suppose that  also g(x):~0. 
Then, since (a/)g = a ( / g ) :  a(g/) ~-- ((~g)/, we have (a/)(x)//(x) : (ag)(x)/g(x). 
If ], g e A with / (x) r 0, then 

( ~* g) (x) = ~* (x) g ( x) = ( ( ~1) (x) /l  (x) ) g (x) ~- 

= ~ ( / g ) ( x ) / / ( x ) =  ( ( ~ g ) ( x ) / ( x ) ) / / ( x ) =  (~g ) ( x ) .  

Thus, (a'g) (x) : (ag) (x) for any x ~ X. 
Let S denote the subalgebra of all elements h in the complete direct sum of 

{Fx: x e X} such that  hA r A and let t denote the injection of A into S. Clearly S is 
the largest subalgebra of the complete direct sum of {Fx : x e X} containing A as an 
ideal, and (S, t) is a bimultiplication algebra of A. Define the mapping ~: HA ~ S 
by v2 (a) ~-- a*. I t  follows easily tha t  ~0 is an injection and that  yj ~ ~ t. Thus (/TA, ~) 

(~, t), and by Proposition 5 (MA, ~) is equivalent to (S, t). 
Now assume that  each Fx coincides with the topological field F,  X is a topological 

Space, and A is a subalgebra of C(X, 2'). Given any a* e S and any x e X, choose 
/ ~ A such that  / (x) r 0, and let V be a neighborhood of ] (x) not containing 0. Select 
a neighborhood U of x such t h a t / [ U ]  c V. Then a*(y) ~ (a/)(y)//(y) for all y e U, 
so ~* is continuous at x. I t  follows that  MA is isomorphic to a subalgebra of C (X, F). 

Corollary. I / A  is a p-ring (Boolean ring), then MA a,wl PA are also p-rings (Boolean 
rinys). 

l~roof. Any p-ring A is isomorphic to a subdireet sum of copies of the ring of 
ir~tegers modulo p [5, Theorem 45]. By Theorem 2, MA is isomorphic to a subring of 
the corresponding complete direct sum. Hence, by [5, Theorem 45], MA is a p-ring; 
and PA is a homomorphie image of MA, so PA is also a p-ring. 

The statement for Boolean rings is a special ease, since a Boolean ring is simply a 
2-ring. 

Article- dev  lY~atl~er~a~ik X X  24 
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We note tha t  Theorem 2 and its Corollary can be used to give an alternative proof 
tha t  every extension of a Boolean ring by a Boolean ring is also a Boolean ring 
[2, Corollary 2]. Consider 

(x, a) 2 = (x 2, - -  h(x l x  ) ~- axa -~ aax -4- a2). 

I f A  is Boolean, then so is ~IA, and ffxa ~ aax by Theorem 2 ; hence axa -~ aax ~ O. 
Now vh(x]x) -~ axe - -  a~; so if A is also Boolean, h(x]x) -~ O. Thus, (x, a) is idem- 
potent when both A and A are Boolean. 

E x a m p l e .  Let  R denote the set of real numbers.  Le t  A be the subalgebra of 
C(R, R) consisting of proper rational functions ; tha t  is, / e A if and only if / ~ P/Q, 
where P and Q are polynomials, d e g P  ~ deg Q, and Q has no real zeroes. By 
Theorem 2, MA is isomorphic to the largest subalgebra of C(R, It) containing A as an 
ideal. I t  is clear tha t  to meet  this requirement, the: algebra must  consist of rational 
functions. One also sees quickly tha t  the only rational functions by which one can 
multiply those functions in A such tha t  the degrees of the numerator  and denominator 
differ by one, and obtain an element of A, arc those such tha t  the degree of the numer- 
ator does not exceed tha t  of the denominator. Thus, MA is isomorphic to the sub- 
algebra of C (R, It) consisting of rational functions with the degree of the numerator 
not greater than the degree of the denominator. This is also the subalgebra of C (R, lt) 
generated by A and the identity element. Clearly PA is isomorphic to It. 

Now consider an extension of A by  R. The induced homomorphism 0 maps A ~ tt  
into PA ---- It  and thus must  either be the zero homomorphism or the identi ty homO" 
morphism. Now by  Proposition 2, inequivalent extensions induce different homO- 
morphisms ; so there are only two equivalence classes of extensions of A by  R. The 
direct sum induces the zero homomorphism, while MA itself induces the identity 
homomorphism. 

We now consider bimultiplication algebras of matr ix  algebras. Le t  Ln (A) denote 
the K-algebra of all n by n matrices over the K-algebra A. Note tha t  an element in 
Ln(MA) is a matr ix  of ordered pairs. When CA ----- O, the identification of [va~1] ~ 
eLn(MA)  with [a~1]eLn(A ) permits one to mult iply elements of Ln(MA) and 
Ln(A); thus each element of  Ln(MA) operates on Ln (A) in a natural  way. We shall 
use this tacitly. The element of La(A)  with a E A in the i j - th place and 0 elsewhere 
will be denoted by aE~ 1. The symbol S(a) will be used for the scalar matr ix  with 
a E A along the main diagonal. 

Theorem 3. Let A be a K-algebra with CA -~ O. Then MI,,(A) and Ln (MA) are 
K-isomorphic. 

P r o o f .  For any element [a~l] of Ln(MA), we define Q([a~j]) to be the clement 
a ~ MZ.(A ) such tha t  a[a~l] = [a~j][a~j] and [a~j] a = [a~jJ[a~j] for all [a~j] E Ln(A)" 
I t  is easy to verify tha t  Q is a K-monomorphism into Mz,c~ ). 

To prove tha t  Q is onto, consider any  a e Mz~(A ). For each a e A, we define at1 a 
and a a, 1 to be the elements of A in the i j - th place of a (S (a)) and (S (a)) a, respectively" 
I t  is straightforward to check tha t  each aii is in MA, whence [a,t] e Ln(MA). I t  
will follow tha t  0([a,l]) = a once it is known tha t  a[att] --~ [a~l][ao] and [at1] a 
= [a~j][at/] for all [a~l ] e Ln(A).  We verify only the first identity;  the second can 
be obtained by  similar considerations. 
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For  fixed a e A, we examine a(aEij).  Write  a(aE,l)  = [ctm], let b e A be arbi trary,  
and choose any integer k=~j, 1 <-- k ~ n. Then  

~ c~bEt~  ~ (a(aE,j))(b E~k) ~ a((a E,j)(b Ek~)) =- a(O) -----0; 
l 

thus c~kb = 0. Also [bclm] ---- (S(b))(a(aE~j)) = ((S(b)) a)(aE~j), a mat r ix  with all 
entries no t  in the j - t h  column equal to zero; thus bcz~ ~ O. Since C~ -~ 0, it follows 
that  c~k ~- 0, for k * j  and 1 ~ l --< n. Therefore only the j - th  column of  a(aEtj)  
can be nonzero. 

Now 

[f f~ta]: a(S(a)) = a ( ~  a Ekk) = ~ (r(a Ekk) .  

In  view of  wha t  has just  been shown, the  j - t h  columns of [gtja] and a(aEz )  mus t  
coincide, t h a t  is, ~ (a EIj) = ~ azj a Ezj. 

l 
We next  consider q(aE~t ) when i c j .  Now for any  b e A,  

( a (a E~ -- a E~l) ) (b E~ -k b El~) = a ( (a Eti --  a Eij) (b E~ ~ bE;i)) = a (O ) ~- O. 

Rut  this expression is also 

((r (a El~) - -  a (a E~j)) (b E~  -~ b Ej,) = 

: ( ~ a l ~ a E l l - - ~ c l t E l l )  (bE'lq-bE]',:~(alta-cl')bEl*'l 

Thus, (crua -- c~l) b = 0 for all b e A. Fur thermore ,  

(S (b)) (a (a Et, -- a Etl)) = 

which can also be wri t ten  

((S(b)) E -- = -- a)(a ~,--aE~)~-- [b6~,n](aE~ aEi~) ~ (ba~)aE~ (bau)aE~ I. 

l:Ience b(c t~ -  (Yua) -~ 0 for all b o A .  Since CA -~ 0, we have c~r 1 ~ l g n .  
I t  follows t h a t  a (nEt1) = ~ c~uaEt~. Combining this with our earlier result, we have 

l 

in all eases, z 
Finally,  for all [al~] e Ln(A) ,  these equat ions and  the addi t iv i ty  o f  a yield 

q[ai~] -~ [(Ill] [a~l], as we wished to  prove. 
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