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Superlinear elliptic boundary value problems
with rotational symmetry

By

Mi1cHAEL STRUWE 1}

In this paper we extend and sharpen an earlier existence result [3] for superlinear

hII‘Jtic boundary value problems on balls 2 = Br = {z| |z| < R} cR¥.
et

) Lu = —r1=N 9, (a(r)r¥~1 0pu)

el

b? & uniformly elliptic radial differential operator on £ with 0<<ao<a € L, and let
Q%R >R be a Carthéodory function satisfying the conditions
2
) glz,w) =g(|z|,u),
¥ 15 Lipschitz continuously differentiable with respect to u a.e. in £ and there exist
consta,nts p’ s, t

2N?)

: - IN, t>3N
N o S$>dla—pP>} >3

d functions ¢ € L?, 7 € Lt such that

9@, u)| = o@)|ul?! + (=),
®) |9tz w)| < o) |u]272 + 7(@),
|gu (@, 4) — gulz,v)| < (o) (|u]|?-2 + [2|272) + 2(2))|u —v].

2<p< =

Thel‘e exists a function g: R > R such that ¢({)/®—>o0 ({—>co) and constants
%4, 8 B, I'oO<a<1, 2< A, 0< B, 0 <1I, such that for any u e L? with
! %[y = I' the estimate holds:

) ellup) =4 fG(u)(lx = fg(u)udz = ufgu(u)1tzdx = Bul}.
7 a2 9

Here, ¢ (1) = [g(v) dv is a primitive of g.

. 0
With the above assumptions on g and L we prove
k
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) P< oo, 5>1ifN=2.
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Theorem. There exists ko € N such that for any k = ko there exists a pair of radidl
solutions w*, u~, u(x) =u*(|x|), of the boundary value problem

(5) Lu=g(xu) in 2, u|dQ=0

with the following properties:

(i) = (0) <0< ut(0).

(i) wt, u— both posses exactly k nodes r¥ , ut(rf) = 0, w=(r) = 0, in ]0, R].

The above Theorem gives a more delicate description of the solution set than ouf
earlier result [2]; also the growth assumptions on g are slightly weaker. In particulal,
the existence of infinitely many radial solutions with preseribed sign at r=0 had
been controversial. An a priori estimate for positive solutions of equations (5) due t0
Gidas and Spruck seemed to incidate the existence of functions g depending
only on » such that (3) and (4) are satisfied but there exists only one solution of
Au + g(w) = 0 in Br with u(R) = 0, »(0) < 0 (cp. [1]). Hopefully, the existence
result presented here may help to clarify the situation.

The proof of our Theorem above largely uses ideas from [2]. However, we apply
lower semi-continuity type arguments to obtain solutions of (5) with the behavio?
prescribed in the Theorem. In fact, the use of Lusternik-Schnirelman theory in [2)
to obtain solutions was not justified since the manifolds K, defined there need not beé
differentiable and the Lusternik-Schnirelman deformation hence need not be defined-
I thank J.-M. Coron and H. Berestycki for having pointed out this mistake. In-
cidentally, this “regularity gap’ in our original proof seems to be reflected in #
slightly strengthened hypothesis on the integrability of the “free term’ 7 in (3)
as compared with the assumptions made in [2].

Proof. As in [2] we interpret (5) as the Euler equations of a functional B: H — B
where

H = {uec H}2 () |ulx) = u(|2)}.
Indeed, £ is given by
() = a(u) — fG’(u) dx
7
with
a(w)=14%[a|Vu|2da.

9
Also, for u, v € H denote by

b(u, v) =J'aVu-Vvdx
2

the bilinear pairing associated to L.

Then weak solutions u for (5) equivalently may be characterized as critical points
of & satisfying

b(u,v) = j'g(u)v(lx
2

forallve H.
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By Lemma, 1 of [2] H is continuously embedded into €0 (2\{0}). Thus, we may
define for f ¢ N
F={ueH|I0<n< <<rne=Riu(n)=0,1<l<k,
4 (—Du@) =0 in Q= {&|na<|z|<n},
lutlp = I blu, up) =!£9(uz) wde, 1 STk}
g‘:"}:rut = %in Qy, u; = 0 outside £;; rp := 0.From (4) it is easy to see that MF <=0
ge k. Indeed, assume for the moment that B > 1. Consider u, #(r) = 1, r < 1,
u(r) = cos((2k + 1y n(r — 1))2(R—1)), r=1.
Since b(uy, u)) - oo (k —> 00), 1 £1 < k, by (4) we can find ¢ > 0 such that
b{trug, trur) ={!9('§lut)ttutdfv, ltwa]p = 17,
1=lgk, if 'kgko.
For such & set
cf = inf{E(u)|ue Mi}.
By (4) we have the estimate (cp. Lemma 2 of [2])
® clults 2o Z B = a(w) — [Gu)dr Zc [y uds
= cb(u, u)g?_ cllulie

forue m #. Thus the numbers ci are well-defined for k sufficiently large.

Lemma 1. There exists ko € N such that for k = ko ¢ s attained in ME.

Proof, Consider a minimizing sequence u» € M E(u") — ¢ . By (6) we find that
the sequence u® is uniformly bounded in H. Hence we may extract a weakly con-
Vergent, subsequence u” — u. Moreover, u® — u strongly in L”* for any m < ¢ and
850 g (un) —> g (u) in L™ for some n’ > g/(g — 1). Also by Lemma 3 below we may
e,’f'ﬁl'act a further subsequence still denoted by u® such that forany I, 1 1<k
>y (u — o0) and |ry — ry| = c(k) if 1 +=m. Collecting these facts shows that u
Satisfies the following:

W< < - <tp=Riulr)=0, L{(—Uu{xn=0 in &
and Jwlp=T, 11k, [gw)wde=1lim [g(u})u}de.
&

n—+oo 027

Fina‘Hy, by weak lower semicontinuity of b (%, u):

b(u;,u,)gjg(ug)u,dx, 1515k,
&

Assume that in the latter inequality equality holds for all I. Then

b{u, w) = lim b(u?,um) and u?—u strongly in H.
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Thus ue Mt and E(u) = ¢, proving the lemma in this case. Assume that for some I,

b(ug, wr) < | g(w)urde.
&

We then derive a contradiction as follows:
Consider the function f: {f > 0} — R given by
tesb(tu, tu)) — [gtu) twda.
Fo]

By (4) if to =1 and f{tp) << 0 then f(t) << 0 for all ¢ = ;. Assume now there exists
t; > 0 such that

(7 b(t;ul,tlul)::fg(tlul)tlu;dx, |trwfp = I, 1515k,
&

By the above t; < 1. Set v(2) = fus (), x € 2;. Then v € M and by the equalities
cif = lim B (u®) = lim [%fq un)unr dx — jG(u")dx]

= %_[g(u)udx —IG u)dx,

L
Z %fg(tzuz truyde — fG(tzuz)dx]

and the estimate for uec H, |u|, = I
d
—= tu)tu — | G(tu)dx
7 [Hotwte— [Guo )
1
:;?t[sj;gu(tu)ﬂuzdx—Qfg(tu)tudx]>O

we obtain as a contradiction
E(v)<<cf.

It remains to verify that there exists ko such that (7) can always be achieved for
k = ko. Assume there exists a sequence £ — oo such that for some [ = (k)

blow, hw) < [glrw)tywdr,  |bw]p =T
0

where u is obtained as above as the weak limit of a minimizing sequence in M-
Clearly, then {t;u;}; is bounded in H; whence t;u; — u* weakly in H as (k — co) and
tyug — u* strongly in L?. Thus, | u*|, = I" but from Lemma 2 below we conclude
that supp (u*) = @ and »* = 0. This concludes the proof of Lemma 1.

For ke N let u™ denote & minimizing sequence in M as before and let 7} denote
the nodes of u?. QF, u7 are then defined as before. Let y denote Lebesgue measure-

Lemma 2. 11m1nf( inf || ul”[[,,)—»oo (k — o00)
n-roo \1sis

lim sup( sup ‘u(.Ql”)) -0  (k—>o0).

n—>oco \1si5k



Vol. 39, 1982 Superlinear elliptic boundary value problems 237

Proof. Note that for any given s > 0 any ke N E(un) << c¢if + s for large u.
eénce Lemma 2 may be proved exactly as Lemmas 7 and 8 in [3).

Lemma 3. For any ke N there exists ¢(k) > 0 such that for any pair 1, m,
lsi<m<i,
lim inf |7} — 75| Z (k).

n—rco

Proof. This follows from Lemma 7 in [3].

From Lemma 1 we conclude that for sufficiently large % a minimizing sequencein 3
Converges in M i . Let u denote the limit of such a sequence, and let r; be the zeroes
°f  which we obtained in the proof of Lemma 1.

Also let 2, always correspond to such a € M3 . Quantities related to comparison
functions 4 will recieve an apostrophe, e. g. 7;.

For later use we note the following technical lemma.

. Lemma 4. Let 1 — k(m) be a sequence of integers k = ko. Let w = w(m) be a sequence

U H such that wir) =0 at r, 0< 1< - <r=R, and £ (—1)lw; =0,

L, lp = I 1 =1 =k Assume there exist numbers 8 = &;(m) = 1, &y = g(m) = 1,
SUZk ¢=e(m) > 0 such that

ifg(uz}u;dx——fg(wz)w;dxi <&, 11k,
el o7
'fgu(u,)u,zda:——Jgu(wz)w?dxléél, 1=<1<k,
f)| Ol’

|6 (ut, w) — blwr, wi)| =< er. 1SU<k,

12a(u) —aw)=ze>0.
(Note that the index m has been suppressed in the notation.)
Also assume that

8‘-1‘2(51‘*‘81)2/fg(ul)u,dz]—>0 (m — o0),
[2 &
138 —>0  (m—>o0).
7
They, there exists mo such that for m = mo there exists v = v(m) € MF with the property

E@x)< E(u).
Praof. By the estimate

Edt— [b(twl, ty) ——g{’g(tw,) tw; dx] { -

bltug, tu)) — j'g(tul)tuldx}
[o]]

d
= |
4+ Oleg, 6;) = “g(u;) wydx — fgu(ul)u? dx] + Ole, 61)
o] $

< — cﬁfg(uz) w da
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for k = kg, it follows that there exists {; > 0,
|1 —#] < c(dr+ &) [g(w)uwde,
(7}

such that
b(tzwl,tlwl)zjg(tlw,)t;wldx, 151k,
forg

Moreover, for ¢ between {; and 1 we have

|B@Ewy, tu) — fg(twl tugde| < 0+ &

Letting v; = t;w; we obtain ve M} Z . By the estimate

Ew) + Z/ I (tuy)

SE@w) —e+c & +cr |1 —b|sup|b(tw,tw)
7 7
— [g(twy) twy da|
fol}

<E@wu —e+tec- gaﬁc- Zl(az+ 81)2/ng(uz)uzdx
< E(u), if m=mp,

the lemma follows.

Let !jl:{xe[)z[u(x) +0}, 1<I<k.

Lemma 5. Lu=g(u)in @, 1 <1<k, k = k.

Proof. For fixed ! consider
Hy={weHN ALY Q)| |w|p =T},
K= {we Hi|b(w,w) = [g(w)wdz}.
2

By the estimates of Lemma 3 in [2] 0 is a regular value of the Cl-function k;: H; — R
given by

ky(w) = b(w, w) — J'g(w) wdz.
2

Thus, K; is a C'-manifold in a neighborhood of %; and as in the proof of Lemma 3
in [2] the tangential space at u; in H; is spanned by the tangential space of u; in K1
and the vector u;. Now, by definition of ¢jf and Lemma 1 u; is critical for % in K-
By the condition b (u;, u;) = fg(ul)uldx also the derivative of £ in the direction

2]
w; vanishes. Thus, u; is critical for £ on H; which is equivalent to the assertion of the

lemma,.

Lemma 6. a(r) 8,u(r) is continuous in 2\{0}, if k= ko.
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-~ ko .
Proof, Indeed, by Lemma 5 ad,u is continuous in £ = U.Q;l). Since dyu = 0
=1

almost everywhere in .Q\.é we may choosé a piecewise continuous representative of
®0r on \{0}. Assume there exists 20 2, |2%| = r0 > 0, such that ¢dru is not
ontinuous at, #0, Since a0 is continuous to the left and to the right of +0 the left
nd right limits ad,u— and adrut both exist. Assume i) that both limits differ from
Zero. If 70 — r; for some 1 and if » > 0 let »— <C 70 be maximal such that 4+ (—1)lu(r-)

=72} and let r+ > 70 be minimal such that -4 (— 1)u(rt) = — ». If 20 € 2y, let
T,‘ <79 be maximal and let #+ > 70 be minimal such that 4 (— 1)lu(r£) = ». If
Y adu-=0 let =~ = 70 — y, r+ as before. If iii) @ dyut = 0 let r+ = r? 4- », and let

"™ be defined as in i). Obviously, if both limits equal zero there is nothing to prove.
In all cases now set 0y = {x|r- < |z| < rt}. Clearly, u(£2,) -0 as v - 0. Define
Y= w(») = y4 outside £2,, and let w be the unique solution of
Lw=0 in £,
w=wu on 05

;nside £y, Then we H. Also, if 20 € £2; for some I, w(ry) = 0 for all m, and we may
Q= 02,1 <1<k Whereas, if 70 = r; for some I, then w(rn) = 0 only at
™ %1 and w(r}) = 0 at some r;, 7~ << 7, < r+. In any event we obtain

Jgum)umdz — [g(wm) wmdx‘ e vu(QN-1 = §(»)

Qn 2,
for 1, L1+ 1,|| =0 else. Also
l [ gu(um) uhdz — [ gu(wm) w3, d:v\ Se-vu ()1t
Qm 2;,
for m — L1414, | == 0 else. Moreover, by piecewise continuity of ad,u(r) and

®ontinuity of ¢, w for small » > 0:
|b(wm, um) — b(wn, wy)| Sc*v, m=1,1+1,
Vith & constant c* depending on u and #0. Finally, since ad,u is discontinuous at +?,

o sufficiently small » > 0 we obtain by a piecewise partial integration that

b(u, u) — b(w, w) = fa]V(u—w)]zdx =cy,
a

With 4 constant ¢’ > 0 depending on %, 70, and the discontinuity. Thus, for small
¥>0 and k = ko Lemma 4 yields a comparison function ve M such that & (v) <
(u). A contradiction results proving the lemma.

Lemma 7, £ (— 1)y >0in 2, 1 SISk k= k.

Proof. Assume there exists 20 € £;, |29 = 79, such that «(29) = 0. By Lemma 6
algg Oru(r9) = 0. Now we claim: There exists ¢ > 0, y > 0 such that for r = r0/2
k ~

!) More precisely: ad;u is uniformly continuous on 2 N B, (0) for any & > 0.

%) The gign is determined by the membership of » in M} or Mj resp.
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and satisfying 0 — & << r << 70 4 ¢ we have
9) |u(r) — u{r®)| < c|rv — 7|

Indeed, letting §(u) = g(u) if v == 0, §(u) = 0 if ¥ = 0, by Lemmas 5 and 6 almost
everywhere in 0, R]

— Or(rN-1g(r)Opu) = G(u)rN-1,

Integrating between »0 and » we thus obtain, assuming » = /2 and |u| <1 0B
Qr = {eQ|r0<|z|<rorr<|z]<ro}:
la(r) u(r)| < ri-n [ |g(w)| do < crl-® u(Q,)1-4¢ < crl-n/t. Hence o
ar

such r:
|w(r) — u(r0)| Zc|ry — 07|

with y = 2 — n/t > 0. In particular |u(r)| = 1 forr 2 ¢9/2, 0 — e < r <70 + &
if € > 0 is chosen sufficiently small, and our above assumption is justified for ’
in this range. This proves (9). ‘

Now, for % large, by Lemma 2 rjyy — ;<< & if ;<< RJ2, resp. ria > 11 — € if
71 = R[2. Hence |u| =<1 on 241 or £2;-1, resp. if (20 = 0 at some 20 2,. BY
Lemma 2 this is impossible for large k, proving the assertion of this lemma.

Proof of the Theorem. It remains to verify that » solves (5), the remaining
assertions being a consequence of Lemma 7. By Lemmas 5 and 7 Lu = g(u) in 20
112k k= k. Let ve H. Using Lemma 6 an integration by parts gives

0=> [(Lu—g(u)vdz = z[b(u,,v) ~ jg(ul)vdx]
[X2H I3 &
— > [van - Vudo=1b(u,v) — [g(u)vdu.
13 Q
Here, n denotes the exterior normal and do the measure on 802;.

Thus, u weakly solves (5). By standard regularity results, moreover, we H¥
and (5) is satisfied a.e. This concludes the proof.

The list of references below is by no means complete. For more detailed biblio-
graphical references confer e.g. [2] or [3].
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