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Superlinear elliptic boundary value problems 
with rotational symmetry 

By 

MICHAEL STrcUWE 1) 

In this paper we extend and sharpen an earlier existence result [3] for superlinear 
elliptic boundary value problems on balls ~ --  Bn --  {x [ ] x [ < R} c R N. 

Let 

(1) L u  = --  r 1-N Or (a (r) r N-10rU) 

be a uniformly elliptic radial differential operator on Q with 0 < a0 ~ a e L ~, and let 
g: s • R __~ R be a Carth6odory function satisfying the conditions 
(2) ~(~, ~)= g([xl, u), 

is Lipschitz continuously differentiable with respect to u a.e. in ~ and there exist 
r p, s, t 

2N~) 
2 < p < q ' - -  N - - 2  ' 

aad functions ~ e L s, v e Lt  such tha t  

(~) 

s > q / (q- -  p) > �89  t > �89 

I g~ (~, u) l _~ ~(~)1 ~ I ~-~ + ~(~),  
Ig~(~, ~) - g=(~, v) I _~ (~(~) (I,~1 ~-~ + I~1 ~-~) + ~(~) ) lu  - v l  

There exists a function Q: •--> R such tha t  ~(t)/t2-->co (t->co) and constants 
~ ,A,  fl, B, F, 0 < a <  1, 2 < A ,  0 < B ,  0 ~ / ~ ,  such tha t  for a n y u e L v  with 
II u/I ~ ~ / '  the est imate holds: 

(4) ~(llullp) ~ A  f G ( u ) d x ~ _  f g ( u ) u d x ~ = : c  f g u ( u ) u 2 d x ~  Bllull~" 
D ~ D 

u 

ttere, G(u) = ,fg(v) dv is a primitive of g. 
0 

V~ith the above assumptions on g and L we prove 

1) This research was supported by the Sonderforschungsbereieh 72 of the Deutsche Forschungs- 
geraeinsehaft. 
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Theorem. There exists ko ~ ~ such that/or any k ~ ko there exists a pair o/radial 
solutions u +, u-, u !(x)  : u:e(] x I), o/the boundary value problem 

(5) L u = g ( x , u )  in •, ulO~2-~O 

with the/ollowing properties: 

(i) u - (0 )  < 0 < u +(0). 

(ii) u +, u- both posses exactly k nodes r~ , u+(r +) = O, u-(r~) = O, in ]0, R]. 

The above Theorem gives a more delicate description of the solution set than  our 
earlier result [2] ; also the growth assumptions on g are slightly weaker. In  particular, 
the existence of infinitely many  radial solutions with prescribed sign at  r = 0 had 
been controversial. An a priori estimate ibr positive solutions of equations (5) due to 
Gidas and Spruck seemed to incidate the existence of functions g depending 
only on u such tha t  (3) and (4) are satisfied but there exists only one solution of 
Au + g(u) = 0 in BR with u(R) = 0, u(0) ~ 0 (ep. [1]). Hopefully, the existence 
result presented here may  help to clarify the situation. 

The proof of our Theorem above largely uses ideas from [2]. However, we apply 
lower semi-continuity type arguments to obtain solutions of (5) with the behavior 
prescribed in the Theorem. In  fact, the use of Lusternik-Sehnirelman theory in [5] 
to obtain solutions was not justified since the manifolds Kk defined there need not be 
differentiable and the Lusternik-Schnirelman deformation hence need not be defined. 
I thank  J.-M. Coron and H. Berestycki for having pointed out this mistake. In" 
cidentally, this "regulari ty gap" in our original proof seems to be reflected in a 
slightly strengthened hypothesis on the integrability of the "free t e rm"  r in (3), 
as compared with the assumptions made in [2]. 

P r o o f .  As in [2] we interpret  (5) as the Euler equations of a functional E :  H -~ 
where 

Indeed, E is given by  

E(u) = a(u) -- fG(u)dx  
$9 

with 

a(u) --~ �89 ~a I Vul2 dx. 

Also, for u, v e H denote by 

b(u,v) = f a V u .  Vvdx 
D 

the bilinear pairing associated to L. 
Then weak solutions u for (5) equivalently may  be characterized as critical points 

of E satisfying 

b(u,v) - -  ~g(u)vdx 
D 

for all v e H. 
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By L e m m a  1 of  [2] H is cont inuously  embedded  into C0(/2\{0}).  Thus,  we m a y  
define for k e 

M ~ . - = { u e H [ 3 0 < r z < . . . < r ~ = R : u ( r ~ ) = 0 , 1 ~ l ~ k ,  

I[u~l]v --  1 ; b(u~,u9 ]g(uz) uzdx, 1 g l ~ k} .  
Dt 

Here, ut ~ u in ~ l ,  u~ = 0 outside s ; r0 : = 0. F r o m  (4) it  is easy  to see t h a t  M ~  =~ 0 
for large k. Indeed,  assume for  the  m o m e n t  t h a t  R > 1. Consider u, u (r) =: 1, r < 1. 

u(r) = cos( (2k  ~- 1) ~ ( r - -  1 ) / 2 ( R - -  1)), r ~ 1 . 

Since b(u~, ut) --> r --> r 1 ~ l ~ k, by (4) we can find tt > 0 such t h a t  

b(ttu~,~u~) -= jy(t~u~)t~u~dx, Nt~u~[[v ~ I ~, 

l ~ l g k ,  if k ~ k o .  

For such k set  

c~ --  i n f ( E ( u )  [ u e M ~  }.  

~Y (4) we have  the  es t imate  (ep. L e m m a  2 of [2]) 

(6) c [ [ u l [ ~ , u ~ a ( u ) ~ E ( u ) _ ~ a ( u ) _ ~ G ( u ) d x ~ c f g ( u ) u d x  
D 

= c ~ ( u ,  u) > cllu/i~,~ 

for u ~ M~:. Thus  the  numbers  c~: are well-defined for k sufficiently large. 

] ,emma 1. There ezists ko e ~ such that /or  k ~ ko c~. is attained in M~. . 

~ r o o f .  Consider a minimizing sequence u ~ e M ~  E (u n) -->c~ �9 B y  (6) we find t h a t  
the sequence u n is un i formly  bounded  in H.  Hence  we m a y  ex t rac t  a weak ly  con- 
Vergent subsequence u n --~ u. Moreover,  u ~ --> u s t rongly  in L n for  a n y  z < q and  
also g(un) -->g(u) in L "  for some ~' > q/(q --  1). Also b y  L e m m a  3 below we m a y  
extract a fu r ther  subsequence still denoted  b y  u n such t h a t  for a n y  l, 1 ~ I ~ k 
~ - ~  r~ (u --> oo) and  [rt - -  rm[ ~_ c(k) i f / ~  m. Collecting these facts  shows t h a t  u 
satisfies the  following: 

and  ] J u ~ [ [ , ~ / ' ,  l g I g b ,  ~ g ( u t ) u l d x = l i m  ~g(u'{)u~'dx. 

Finally, by  weak lower semieont inui ty  of  b (u, u) : 

b(uz, ul) ~_Df g(uz)u tdx ,  1 g l ~ k.  

AsSUme t h a t  in the  la t ter  inequal i ty  equal i ty  holds for all 1. Then  

b (u, u) ~ lira b (u n, u n) and u n -0  u s trongly in H.  
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Thus u E M ~  and E(u)  = c~ ,  proving the lemma in this case. Assume t h a t  for some l, 

b(ul,  us) < j ' g (uz )u tdx .  

We then  derive a contradict ion as follows: 

Consider the  f u n c t i o n / :  {t > 0} --> R given by  

t ~ b ( tu l , t u z )  - -  ~g( tut )  tu~dx.  
T2 

By (4) if to :> 1 and /(to) ~ 0 t h e n / ( t )  ~ 0 for all t ~ to. Assume now there  exists 
tt > 0 such t h a t  

(7) b(tzuz , t tul)  - -  ~g( t~u t ) t tu tdx ,  I[ttutlIp ~ I ~, 1 ~ l ~ k .  
D, 

By the  above tz ~ 1. Set v(x) = ttut(x),  x ~ f2t. Then v ~ M ~  and by  the equalities 

ck ~ = lira E (u n) = lira [�89 ~ g (u n) u n dx  --  ~ G (u n) dx] 

k 

E (~) = ~ [�89 Sg (tt ~z)t~ u~ d~ -- f a(t~ u~) d~], 

and the estimate for u ~ H ,  Ilull~ ~ F, 

d 

l 
1 

we obtain  as a contradict ion 

z(~) < c~. 

I t  remains to verify t h a t  there exists k0 such t h a t  (7) can always be achieved for 
/c ~/Co. Assume there exists a sequence/C --> c~ such t h a t  for some 1 ----/(k) 

b(t~u~,ttut) < ]g( t tu~) t tu~dx ,  ]]ttu~l] ~ = F 
D 

where u is obtained as above as the weak limit of  a minimizing sequence in M [ .  
Clearly, then  {ttut}k is bounded in H ;  whence ttu~ --> u* weakly in H as (k -+ co) and 
ttut --~ u* strongly in LP. Thus, 11 u* I[~ = _]7 bu t  f rom L e m m a  2 below we conclude 
t h a t  supp (u*) ---- 0 and u* -= 0. This concludes the  proof  of  Lemma 1. 

For/C e ~ let u n denote ~ minimizing sequence in M ~  as before and let r~ denote 
the nodes of  u n. Q~, u~ are then  defined as before. Let  # denote  Lebesgue measure. 

Lemma 2. lim inf(  inf II u~ [i~/--> oo (k ---> or 
n - ~ o o  \ l  <l~_k ] 

l i m s u p (  sup /t(zQ~)~-->0 ( k - ~ o o ) .  
n-->oo \ l  ~_l~_k ] 
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Proof .  Note that  for any given s > 0 any k e N E(u  n) ~ c~ + s for large u. 
Hence Lemma 2 may be proved exactly as Lemmas 7 and 8 in [3]. 

Lemma 3. For any k e ~ there exists c ( k ) >  0 such that /or any pair l , m ,  
l ~ l ~ m ~ k ,  

lim inf I rr -- r,nnl :> c (k). 
~ - * o o  

~roof .  This follows from Lemma 7 in [3]. 

~'rom Lemma 1 we conclude that  for sufficiently large k a minimizing sequence in M 
COnverges in M ~ .  Let  u denote the limit of such a sequence and let rl be the zeroes 
of u which we obtained in the proof of Lemma 1. 

Also let ~Q, always correspond to such a u e M ~ .  Quantities related to comparison 
functions w will recieve an apostrophe, e. g. r~. 

For later use we note the following technical lemma. 

Lerama 4. Let k -~ k (m) be a sequence o/integers k ~ ko. Let w = w (m) be a sequence 
�9 �9 t 

in 1t such that w ( r ~ ) = O  at rt, O ~ r z ~ ' " ~ r k = R ,  and ~ ( - - 1 ) l w t ~ O ,  
llw~l[~ ~ F, 1 ~ 1 ~ k. Assume there exist numbers ~ = ~t(m) ~ 1, et = et(m) ~ 1, 
1 ~ l ~ k ,  e = e ( m ) > O s u c h t h a t  

sQ 1 ~ | '  

1 ~ a ( u ) - - a ( w ) ~ e > O .  

(Note that the index m has been suppressed in the notation.) 

Also assume that 

'1 z, + I -->o 
e-1 ~ t - - > O  (m-~ oo). 

l 

Then there exists mo such that ]or m ~ mo there exists v = v (m) e M ~  with the property 

E (v) < E (u). 

Proof ,  By the estimate 

d 
- I 

d 

t.@l ,Dl 
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for k ~ k0, it follows tha t  there exists ts > 0, 

Dz 

such tha t  

b (tlw~, t~ wl) - ~  9 (t~ ws) ts w~ dx, 

Moreover, for t between t~ and 1 we have 

l ~ l ~ k .  

Ib(tws, twl) - - Jg ( tws ) twsdx  I ~ 5t + es. 

Letting vz = tl wt we obtain v e Mff .  By the estimate 
tl 

E(v) -- E(w) + ~dt E(twt) 

1 

E(u) -- e + c. ~.~s + c. ~ 1 1  -- t t l suplb( twz , twt)  
l I 

- fg(tws)twzd l 
12l 

E(u) -- ~ + c. ~ 5~ + c. ~ (~ + e~12/Ig(u~)usdx 
l S D~ 

< E ( u ) ,  if  m ~ _ m o ,  

the lemma follows. 

Lemma 5. L u  = !l(u) in ~2~, 1 ~ l ~ k, k ~ Ice. 

P r o o f .  For fixed 1 consider 

H~ = {w e H n He 1'2 (~t) l ][ w ]l p ~ -P}, 
Kl = (w e H~ I b (w, w) = j" g (w) w dx}. 

D 

By the estimates of Lemma 3 in [2] 0 is a regular value of the Cl-function kz : Hs -+ 
given by 

ks(w) = b(w, w) -- f g (w)wdx .  
O 

Thus, Kt is a Cl-manifold in a neighborhood of uz and as in the proof of Lemm~ 3 
in [2] the tangential  space at uz in Ht is spanned by  the tangential space of uz in Kt 
and the vector us. Now, by definition of cff and Lemma 1 ut is critical for E in Kt. 
By the condition b(ut, uz) = f! t(ut)utdx also the derivative of E in the direction 

Dz 
ut vanishes. Thus, ut is critical for E on Hz which is equivalent to the assertion of the 
lemma. 

Lemma 6. a(r)Oru(r) is continuous i~ ~ \ { 0 } ,  i / k  ~ k0. 
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k 

P r o o f .  Indeed ,  b y  L e m m a  5 aOru is cont inuous  in ~ = t__~Jl~Z1).= Since aru = 0 

alraost everywhere  in ~ \ ~  we m a y  choose a piecewise cont inuous  r ep re sen t a t i ve  of  
aarU on ~ \ { 0 } .  Assume the re  exis ts  x 0 e ~ ,  I z~ : r ~ > 0, such t h a t  a~ru is n o t  
eoatiauous a t  r 0. Since a arU is con t inuous  to  t he  lef t  and  to  the  r igh t  of  r o the  lef t  
and r ight  l imi ts  a a ru -  and  a aru + bo th  exist .  Assume i) t h a t  bo th  l imi ts  differ from 
Zero. I f r  0 = rt for some 1 and  i f v  > 0 let  r -  < r ~ be m a x i m a l  such t h a t  • ( - -  1)Zu(r - )  
~v2)  and  let  r + > r o be m i n i m a l  such t h a t  ~=( - -1 )~u( r  +) - -  - -  v. I f  x O e ~ t ,  le t  
r - ~  r0, be m a x i m a l  a n d  le t  r + > r ~ be min ima l  such t h a t  q - ( - - 1 ) ~ u ( r  ~) -~ v. I f  
ii) aOru__  0 let  r -  = r ~ - -  v, r + as before.  I f  iii) aOru + ~ 0 le t  r + = r ~ ~ v, a n d  le t  
r-  be defined as in i). Obviously ,  if  bo th  l imi ts  equal  zero there  is no th ing  to  prove.  
Irl all cases now set  ~ : {x I t -  < Ix [ < r+} �9 Clearly,  ~ (~2~) ->  0 as v --> 0. Define 
w ~ w(v) =_ u outs ide  .Qv, and  le t  w be the  un ique  so lu t ion  of  

L w  ~ 0 in ~ ,  

w ~-- u on a.Q~ 

iaside ~ .  Then  w e H.  Also,  i f  x o e -Qz for some l, w (rm) = 0 for all  m, and  we m a y  
let E2 z ~ ~ t ,  1 --~ l ~ k. Whereas ,  if  r ~ --~ rl for some l, t h e n  w(rm) ~ 0 only  a t  

�9 �9 # 

~n ~ 1 and  w(r~) = 0 at  some r~, r -  < r~ < r +. I n  a n y  even t  we ob t a in  

~ g (mn) um dx --  ~ g (wm) wm dx ~ c " ~, /.( (~),)~-llt = ~ (v) 

for m ~ l, 1 -{- 1, I ' " 1  --~ 0 else. Also 

2 I l Ig,,(u.~)u~,dx--.fg,~(w.))w,,<dx <~ c./~/A(~r~v) 1-1/t 

_ 1, l e l, I 1  - -  0 else.  oreovor, by piecewise continuity of a~u(r) and 
c~ of a~rw for small v > O: 

] b ( u m , u m ) - - b ( w m , W m ) ]  ~ c * v ,  r e : l ,  1-~ i ,  

With a cons t an t  c* depending  on u a n d  r 0. F ina l ly ,  since aOrU is d i scont inuous  a t  r ~ , 
for sufficiently small  v > 0 we ob t a in  by  a piecewise pa r t i a l  i n t eg ra t i on  t h a t  

b(u ,u )  - -  b (w ,w)  ~- f a  I V ( u -  w) l~dx ~ c ' v ,  
a 

With a cons t an t  c' > 0 depend ing  on u, r ~ and  the  d i scon t inu i ty .  Thus,  for  smal l  
~ 0 and  k _ �89 L e m m a  4 yields  a compar i son  func t ion  v e M ~  such t h a t  E (v) 
(u). A con t rad ic t ion  resul ts  p rov ing  the  l emma.  

Lemma 7. 4- ( - -  l ) luz > 0 in  ~ ,  1 ~ 1 <_ k, k ~ ko. 

t ) r oo f .  Assume the re  exis ts  x 0 e ~z ,  lx~ ~- r ~ such t h a t  u ( x  o) ~ O. B y  L e m m a  6 
also arU(ro ) ~ O. Now we c la im:  There  exists  ~ > 0, F > 0 such t h a t  for r ~ r~ 

1) More precisely: aOru is uniformly continuous on ~ (~ B,(0) for any e > 0. 
~) The sign is determined by the membership of u in M~ or M~ resp. 
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and  sa t i s fy ing r 0 - -  e < r < r ~ -b e we have  

(9) l u ( ~ ) -  ~(~o) I < ~ 1 ~ -  r~ I . 

Indeed ,  l e t t ing  ~(u) = g(u)  i f  u =4= 0, ~(u) = 0 if  u = 0, b y  L e m m a s  5 and  6 almost 
everywhere  in ]0, R] 

- ar (r N-1 a (r) a,.u) = ~(u) rN-1 .  

[n tegra t ing  be tween  r ~ a n d  r we thus  obta in ,  assuming  r ~ rO/2 a n d  [u] ~- 1 o~ 

(x  ,lr0 < Izl < r or r <  Izl < r0}: 

l a (r) 0ru (r)] ~ r 1-n .I 19 (u)] dx  ~ cr  1-n ~u (-Qr) 1-~/t <: cr l -n / t .  Hence  for 
.Or 

such r : 

lu(r) - ro ' i 

w i t h ~ - - - - 2 - - n / t >  0. I n  pa r t i cu l a r  ]u(r)]  _~ 1 f o r t  ~_r~ r ~  s < r < r  ~  
if  s ~'-- 0 is chosen suff iciently small ,  and  our  above  a s sumpt ion  is just i f ied for r 
in th is  range.  This  proves  (9). 

Now, for k large,  b y  L e m m a  2 rz+l - -  rl < ~ if  rt < R/2 ,  resp. rl-2 > rl ~ s if 
rt ~ R /2 .  Hence  ] u I ~ 1 on -Qt+1 or  ~ l - 1 ,  resp. if  u (x  ~ ---- 0 a t  some x 0 e .Q,. BY 
L e m m a  2 th is  is imposs ib le  for large k, p roving  the  asser t ion  of  th is  l emma.  

P r o o f  o f  t h e  T h e o r e m .  I t  r ema ins  to  ver i fy  t h a t  u solves (5), the  remaining 
asser t ions  be ing  a consequence of  L e m m a  7. B y  L c m m a s  5 and  7 L u  = g(u)  in .Or, 
1 ~ 1 ~ k, k ~ k0. Le t  v ~ H.  Using  L e m m a  6 an  in t eg ra t ion  b y  pa r t s  gives 

- -  ~,  ~ v a n  . V u d o  ~- b(u,  v) - S g ( u ) v d x .  
l a~t, 

Here,  n denotes  the  ex te r ior  no rma l  and  do t he  measure  on a/2~. 
Thus,  u weak ly  solves (5). B y  s t a n d a r d  r egu la r i t y  resul ts ,  moreover ,  u e H ~'t 

and  (5) is sat isf ied a .e .  This  concludes the  proof.  
The  l ist  of  references below is b y  no means  complete .  F o r  more  de ta i l ed  biblio" 

g raph ica l  references confer e.g. [2] or  [3]. 
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