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Bisected Chords of a Convex Body

By

G. D. CHAXERIAN and S. K. STEIN

1. Preliminaries. A plane convex body is a compact, convex subset of the plane
with nonvoid interior. A convex curve is the boundary of a plane convex body. If §
is any Lebesguc measurable subset of the plane, we shall denote its measure by |8].

For each point p in a plane convex body K, let n(p) denote the number of chords
of K bisected by p. If C is the boundary of A, then it is readily seen that for each
Interior point p, »(p) is half the number of points of intersection (if finite) of ¢ with
2p — C. For p e C, we take n(p) = 0. 1t is known that »(p) is almost everywhere
finite, and integrable over K. In this paper, we shall be primarily concerned witl
the properties of the sets My, Fi, ¥ =0,1,2, ..., defined as follows:

(1.1) My={peK:n(p)=k}, Fe=|JM,.

r=k

In section 2 it will be shown that the quantity A(K), defined by

M
(1.2) ME) = i|K1'|'|
is a measure of symmetry, and sharp bounds will be derived for 2(X) (Theorem 1).
Sharp bounds are also given in case K ranges over all curves of constant width
(Theorem 2).

Many questions can be asked concerning these Fy; for example: is F, connected,
or even convex ¢ Kasy examples show that F3 ist not in general convex, but Ceprr (3]
has proved that 3 is always connected. The results of the present Paper are metric
in nature. For exarple, it follows as an immediate corollary of Theorem 1 that

(1.3) 0= |F3|=¢|K|,

where equality holds on the left if and only if K is centrally symmetric, and on the
right if and only if K is a triangle.
In section 3 we also consider the structure of the set ¥'3 in case K is a polygon,
The difference body, DK = K + (— K), is the main tool used here. It is well.
known that
(1.4) 4|K|<|DK|<6|K|,
where equality holds on the left if and only if K is centrally symmetrie, and on the
right if and only if K is a triangle (see [2, p. 105]). Denoting by M(Ky, Ky) the
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mixed area of Ky and K [1, p. 34], one has
(1.5) [DK]:2([](]+M(K,—K)).

Thus (1.4) is equivalent to
(1.6) |K| =M(K,—-K)<2|K|,

with equality holding in the same cases.
Setting ¢ = 2p, one has from |1, p. 35]

(1.7) [2n(p)dg = 4(M (K, — K) + M (K, K)),

where the integration is over all positions of ¢ (to compare (1.7) with Blaschke’s
formula, set K = Ko = K3, K1 = — K; so Fopp = M(K, —K), Foa = M(K, K)).
Using the fact that d¢ = 4dp and M (K, K) = | K|, it follows from (1.5), (1.6),
and (1.7), that

(1.8) |K| =< fn (pydp <% |K

3

with equality holding in the same cases as in (1.4).

Let C be the boundary of the plane convex body K, parametrized by its arc-
length s. For each regular point of ¢' (point having a unique support line ) let b (s)
denote the distance between the support line through that point and the opposite
parallel support line. Since, except for a countable sct, each point of C is a regular
point, the integral of b(s) around C is well-defined, and onec has

(1.9) fb(s)ds =4 [n(p)dp = | DK|.
5 K

This is proved in (1, p. 35] under the assumption that C is smooth, but is not dif-
ficult to establish without smoothness restrictions.

A more general problem is obtained by letting % (p) be the number of chords of K
divided by p in the ratio 1: 2, 4 > 1. It is possible to generalize many of our results
to this more general case.

2. Some properties of M,
Lemma 1. If k is even, then | My| = 0.

Proof. We first note that n(p) = 1 for each interior point of K, so My is the
boundary of K and |Jllg\ = 0. We shall show that if p e My, k even and =2, then
p is the midpoint of a diameter of K (a diameter is a chord joining points of K lying
in opposite parallel support lines). Since the set of midpoints of diameters of K has
measure zero, the lemma will follow.

So, let C denote the boundary of K. If C'and 29 — € have a support line in com-
mon at one of their points of intersection, then the corresponding chord of C is
a diameter bisected by p, and we are through. If ¢ and 2p — C never have a sup-
port line in common at a point where they intersect, then they cross at each inter-
section. Consider a pair g and ¢’ of points of intersection, where p bisects ¢q’. If C,
traversed in the positive direction, crosses from the inside to the outside of 2p — C
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at g, then it crosses from the outside to the inside at ¢’. The number of intermediate
crossings, going from ¢ to ¢’, must therefore be even. But the number of intermediate
crossings plus 1 is exactly &, so £ is odd. Thus if kis even, € and 2p — C must have
a common support line at some point of intersection, so p is the midpoint of a dia-

meter. This completes the proof.
Theorem 1. Let K be a plane convex body, and let A{K) be defined by (1.2). Then
$AK) =1,

and equality holds on the left if and only if K is a triangle, and on the right if and only
tf K is centrally symmetric.

Proof. We first prove the left-hand inequality. Using (1.8) and Lemma 1, we have
K|z [n(prdp = n(p)dp + [ n(@)dp = | ]+ 3{| K| — |20},
80
establishing the left-hand inequality. If equality holds, then it must hold on the
right hand side of (1.8), so K is a triangle.
The right-hand inequality is trivial. If equality holds, then |M;| = |K|, so
| 3] = | M| = -+ =0, and
[n(p)dp = | M| =|K]|,
X

so equality holds on the left-hand side of (1.8) and K is centrally symmetric. This
completes the proof.

Remark. The last theorem shows that A(K) is a measure of symmetry for plane
convex bodies. It is clear that A(K) is also an affine invariant of K. Theorem 1 im-
plies that K is centrally symmetric if and only if the set of points of K biseeting
more than one chord of K has measure zero. This generalizes the result of Vimr [4]
that a plane convex body is centrally symmetric if there exists at most one point
which bisects more than one chord. The inequality (1.3) follows from the fact that
| K| =| M|+ | Fs].

Theorem 2. Let K be a plane convex body of constant width. Then

1= A(K) = A(R) ~ 943,

where R is a Reuleaux triangle. Equality holds on the right if and only if K is a Reuleaua
triangle, and on the left if and only if K is a circle.

Proof. Assume that K has constant width 1. Then |DK| = n, since DK is a
cirele of radius 1. Using (1.9), we have
< | M|+ 3] Ma| 45| Ms| + - =

ln(p)p i z(n_yg)lR"

37*
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where R is a Reuleaux triangle of breadth 1. It is easy to see that the boundary of
any translate of — R intersects the boundary of R in at most 6 points; hence if
K = R, then M5 = My = --- = @, and equality holds above throughout. Hence if
K = R,

5mx—6V3

Ml = .
| 1] 4m—4y3

|R| = A(R)| R| ~ 943 | R|.
In general, by the Blaschke-Lebesgue Theorem [2, p. 132], | K| = | R|, so

3|K|—2|M| =2 |Rl<-~" _|K

| | I 1|_2(7l'—|/3)| 1—2(7!__1/3)| l,
and
57 —6)3

lMll 2471741/5

|K|=A(R)|K]|.
If equality holds, then | X
Reuleaux triangle.

The left-hand inequality is trivial. By Theorem 1, equality can hold only if K is
centrally symmetric, henee a circle. This completes the proof.

= | R|, and by the Blaschke-Lebesgue Theorem, X is a

3. Chord biscetors of polygons. Let K be a convex polygon with boundary €, and
let Cy, Cs, ..., Cy be the segments forming C. Let I; be the length of ¢y, and let 0y
be the smaller of the angles between the lines carrying C; and €y. For a general
convex curve, equation (1.9) can be put in the form

(3.1) [n(p)dp=1%[b(s)ds =} [ [sinO(s, &) dsds’,
Ly ¢ Cxe

where 0 (s, ) is the smaller angle between the support lines at the points with para-
meter s and s’ respectively (uniquely defined except for a countable number of points).
For our convex polygon, (3.1) reduces to,
(3.2) [n(pydp=14 3 Lilsin0y.
i 1<85%r
The formula (3.2) can be derived directly, as follows. Those points of K which bisect
chords having endpoints respectively on C; and € form the parallelogram Py =
= 3(C; + Cy). Since
l P’”l = ;lfli lj sin 61; s
(3.2) follows from
(3.3) [n(p)dp =13 > |Pyl.
K 156,57

For a convex r-gon, there are v (r — 1)/2 distinet (possibly degenerate) Py;. Those
points which are interior to three or more Py lie in the set Fg (defined by (1.1)).
Points belonging to three or more Py, but not necessarily interior points of those
Py, may or may not lie in Fg. In case K is a convex quadrilateral with no two sides
parallel, F3 consists precisely of those points interior to three Py, and is readily
seen to be the interior of a “concave” quadrilateral.
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