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Algebraic Functions and an Analogue o[ the Geometry of Numbers : 
The Riemann-Roch Theorem 

By 

J. V. An~ITAG~ 

l.  Introduction. As is well known, the classical geometry of numbers has important 
applications Jn algebraic number theory. Tile purpose of this paper is to show that 
MAHL~I~'S analogue of the geometry of numbers in a field of formal power series [12] 
has equally important  and closely related applications in the theory of" algebraic 
functions of one variable. We show that the analogue of the theorem on successive 
minima is essentially the Riemann-Roch Theorem and in a subsequent paper we 
shall show that  the theory of correspondences has a natural interpretation in the 
language of the geometry of numbers, which leads to a result on the minimum of 
the product of n linear forms and this in its turn gives the "Riemann Hypothesis" 
for function fields. This latter result may be regarded as the analogue of the applica- 
tion of the classical geometry of numbers to the problem of finding the minimum 
discriminant of an algebraic number field. 

In  a sense, there is nothing original about our proof of the Riemann-Roch Theorem. 
I t  is well known (cf. EICHLEIr [8]) that  the theorem is a consequence of a similar 
theorem for linear divisors and that  the latter follows from an analogue of MI~I;ow- 
s~r linear forms theorem. Again, the original proof given by D~9~J;I~D and W~B~n 
[6] uses an argument closely resembling our appeal to successive minima and the 
proof given in HAssE [10] uses a counting argument of a similar nature. Our main 
objects are to bring out the analogy with the classical geometry of numbers more 
clearly, to prepare the way for the proof of the Riemann Hypothesis and to show 
that  the Riemann-Roeh Theorem is already in MAItLER'S paper in a disguised form. 

We review the necessary preliminaries from MA~LnR's paper in section 2 and prove 
what is essentially the Riemann-Roch Theorem for linear divisors. In  section 3 
we apply the results to function fields and obtain the Riemann-Roch Theorem in 
one of its forms 1) in section 4. Finally in section 5 we sketch an easier approach for 
the case of a finite constant field. 

I am grateful to Dr. KIYE]~ for his valuable criticisms and comments on an earlier 
version of this paper. In  particular, my original proof of Theorem 2 applied only to 

1) The inhomogeneous Riemann-Roch Theorem can be obtained from the methods of this 
paper. Of course the more sophisticated forms l ie beyond its scope. 



384 J .V.  Am~IITAGE AI~CH. MATH. 

separable extensions with tame ramification at  infinity. Dr. KIYEK suggested the 
much more general version given here, which gives the Riemann-Roch Theorem for 
arbi t rary function fields. 

2. The geometry of numbers in fields of power series. Most of the results in this 
section will be stated without proof. They are somewhat more general than  those 
in MAHLER'S paper, but  the reader who is famihar with the applications of the 
classical geometry of numbers to number  theory will recognize them immediately.  
Some details can be found in the author 's  London Ph. D. dissertation (University 
of London, 1956 ; this par t  unpublished). 

Let  k ---- ko (t) be a transcendental extension of the field ko and denote by  o the 
polynomial ring k0[t]. For ~ = / / g , / ,  g e 0, let 

(1) v (~) = deg g - -  deg / 

be the "degree valuation" of ko(t). We define an absolute value I I of k0(t) by  

(2)  = q > 1 .  

(If  ko is a finite field, we take q ---- Card(k0).) We denote by k the perfect completion 

of k with respect to this valuation and by  Pn the n-dimensional space/~n. I f  x e Pn 
and y e Pn, then we define 

(3)  I/x - y l l  = m a x  (I - r) ,  

where ] I is the extension of the absolute value (2) to 1r With respect to the distance 
(3), Pn is an ultrametric space. 

A distance/unction in Pn is a function iv: Pn --> R such tha t  

(4) F ( o ) = 0 ,  F ( x ) # 0  if ~ , o ,  

(5) F ( ~ x ) =  I AIF(x)  for t e ~ ,  

(6) F(x  -- y) ~ max (F(x), F(y)). 

An inequality F (x) ~ c, c > 0, defines a convex body, (d. A convex body possesses 

the property tha t  if x~, x2 e (b ~ then 21 x~ q- ~2 x2 e ~ for all ~1, 22 e/~ with I ~11 ~ 1, 
1~21 ~ 1. Conversely, this proper ty  defines a convex body. MA~LW~ proved tha t  
every convex body is a parallelepiped, tha t  is F ( x ) :  IA x t for some invertible 

(n, n)-matrix A with elements in ]~ ([12], p. 498). A convex body (g has a volume 
V = V (~) which can be expressed in terms of the dimension of the k0-module of 
points with coordinates in k0[t] inside a suitably expanded body. I f  (# is given as 
above by the matr ix  A, then V ---- ([ detA I) -1. In  particular the convex body consist- 
ing of all points x = (xl . . . . .  xn) with 

has volume 
q a L + . . .  + a,, 

(For finite k0 the volume is analogous to Jordan  measure.) I t  is indeed this definition 
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of  volume which makes it possible to prove tile R iemann-Roeh  Theorem and sections 
7, 8 and 9 of  MXHL~'S paper  contain mos t  of the hard  work necessary for the proof. 

A lattice A in Pn is the image of  0 n under  an  invertible k-linear mapping,  4, of 

the k-vector space P .  into itself. The points  of .4 will be called lattice points  (of A). 
The absolute value (in the sense of  (2)) of the de te rminant  of  2 will be denoted by  
A = A ( A ) .  

Now let ~ be a convex body  defined by F(x) < 1, of  volume g and let A be a 

lattice of  de terminant  A. MAHLER proved t h a t  there exist n ~c-independent lattice 
points xl . . . . .  xn such tha t :  

a) F(xr)  is the min imum of  F(x) in all lattice point, s x .  o ; 
b) for ] > 2, F(x~) is the min imum of F(x) in all points  of  A independent  of  

X l ,  . . . , X I _ I ;  

c) the points x l  . . . . .  xn are a basis for A over 0 : k0[t]; 
d) the numbers  a3 = ql,~ = F(xj)  (t < j  ~ n) ,  the successive minima of (g, 

depend only on F (x) and A and satisfy 

(7) 0 < a~ =< a2 ~ "'" < an 
and 

A 
(8)  a~ a s ' "  a .  = y �9 

Now let <x, y> be a non-degenerate  bilinear form on Pn.  I f  ~ is the convex body  
defined by  F(x)  < e, and A a lattice with basis bl . . . . .  bn, then  the polar  body  ~ *  
and the  polar lattice A* with respect to the bilinear form (x, y> are defined exact ly  
as in ordinary  number  theory.  Thus  A* is the lattice with basis b* . . . .  , b,*,., where 
<b~, b*> = 1 and <b~. b~> ~ 0 if  i # j. We define the polar f imction to F(x)  by  
G (o) = 0 and for y * o by  

G (y) = sup I <x, y> I 
x . o  F(x)  

Then G(y) is a distance funct ion and  W* is the convex body defined by G(y) <~ 1/c. 
I t  is easy to see t h a t  ~ *  consists of  all those points y of  P n  tbr which ] .~x, Y>I <= 1 
for all x e ~ .  Moreover, det  A det  A* -= 1. 

Now let c = 1; then  ~ *  has volume 1/V(~') and  ff ~j -~ q"~ (1 ~ j ~ n) are the 
corresponding successive minima with respect to the polar lattice A*, then 

(9) ~1vn- t+l= 1 (1 ~ < n ) .  

Finally,  the convex body  ,~ consists of  the points  x e Pn  such tha t  

(10 )  x = y z  t - ~ "  x l  + "'" y ~  t - ~ ' '  xn,  

where y~ e k and I Ytl < 1. A similar result holds for W*. (Cf. [12], p. 509.) 
Our first theorem is s imply a s u m m a r y  of all the foregoing. 

Theorem 1. Let (~ be a convex body in Pn and let ~ '  be the convex body t -2 ~*.  Let 
l, l' respectively denote the dimensions o[ the ko-modules o/ points o/ A, A* in (~, ~ '  
respectively. Then 

V(~) 
ql-V = q"(al" '"  ~n) -~ = q~2 (Af " 
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P r o o f .  The  distance funct ion of  (d' is q-2 G(y),  where G(y) is the polar  dis tance 
I �9 

funct ion defined above.  Hence  the successive min ima  T 1 . . . . .  T n of  (~' sat isfy 

" " = . = , , - 2 n  V ( ~ )  
T t  "'" "On q - 2 n  ~:1 "" T n  ~ A ( A )  " 

Now ~ consists of  all those x ~ Pn such t h a t  (10) holds. For  these to be in A, 
y]t  - ~  r So if  - - # j  > 0 there  are - - # 1  + I ko- independent  choices for Yl. 

For  (if' the  result  corresponding to (10) reads 

- - v l - 2  * t - . . - 2  * y = y l t  x l + ' " + y n  x n,  l y l [ ~ < l .  

So if  - -  vj > 2, there  are - -  vj - -  1 k0-independent  choices for Yl. 
I t  follows f rom (9) t h a t  

1 - - l ' = ~  ( - - / 2 j + l ) - - ~  ( - - v  1 -  1). 
- -p j>O - - v . ~ 2  

] . { e n c e  

qZ-V = (~1.." ~ ) - ~  q~ = - "  v(~)  
A (A)  " 

3. Application to function fields. Le t  ko, k = ko (t) and v ---- k0 It] be defined as in 
section 2 and  let K be a finite algebraic extension of  k of  degree n. 

Le t  v be the  va lua t ion  of k defined in (1) and  let ~ be the  pr ime divisor of  k corres- 
ponding to v. Le t  S = {~1 . . . .  , ~h} be the  set  of  extensions of  p to K.  The  corres- 
ponding normal ized exponent ia l  va lua t ions  of  K (eft [13], p. 12) will be denoted  b y  
vl . . . . .  va. Le t  e~,/t denote  the ramif icat ion index and residue class degree respect ively  

of  ~ over  O-Le t /~  be as in section 2 and  l e t / ~  denote  the  perfect  complet ion of K 

with respect  to  v~, t h a t  is, a t  ~t .  The unique extensions of  ~ t  and  v~ to h~t will be 

denoted by  ~ t  and v~. Set K~ = ~c(~)kK. Then  one has a canonical  homomorph i sm,  

~, of  k-algebras 
h ^ 

(11) ~ : K ~  --~ ]-~ K~ 
i = l  

defined by  a cont inuous extension of the canonical diagonal  imbedding  
h ^ 

(12) ~ : K - +  ~-[ K~ 
i = 1  

(of. [3], Chap. 6, w 8, No. 2). B y  project ion onto the  i t h  component ,  one obtains  a m a p  

(13) ~ : K~ -+ ~ (1 _< i _< h). 

Write  [ /~ : /~]  = n~. Then  (of. [2], Th. 3, p. 484) we have  
h 

(14) e~/~ = n~, ~ n ~  = n .  
i = 1  

I t  follows t h a t  ([3], Chap. 6, w 8, No. 5, Th.  2, Cor. 2) 9 is an  i somorphism of k- 
algebras.  

As is well known,  there  exists a ~ - i n t e g r a l  basis for/~t/lc (cf. [13], p. 52, Th.  2.3.2). 
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In particular, such a basis is given by 

(15) o ) ~  (1 GnU/t; 0 ~ e ~ - - l )  

where the oJlg are integral elements at  ~ l ,  whose residue classes rood ~ are linearly 
independent over the residue class field of k rood p, and 7ri is a prime element for ~ ,  
tha t  is, v~(n~) --~ I. Then we have 

2 = 0  >t, 2 

(16) 

and it follows from 

(17) 

(cf. [5], p. 62) tha t  

(18) (i) ~(x~) >= m,.  

For each of the complet ions/~,  1 =< i _~ h, let ~(i), . . . ,  ~(i).,, be a fixed basis of the 
form (15). Then for a �9 K, we have 

~ .(0 ~(i) (~(~) �9 
l t ~  1 

and we define a k-linear injection 
0~ : K -+ k"  (1 =< i =< h) 

by 

(19) ~ ,-~ (~(~) . . . . .  ~(2). 

These maps define a k-linear injection 

(20) 0 : K -~ ~,~ 

in the obvious way. At the same time, one has a ]~-linear isomorphism 
h 

(21) v : [ I g ~ - ~ k ~ .  
i = 1  

Let  ~ denote the integral closure of 0 in K. Denote by ~ (K) the group of divisors 
of K and by ~(k)  the group of divisors elk.  Let  5:  ---- ~ ( K )  -- S be the set of "finite" 
prime divisors of K. A given divisor 9~ --~ 1-~ ~,,~(u) of K can be written in the form 

(22) 92 =- 91e 2u 

with 

(23) ~o = F I  ~'~('~>, ~ = F I  %~(~) .  
~ e S ~  ~3eS 

We shall show that  the finite part  ~e corresponds to a lattice A(gA)in Pn-~ ]~ 
and that  the infinite part  9~u corresponds to a convex body c~ (9~). The details are as 
follows. 

We set (cf. [5], Chaps. I, II) 

(24) L ( ~ ) - = { ~ e g } v ~ ( c r  for ~ � 9  

26* 
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(25) L ( 9 ~ )  = L ( ~ ,  ~ ) =  { ~ K I v , ~ ( ~ ) ~  vp(~) ,  ~e0~}, 
(26) L(~lu) = L(9/,  S) = { ~ e K l v , ~ ( ~  ) > ve(~{), ~ e S } .  

Now L(~e )  is an  �9  and  has an  o-basis of  n e lements  ([14], p. 267, Th. 9). I f  
Ctl . . . . .  a~t is such a basis,  t hen  the  m a p  O(au) -~ ( ~ 1  . . . . .  ~un) (see (19), (20)) defines 
a non-s ingular  m a t r i x  A = (r The  m a t r i x  A gives rise to  an  inver t ib le  l inear  

m a pp ing  of  ~n into  itself, to  which cor responds  a la t t i ce  A (9~). E v e r y  o ther  0-basis 
of  L(~Jle) defines the  same la t t ice  and  we have  O(L(~le)) = A(~I).  

W c  tu rn  now to the  defini t ion of ~ ( 2 ) .  F o r  ~ t  a S, wri te  v i (2)  ---- ai.  F o r  some 
b t ~ Z ,  we have  ai ~ b le i - f - r t ,  0 ~ rt < ei. I f  a t ~ k  is a p r ime  e lement  for p, in 
pa r t i cu l a r  i f  z = t -1, then  the  condi t ion  

(27) 

is equ iva len t  to  

/ f l  e~-- t  \ 

\ ~ = 0  2 = 0  / 

\ •  2 = 0  

Now i t  follows f rom (16), (17) and  (18) t h a t  this  las t  i nequa l i t y  is equ iva len t  to 

(~r"~(ih > 1 (0 < ~ ri --  1)] 
v , -  w,,,,, = = ,u - / (1 < z < 1~).  

(28) t ~' (':) > 0  ~<e~ l )  = = v( x~,,) (ri ~ ~u _ 

On t ak ing  into  cons idera t ion  the  fo rmula  for the  special  convex  b o d y  given in 
sect ion 2, we ob ta in :  

L e m m a  I .  The totality o] n-tuples ~(i)~ (1 _< i <_ h; 1 =< u <=/~; 0 _~ ~ ~ <~ e~ - -  1) 
]or which conditions (27) hold is a convex body ~ (9~) in Pn with volume 2) 

h 
- ~ /,,,,(~t) 

(29) V (2) = q i~ 1 

I n  o rder  to  calcula te  the  d e t e r m i n a n t  of  the  g iven  la t t i ce  A (~),  we mus t  make  some 
fu r the r  computa t ions .  

Le t  a : K -+  k be a pseudo-spur  (cf. [8], p. 45) which will be k e p t  f ixed in wh~t  
follows. I t  follows from [ l l ] ,  Rule  3, p. 417 t h a t  there  exists  jus t  one p rope r  l inear  
m a p  

(30) g~ : Kv --> 

which coincides wi th  a on K.  (Note t h a t  cp is an  isomorphism.)  The  m a p  a~ induces  a 

2) If  

then 
(L(2L 2)) = cC(gX), cf. (21). 
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pseudo-spur 
(3~) 

and tbr ~ ~ 1(~ we have 

(32) 

a,~, = a i : h h  - ' k  (1 ~ i ~< h), 

h 

i = 1  

We refer to [8] for the notion of a pseudo-diseriminant,  De. The elements ~0~) 
h 

(1 ~ 2 ~ n~; 1 --< i ~ h) form a basis of 1-I I~  over/~ and, denoting the whole basis 
i = l  

by ~1 . . . . .  ~n we have (see [ I l l ,  p roof  of Lemma  3) 

h 
(33) det  ( ~  (~-1 (~)  q)-I ($~))) = ~ I  D~, ($~i), ;-u h 

i = 1  

Let  us denote  by  mi -= m/(~) the (r-differential exponent  for ~3i (ef. [11], w 4). Then  
it follows from the proof  of [1l] Lemma 3, t ha t  

h 

(34) r (det ((% (qv -1 (~z) ~-1 (~tz)))) = ~'. [t mi .  
i = 1  

Now let 0~1 . . . .  , ~.n be a basis for K/k  and suppose t ha t  

n 

Then we have 

(35) Da (el ,  - . . ,  eu) = (det (~,))2 det  (a~ (~v -1 (~a) q)-i (~#))). 

F rom this and f rom (33) and (34), we obtain 
h 

(36) v (De (0r . . . . .  an)) = 2 v (det (~au)) @ ~ ]i mi.  

Denote by Da (9~, .9 ~ the o-ideal generated by  the pseudo-discr iminant  of an 0-basis 
of the ~-ideal  L(~le). I t  follows from [8], p. 85, formula (6), that3)  

(37) D6(91, ocf )=  (NK/k(~[o))2Da((~, ~.o~) 

where ~ is the ident i ty  in ~ (K). 
We can now state and prove:  

Lemm a  2. Let A (91) be the lattice defined by L (91e). Then i/ A (91) = [detA(91) I 
we have 

( 3 8 )  A (~ l )  = q O ( ~ [ ) + a  . 

Here 
(39) ~ (9~) = ~ deg (~)  ~ (q,[) 

~ese 

a) The condition on p. 84 is satistied because ~ is a free 0-module of rank n. 
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and the number 
h 

(40) a ---- �89 ~ It m~ -- �89 v (na) 
i=1  

where Da is a generator o] the 9-ideal D((~, 6a), i8 independent o[ 92. 

P r o o f .  The lattice A(9~) is given by the matrix A = (CCzu) where the ~ u  are 
defined as above. We have 

A (92) = I det (~.u) ] = q-~(det(~)). 

Now it follows from (36) tha t  
h 

V ( d e t  (~au)) = �89 v ( D a  (~1 . . . . .  ~n ) )  - -  �89 Z / t  ~/$i, 
i = l  

For every prime divisor q ~= p in ~ (k) we have, by (37), 

where/(~3/q) is the relative degree of the prime divisor ~3 of K over q. On multiplying 
this equation by deg q and using the relation 

~ deg(q) ~(~) + v,(~) = 0 (~ek,  ~ * O )  

summation over all q ~: p gives 
h 

(det (:r = - -  Z deg(~3) r~ (92) + �89 ~ (D. )  - -  �89 ~ h m, .  
~ S  a i = 1  

This completes the proof of the lemma. 
Now let 1(92) be the dimension of the /c0-module L(92) = L(92e)n L(92u). By con- 

struction, I(92) is also the number of/c0-independent points of the lattice A ---- A (92) 
in the convex body (.E(91). So we can apply Theorem ! once we are able to identify 
the body 56, and the lattice A*. 

Now the pseudo-spur a defines a non-degenerate bilinear form on the /c-vector 
space K and, by means of ~ and ~ (see (12) and (21)), induces a non-degenerate 
bilinear form on Pn. I t  is with respect to these bilinear forms tha t  we speak of comple- 
mentary ideals in K and polar lattices and polar bodies in Pn, respectively. 

Let  0~ be the valuation ring of the prime divisor p and �9 its integral closure in K. 
Furthermore, let ~e be the pseudo-different of ~ over 9, ~)u the pseudo-different 
of �9 over 0,. I f  9/is a divisor of K, put  92* ---- ~-1 ~-1,  where ~) ---- ~e ~u. Then 
the complementary ideal to the ~-ideal L (92e) is L ((92 ~3)~), and the complementary 
ideal to the ,~o-ideal L (92u) is L ((92 ~3)u~). By definition of the polar lattice and taldng 
into account (cf. section 2) that  the po]ar body of ~ consists of all those points y of Pn 

for which I(x, y} I ----< 1 for all x e c~, i.e. (x,  y} ~ ~ ,  the completion of 0~ in lc, we get 

A*(92) = A(92"), ~ * ( 2 )  = ~ ( 9 2 ' ) .  
Write 

(41) 92' : 92-1 ~-1 1~1~ 
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h 

where tl - l~[ ~ '  is the divisor of  the denominator  of  t in K. Then  A (2') = A* (?/) 
i= t  

and 5 ( 2 ' )  is the body  5 '  of  Theorem 1 corresponding to 5 "  -~ 5 "  (2). 
Collecting together  all our results, we see t h a t  Lemmas  1 and  2 yield the following 

formula for l(?/) - -  1 (?/'). 

Theorem 2. Let 2 be a divisor o / K  and let 2 '  be the divisor de/ined in (41). Then 

h 

(42) l(?/) - - l ( ? / ' )  = n -  �89 ~ / ~ m t  - - d e g ( 2 )  + �89 v(Da).  
i = l  

4. The Riemann-Roeh  Theorem. Two divisors 9 / a n d  ~ of  K are said to be in the 
same class ff ? / ~ - 1  is a principal divisor. We obtain  the  Riemann-t~och Theorem in 
the form : 

Theorem 3. There exists a class [ and a non-negative integer g, which depends only 
on K,  such that i/ 9~ ?/' E ~ then 

(43) I (2)  ---- - -  dog(?/) - -  g + 1 + I ( 2 ' ) .  

P r o o f .  Let  ~ be the class containing ~)11-2. Set 

g = i - - n +  - -~ (D~)  ~m~ . (44) 

:By Theorem 2 we have 

(45) l(?/) - -  1(2') ~ --  g - -  deg(?/) ~- 1. 

I f  we take 2 = (2 in (45), then we have 

l((~) - -  l (~ ' )  : - -  g - -  deg((~) -]- 1 = - -  g ~- 1. 

Now, by  the p roduc t  formula  4) (cf. [5], Chap. 1 or [13], Chap. 5), l (~)  = 1. Hence 

g = l ( ~ - 1 l l  2) ~ 0.  

Again, i fdeg  (?/) ~ 1, then  the produc t  formula gives 1 (2) -~ 0. Moreover, deg (?/-1) 
2g - -  2 implies l(?/') -~ O, t h a t  is, there are no points  of  A*  in 5 ' .  For  d e g ( 2  -1) 
2g - -  2 implies l(?/) - -  I(91') ~ g - -  1 and this implies 

A* 
V' ~ qn+a-1. 

Now let a '  be an element of  K corresponding to a point  of  A*  in 5 ' .  Then by  Lemmas  1 
and 2 

A* 
1-~ q'~(~') ~ V' q-(n+a-1). 

But  then /J * /V '  :> qn+a-1 contradicts  the produc t  formula.  Whence the result. 

4) The product formula can be interpreted in terms of lattice points, corresponding to elements 
of K, inside a cube. 
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This  comple tes  the  p roof  of  Theorem 3 and  our  out l ine  of  fami l ia r  p roper t ies  which 
can be ob t a ined  f rom i t  (cf. [8], pp.  148--151) ,  excep t  for the  independence  of  g. To 
prove  this,  we observe  t h a t  i f  deg(9/-1) > 2g - -  2, t hen  

9' ~ -- l (~) -- deg (9/) -}- I .  

Bu t  bo th  1(9/) and  deg (9./) depend  on ly  on K and  not  on t; so 9' depends  only  on K 
([8], p. 151). 

5. The ease of finite k 0. Le t  q ~ Card (k0) and  le t  cC be a convex b o d y  in Pn of 
vo lume V. Le t  l denote  the  d imens ion  of  the  k0-module of  po in ts  of  a l a t t i ce  A with  
d e t e r m i n a n t  A in <6". Then  (~ conta ins  qZ poin ts  of  A.  Consider  the  set  of  all possible 
t r ans la t e s  of c,C by  la t t i ce  points .  Since Pn is an u l t r ame t r i c  space,  two such t r ans l a t e s  
e i ther  do no t  over lap  or t h e y  are  ident ica l .  B y  app ly ing  a l inear  t r a n s f o r m a t i o n  of  
d e t e r m i n a n t  A -z we can t r ans fo rm this  s i tua t ion  to  the  fol lowing one. W e  have  a 
sys t em of  congruen t  convex bodies  each of which conta ins  q~ po in t s  wi th  coord ina tes  
in k0[t] and  which do not  over lap .  

Now consider  a large " sphe re"  (or cube) :  

II ~ II -<- q~- 

This  conta ins  q~,(N+~) poin ts  wi th  coord ina tes  in k0[t]. Hence  

q,,(N + ,) . V < q,.V 
q~ A " 

Now from (44) 

So 

Therefore  

V ~ q(-n-g-deg(~l)+l) . 

q(/+nN) ~> q(-n--ff--dcg(gl)+ l)qn(N~ 1). 

q/ >= q(-a--deg0t)+l). 

Hence 

(46) 1 > - -  g - -  deg (9/) + 1. 

Moreover,  equa l i t y  holds if  V/A is l a rge  enough.  So (46) holds for all divisors  2 ,  
wi th  equa l i t y  i f  - -  deg (2)  is large enough.  This  is R i e m a n n ' s  Theorem.  

The  proof  of  the  R i e m a n n - R o c h  Theorem can now be comple ted  as in [9]. 
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