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Algebraic Functions and an Analogue of the Geometry of Numbers:
The Riemann-Roch Theorem

By

J. V. ARMITAGE

1. Introduetion. As is well known, the classical geometry of numbers has important
applications in algebraic number theory. The purpose of this paper is to show that
ManLER's analogue of the geometry of numbers in a field of formal power series [12]
has equally important and closely related applications in the theory of algebraic
functions of one variable. We show that the analogue of the theorem on successive
minima is essentially the Riemann-Roch Theorem and in a subsequent paper we
shall show that the theory of correspondences has a natural interpretation in the
language of the geometry of numbers, which leads to a result on the minimum of
the product of » linear forms and this in its turn gives the “Riemann Hypothesis”
for function fields. This latter result may be regarded as the analogue of the applica-
tion of the classical geometry of numbers to the problem of finding the minimum
discriminant of an algebraic number field.

In a sense, there is nothing original about our proof of the Riemann-Roch Theorem.
It is well known (cf. Eicurer [8]) that the theorem is a consequence of a similar
theorem for linear divisors and that the latter follows from an analogue of MINKOW-
SKI’s linear forms theorem. Again, the original proof given by Depexinp and WEBER
[6] uses an argument closely resembling our appeal to successive minima and the
proof given in HAsSSE [10] uses a counting argument of a similar nature. Our main
objects are to bring out the analogy with the classical geometry of numbers more
clearly, to prepare the way for the proof of the Riemann Hypothesis and to show
that the Riemann-Roch Theorem is already in MAHLER’s paper in a disguised form.

We review the necessary preliminaries from MAHLER’Ss paper in section 2 and prove
what is essentially the Riemann-Roch Theorem for linear divisors. In section 3
we apply the results to function fields and obtain the Riemann-Roch Theorem in
one of its forms?) in section 4. Finally in section 5 we sketch an easier approach for
the case of a finite constant field.

I am grateful to Dr. Kivex for his valuable criticisms and comments on an earlier
version of this paper. In particular, my original proof of Theorem 2 applied only to

1) The inhomogeneous Riemann-Roch Theorem can be obtained from the methods of this
paper. Of course the more sophisticated forms lie beyond its scope.
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separable extensions with tame ramification at infinity. Dr. K1vExk suggested the
much more general version given here, which gives the Riemann-Roch Theorem for
arbitrary function fields.

2, The geometry of numbers in fields of power series. Most of the results in this
section will be stated without proof. They are somewhat more general than those
in MAHLER’s paper, but the reader who is familiar with the applications of the
classical geometry of numbers to number theory will recognize them immediately.
Some details can be found in the author’s London Ph.D. dissertation (University
of London, 1956; this part unpublished).

Let & = ko (t) be a transcendental extension of the fleld by and denote by o the
polynomial ring %y[t]. For « = fjg, f, g € 0, let

(1) v{a) = degg — degf
be the “‘degree valuation™ of ko (). We define an absolute value | | of ko(t) by
(2) la| =g+@®, ¢g>1.

(If ko is a finite field, we take ¢ = Card (k¢).) We denote by % the perfect completion
of k with respect to this valuation and by P, the n-dimensional space in. If x e Py
and y € P, then we define

3) 2 —y| = max (e —w),

where | | is the extension of the absolute value (2) to k. With respect to the distance
(3), Pn is an ultrametric space.
A distance funciion in Py is a function ¥: P, —> R such that

(4) Fo)=0, F(x)+0 if x+o,
(5) F(Ax)=|A| F(x) for Zick,
(6) F(x — y) < max (F(x), F(y)).

An inequality F(x) =< ¢, ¢ > 0, defines a convex body, €. A convex body possesses
the property that if a1, x2 € € then A1 x1 -+ Agx2 €€ for all 1;, As € k with |41 =1,
| A2] < 1. Conversely, this property defines a convex body. MAHLER proved that
every convex body is a parallelepiped, that is F{x) = |4 «| for some invertible
(n, n)-matrix A4 with elements in k ([12], p. 498). A convex body € has a volume
V = V(%) which can be expressed in terms of the dimension of the ko-module of
points with coordinates in ky[t] inside a suitably expanded body. If ¥ is given as
above by the matrix 4, then V = (|det4 |)~L. In particular the convex body consist-
ing of all points x = (vy, ..., 2,) with

|za] S g™y, Jan] = g™

has volume
qﬂl"‘...‘}‘ an .

(For finite kg the volume is analogous to Jordan measure.) It is indeed this definition
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of volume which makes it possible to prove the Riemann-Roch Theorem and sections
7, 8 and 9 of MAHLERs paper contain most of the hard work necessary for the proof.

AAlattice A in P, is the image of p? under an invertible k-linear mapping, 4, of
the k-vector space P into itself. The points of /4 will be called lattice points (of A).
The absolute value {in the sense of {2)) of the determinant of 4 will be denoted by
A= AA).

Now let € be a convex body defined by F(x) = 1, of volume V and let A be a
lattice of determinant 4. MAHLER proved that there exist » z-independent lattice
points xy, ..., £, such that:

a) F(x1) is the minimum of F(x) in all lattice points x + o;

b) for j = 2, F(x;) is the minimum of F(x) in all points of A independent of
Xlyreo, X513

¢) the points x1, ..., x, are a basis for A over o = ko[t];

d) the numbers o; = ¢ = F(xy) (1 <4 = n), the successive minima of %,
depend only on F(x) and A and satisfy

(7) O<G1§0’2§"'§Un
and

A
(8) oy 02 On = v -

Now let (x, y> be a non-degenerate bilinear form on Py. If ¢ is the convex body
defined by F(x) =e¢, and A a lattice with basis by, ..., by, then the polar body ¢*
and the polar lattice 4* with respect to the bilinear form (=, y> are defined exactly
as in ordinary number theory. Thus /A* is the lattice with basis b¥, ..., bj, where
<bi, b} =1 and (b, bf> = 0 if ¢ +j. We define the polar function to F(x) by
G(0) =0 and for y + o by o]

x:
Then G(y) is a distance function and €* is the convex body defined by G(y) < 1/c.
It is easy to see that @* consists of all those points y of P, for which |<x,y)| <1
for all x e ¥. Moreover, det A det A* = 1.

Now let ¢ = 1; then €* has volume 1/V (%) and if 75 = ¢ (1 < j < »n) are the
corresponding successive minima. with respect to the polar lattice /1*, then

(9) O ta—g1=1 (I =7=mn).
Finally, the convex body % consists of the points x € P, such that
(10) x=gnt Mx+yn T xy,

where y; € k and [y¢f =< 1. A similar result holds for €*. (Cf. [12], p. 509.)
Our first theorem is simply a summary of all the foregoing.

Theorem 1. Let € be a convex body tn Py and let €’ be the convex body t-2 €*. Let
LU respectively denote the dimensions of the ko-modules of points of A, A* in €, %"
respectively. Then

I—V __ n an -1 1Z~V”»—
q =g*(o1 - 0n) L =4¢q A(AY
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Proof. The distance function of ¥’ is ¢=2 G (y), where G(y) is the polar distance
function defined above. Hence the successive minima 7y, ..., 7, of %' satisfy
V(%)
A(A)
Now % consists of all those x € P, such that (10) holds. For these to be in A,

yjt~*eko[t]. So if — u; = 0 there are — uy 4 1 ky-independent choices for ;.
For € the result corresponding to (10) reads

y:ylt—w~2x’1"+ P —f—ynt*""—zx:f, |yi' <1,

’ 4
T1"'Tn=Q‘2"11"'1n=q‘2”

So if —wv; = 2, there are —v; — 1 kg-independent choices for y;.
It follows from (9) that
I—V=3 (—p+ 1) =3 (—3—1).
— 3 =0 —yy=2
Hence
V(%)

l 4 -

q - __ (61 op)lgn =

3. Application to funetion flelds. Let ko, & = ko(f) and b = kg[f] be defined as in
section 2 and let K be a finite algebraic extension of k of degree «.

Let » be the valuation of k& defined in (1) and let p be the prime divisor of k corres-
ponding to v. Let § = {1, ..., Pa} be the set of extensions of p to K. The corres-
ponding normalized exponential valuations of K (cf, [13], p. 12) will be denoted by
¥1, ..., vs. Let e, f; denote the ramification index and residue class degree respectively
of B; over p. Let k be as in section 2 and let K, denote the perfect completion of K
with respect to v;, that is, at ;. The unique extensions of P; and ¥; to lfi will be
denoted by B; and #»;. Set K, = 70@;51{ . Then one has a canonical homomorphism,
@, of l?:-algebras

-~

(11) ¢: K, »ﬁ K,
defined by a continuous extension of the canonical diagonal imbedding
(12) p: K —> [}i[ Ve

i
(cf. [3], Chap. 6, § 8, No. 2). By projection onto the 7th component, one obtains a map
(13) g K, > K, (1=i<h).

Write [K; : k] = n;. Then (cf. [2], Th. 3, p. 484) we have

. h
(14) e fy =y, Znt=n-

t=1
It follows that ([3], Chap. 6, §8, No.5, Th.2, Cor. 2) ¢ is an isomorphism of k-
algebras. o
As is well known, there exists a ‘B;-integral basis for K;/k (cf. [13], p. 52, Th. 2.3.2).
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In particular, such a basis is given by
(15) o, (1Sx=fi; 0=4<e—1)

Where the wy, are integral elements at 3;, whose residue classes mod P; are linearly
Independent over the residue class field of £ mod p, and 7; is a prime element for P;,
that is, »;(7;) = 1. Then we have

(16) w(ﬁ' S e o né) = min o (e} )
and it follows from e l

(17 w(ﬁ e:ilxﬁf,?wixnﬁ) =emy, myel,
(cf. [5], p. 62) that e

(18) v (xl)) = mi.

For each of the completions K; 12i<h let P, ..., D be a fixed basis of the
form (15). Then for « € K, we have
n , ~
=Pl (aPek)
u=1
and we define a k-linear injection .
;. K — k™ {(1£i<h)
by
(19) P Y A Ot(ni,)) .
These maps define a k-linear injection
(20) 0:K—> k"

in the obvious way. At the same time, one has a k-linear isomorphism

A~

LIPS
(21) p:] [ Ki—kn.
i=1

Let © denote the integral closure of o in K. Denote by 2 (K) the group of divisors
of K and by 2 (k) the group of divisors of k. Let & = Z(K) — 8 be the set of ““finite”
prime divisors of K. A given divisor A = [ | "8 of K can be written in the form

(22) A= Ue Wn

with

(23) A = 1—[ e A, = H Prep
Ve Pes

We shall show that the finite part %, corresponds to a lattice A(A)in P, = 22
and that the infinite part 9, corresponds to a convex body % (¥). The details are as
follows.

We set (cf. [5], Chaps. I, II)

(24) L) = {xe K|vg(x) = rg(U) for Pe2(K)},
26*
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(25) L) = L(Y, &) = {oe K|vy(0) = vp(A), Pe.7},
(26) L(Wy) = LY, 8) = {oe K |vg(x) = vp(X), PeS}.

Now L (%) is an O-ideal and has an o-basis of # elements ([14], p. 267, Th. 9). If
o1, «..; &n is such a basis, then the map 0(c,) = (xu1, ..., aua) (sce (19), (20)) defines
a non-singular matrix 4 = (o). The matrix A gives rise to an invertible linear
mapping of &» into itself, to which corresponds a lattice A (%U). Bvery other p-basis
of L{W,) defines the same lattice and we have 0(L(We)) = A ().

We turn now to the definition of € (%). For ¥; € 8, write »; (A) = a;. For some
b;eZ, we have a; = bye; +ry, 0 <r; < e¢;. If mek is a prime element for p, in
particular if 7 = t-1, then the condition

T ei—1
@7) w(z zxg;uw) a

=0 A=
is equivalent to

i e—1
Vi(Z > b “,{wmn)>ri.

x=0 A=0
Now it follows from (186), (17) and (18) that this last inequality is equivalent to

v(tb.xgz)g1 O=p=rn—1)

@8) p(Ba) 20 (< p=e—1)

}(léxéfi).

On taking into consideration the formula for the special convex body given in
section 2, we obtain:

Lemma 1. The totality of n-tuples () (1 S i S h; 1 S <f; 0 <A< ey — 1)
for which conditions (27) hold is a convex body € (W) in P, with volume?)

- Z f.u(‘][)
(29) V(A =q =t

In order to calculate the determinant of the given lattice A (), we must make some
further computations.

Let o: K —k be a pseudo-spur (cf. [8], p. 45) which will be kept fixed in what
follows. It follows from [11], Rule 3, p. 417 that there exists just one proper linear
map

(30) U”:Kp—ﬂz

which coincides with ¢ on K. (Note that ¢ is an isomorphism.) The map o, induces a

2) If

~ b
L(?I, S) = {O(E.II K«i I ’V@(O() = a

then )
7 (LA, 8)) = € (A), cf. (21).
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bseudo-spur

(31) U,B‘zo’,-:f(,- >k (1=i=h),

and for o e K, we have

h
(32) oy () = 2 oi(pi(@) .
=1

We refer to [8] for the notion of a pseudo-discriminant, Dg. The elements C(?
oo ~
(1 =24 <m; 1 <i<h)form a basis of 1‘[ K; over k and, denoting the whole basis

i=1

by &1, ..., & we have (see [11], proof of Lemma 3)
A ) ‘
(83) det (g, (7€) ¢ Cu)) =] | Da (5. ).

Let us denote by m; = m;(c) the ¢-differential exponent for %3; (cf. [11], § 4). Then
it follows from the proof of [11] Lemma 3, that

A

(34) v(det (o, (=1 (La) @71 () Z.Zfi my .
i=1
Now let a1, ..., oy be a basis for K/k and suppose that

n -~
O!u:AZOHu99_1(CA)’ awek, 1=pu=n.
=1

Then we have

(35) Dy (o1, .., oa) = (det (otan))2det (oy (@2 (02) 971 (CW))) .
From this and from (33) and (34), we obtain
h
(36) »(Delor, ..., an)) = 2v(det (o)) + > fim;.
=1

Denote by Ds(2, &) the v-ideal generated by the pseudo-discriminant of an p-basis
of the D-ideal L(%,). It follows from [8], p. 85, formula (6), that3)

(37) Dy (U, &) = (N (¥%e))2 Dy (C, &)

where & is the identity in 2 (K).
We can now state and prove:

Lemma 2. Let A () be the lattice defined by L(Ue). Then if A(Y) = |det A(U)]
we have

(38) AN = go0+e

Here

(39) 8(A) = > deg (P) vy (N)
Ve

3) The condition on p. 84 is satistied because £ is a free o-module of rank #.
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and the number

(40) a=1}

?

NM=

fime — Lv (D)
1

where Dy is a generator of the v-ideal D (E, &), is independent of U.

Proof, The lattice A(YA) is given by the matrix A = (a;,) where the «;, are
defined as above. We have

A(A) = |det (oc;.ﬂ)l = g~ ridetlag,))
Now it follows from (36) that

)
v(det(xiu)) = v(Doloa, ..., xn)) — %Zfimi .
i=1
For every prime divisor g += p in 2 (k) we have, by (37),
V(Do (01, .0, 00)) = 2%f(‘$/l¥) v (A) + ¥4 (Do) »
a

where f(1}/q) is the relative degree of the prime divisor ¥ of K over q. On multiplying
this equation by degq and using the relation

S deg(q) vy (@) +vy(0) =0  (x€k, a=0)
q=*p

summation over all q + p gives

h
v(det (o)) = — > deg () v (A) + 3 v(Do) — 3 2 fomu.
PesF =1
This completes the proof of the lemma.

Now let I () be the dimension of the kop-module L(A) = L(We) N L(Ay). By con-
struction, I() is also the number of k¢-independent points of the lattice A = A ()
in the convex body % (). So we can apply Theorem 1 once we are able to identify
the body %’ and the lattice A*.

Now the pseudo-spur ¢ defines a non-degenerate bilinear form on the k-vector
space K and, by means of ¢ and % (see (12) and (21)), induces a non-degenerate
bilinear form on Py, It is with respect to these bilinear forms that we speak of comple-
mentary ideals in K and polar lattices and polar bodies in P, , respectively.

Let o, be the valuation ring of the prime divisor p and D, its integral closure in K.
Furthermore, let e be the pseudo-different of © over o, D, the pseudo-different
of £, over p,. If U is a divisor of K, put U* = A-1D-1, where D = De Dy. Then
the complementary ideal to the O-ideal L (%) is L ((% D);'), and the complementary
ideal to the £,-ideal L () is L ((% D)3'). By definition of the polar lattice and taking
into account (cf. section 2) that the polar body of € consists of all those points ¥ of Py,

for which |<x, y)| < Lforall x €%, i.e. {x,y)> € D,, the completion of o, in k, we get
A*(A) = A(U*), E*U)=F(UA*).

Write

(41) A = A-1D-112
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h
where 11 = T ] ¢ is the divisor of the denominator of ¢ in K. Then A(W') = A*(%)

i=1
and % (A’) is the body %’ of Theorem 1 corresponding to €* = €*(¥).
Collecting together all our results, we see that Lemmas 1 and 2 yield the following
formula for 1(2) — ().

Theorem 2. Let U be a divisor of K and let ' be the divisor defined in (41). Then
h
(42) WA — YWY =n— % D fimy — deg(U) + v (Dg).
=1

4. The Riemann-Roch Theorem. Two divisors ¥ and B of K are said to be in the
same class if Y B-1 is a principal divisor. We obtain the Riemann-Roch Theorem in
the form:

Theorem 3. There exists a class ¥ and a non-negative integer g, which depends only
on K, such that if AW ¥ then

(43) (W) = — deg(Ay —g + 1+ 1(A).
Proof. Let f be the class containing D112 Set

(44) g=1—n+%(—v(Da) +§f¢mz>-

By Theorem 2 we have -

(45) L) — L W) = —g — deg(A) + 1.

If we take % = € in (45), then we have
HE) —1(C)=—g—deg(@) +1=—g +1.
Now, by the product formula4) (cf. [5], Chap. 1 or [13], Chap. 5), I(G) = 1. Hence
g=1(D112) = 0.
Again, if deg (%) = 1, then the product formula gives () = 0. Moreover, deg (%~*) >

> 2g — 2 implies 7(A’) = 0, that is, there are no points of A* in ¥”. For deg (A1) >
> 2g — 2 implies 1(A) — I(A') > g — 1 and this implies

é:/: > qnﬁ-g—l .
Now let o’ be an element of K corresponding to a point of A* in €”. Then by Lemmas 1
and 2

[Tas® = % g-(ntg=1)
B

But then A*/V’ > gn*+9-1 contradicts the product formula. Whence the result.

4)‘ The product formula can be interpreted in terms of lattice points, corresponding to elements
of K, inside a cube.
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This completes the proof of Theorem 3 and our outline of familiar properties which
can be obtained from it (c¢f. [8], pp. 148—151), except for the independence of g. To
prove this, we observe that if deg(U-1) > 2g — 2, then

g=—1A) — deg(A) + 1.

But both I(A) and deg (A) depend only on K and not on ¢; so ¢ depends only on K
(181, p. 151).

6. The ease of finite k,. Let ¢ = Card (k) and let ¥ be a convex body in P, of
volume V. Let I denote the dimension of the ky-module of points of a lattice A with
determinant 4 in €. Then % contains ¢! points of /. Consider the set of all possible
translates of ¥ by lattice points. Since P is an ultrametric space, two such translates
either do not overlap or they are identical. By applying a linear transformation of
determinant A4-1 we can transform this situation to the following one. We have a
system of congruent convex bodies each of which contains ¢* points with coordinates
in %o[t] and which do not overlap.

Now consider a large ““sphere™ (or cube):

=] = 4"
This contains ¢"¥+1 points with coordinates in ko[t]. Hence

qn (N+1) VYV

¢ A=
Now from (44)
.Z o gln—g—der@)+1) |
So
gir) = gln—o—deg(+ Hgn(N+1)
Therefore
g = q(—o——deg(‘ll)H)‘
Hence
(46) l=—g—deg(A)+1.

Moreover, equality holds if V/A is large enough. So (46) holds for all divisors ¥,
with equality if — deg () is large enough. This is Riemann’s Theorem.
The proof of the Riemann-Roch Theorem can now be completed as in [9)].
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