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Categorical Characterization of the MacNeille Completion 

~y 

B .  BAlq*ASCHE~,VSKI ~nd G. B~u~,'s 

Introduction. The MacNeille completion of a partially ordered set P was first 
introduced by  means of a particular construction which generalizes DEDEKIND'S con- 
struction of the total ly ordered set of all real numbers from the rationals [2], [7]. 
Only later, characterizations were given in terms of order theoretic properties, 
determining the MacNeille completion of P up to isomorphism over P as an extension 
of p with specific properties [1], [3]. A natural  problem arising in this context is tha t  
of describing the MacNeille completion in the much more confined language of order 
preserving mappings, i.e., in categorical terms. This we deal with in the present note, 
both, for the category of partially ordered sets and order preserving mappings, and 
for the category of Boolean lattices and Boolean homomorphisms. 

One of the first problems concerning categories of concrete mathematical  objects of 
the "stl~actured set" type  is to find a categorical description of the naturally given 
rnorphisms from subobjects to objects. In  the case of partially ordered sets, GROTrIEN- 
a)IEcK's notion of strict monomorphism [5] provides the required description, and 
from this, a suitable categorical notion of essential extension furnishes the desired 
setting. The case of Boolean lattices is analogous, though somewhat  simpler because 
all monomorphisms are embeddings there. 

The results obtained here seem striking to us in tha t  two categories rather  dissimilar 
from the Abelian ones areshown to have, with respect to injectivity, exactly the same 
features as the latter, as may  be seen by comparing this paper  with [4]. This is all the 
more remarkable ffone considers, as is proved a t  the end of the paper, tha t  for lattices 
aud lattice homomorplfisms there are no non-trivial injectives a t  all. 

Our thanks for useful advice on categorical matters  go to J .  W. DUSKI~. 

1. Generalities. By  a partially ordered set we mean, as usual, a set, called the 
underlying set, together with a partial order relation on it. The lat ter  will always be 
denoted by "=<", and a subset, or element, of a partially ordered set P is taken to be 
a subset, or element of the underlying set. For two partially ordered sets P and Q, P 
is called a partially ordered subset of Q iff its underlying set is a subset of tha t  of Q, 
and its partial  order relation is the restriction of tha t  of Q. All concepts relating to 
partially ordered sets, unless stated otherwise, will be used as in [2]. 

A morphism fi'om a partially ordered set P to a partially ordered set Q is a triple 
(P , / ,  Q) where ] is a mapping from the underlying set of P to the underlying set of Q 
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such t h a t  x ~= y implies / (x) ~ / (y). We do not  distinguish in nota t ion  between / and 
( P , / ,  Q). Tha t  / is a morphism from P to Q will also be expressed a s / :  P -+ Q. Tile 
part ial ly ordered sets together  with their morphisms clearly form a category which 
will be denoted by  ~ .  All general categorical concepts will be used here as in [9]. 

A part ial ly ordered set E will be called an extension of a part ial ly ordered set P iff P 
is a part ial ly ordered subset of  E. The natural morphism j:P---> E mapping  the 
elements of P identically then has the p roper ty  t h a t  x _~ y iff j (x) ~ j (y). I n  general, 
any  morphism j :  P --+ Q with this p roper ty  will be called an embedding. 

An extension E of a part ial ly ordered set P is called join dense (~neet dense) iff each 
element o r e  is the join (meet) of its predecessors in P.  I f  E and E '  are two extensions 
of a part ial ly ordered set P then a morphism E --+ E '  will be called over P iff it maps  
the elements of  P identically. 

A part ial ly ordered set P is called a retract of a part ial ly ordered set E iff there exist 
morphisms ?': P --> E a n d / :  E -+ P such tha t  / o ?" is the ident i ty  on P [9]. A j for 
which such ] exist will be called retractable and any  such / a retraction of j .  I t  is evident  
t h a t  a retractable  morphism is in fact  an embedding.  P will be called a retract o/an 
extension E of P iff the natura l  embedding ] : P -+ E is retractable,  and by  a retrac- 
t ion ]:  E -+ P will be meant  a re t ract ion of  j. 

2. Special Morphisms. I n  this section, we give a set theoretic character izat ion of  the 
epimorphisms and monomorphisms  in ~ and a categorical character izat ion of  embed- 
dings and certain types  of  extensions. 

Lemma 1. The epimorphisms in .~ are exactly those mvrphisms given by onto mappings, 
and the monomorphisms are exactly those ~norphisms given by one-to-one mappings. 

P r o o f .  Let  1: P --> Q be an epimorphism, and suppose / is no t  onto. Then, take 
any  a e Q not  an image under  / and define a new part ial ly ordered set as follows: 
S has the same elements as Q except  for the element a which is replaced by  two new 
elements, b and c, and the part ial  order of S is defined by  put t ing  b ~ c, e -<- x for all 
x c Q above a in Q, y ~ b for all y e Q below a in Q, and y ~ x for all x, y ~ Q dist inct  
f rom a iff this holds in Q. Then, take g : Q --+ S defined by  g (x) = x for all x ~ a and 
g(a) = b, and h: Q - +  S defined by h(x) ~-- x for all x ~ a and h(a) ----- c. Now one 
clearly has g o / = h o / bu t  g .  h which contradicts  the assumpt ion tha t  / is an 
epimorphism. Hence / mus t  be onto. The converse, of  course, is obvious. 

Now, let 1: P -+ Q be a monomorphism,  and suppose / is not  one-to-one, i.e., 
/(a) --/(b) for distinct a, b e P .  Then let S be the discrete part ial ly ordered set, i.e., 
its partial order is the equali ty relation, with underlying set {a, b}, and consider 
g: S - + P w i t h g ( a ) - - - - g ( b ) = a , h :  S - + P w i t h h ( a ) = h ( b ) - - - - b .  T h e n , / o g = / o h  
whereas g =~ h which contradicts  the assumption tha t  / is a monomorphism.  Hence / 
mus t  be one-to-one. The converse, again, is obvious. 

Note  t h a t  a monomorphism,  though  one-to-one, need no t  be an embedding.  I n  this 
regard, the category ~ is ra ther  like the category of  topological spaces and continuous 
maps,  and unlike categories of  algebraic s tructures and their homomorphisms.  

Generally, in a category,  a m o n o m o r p h i s m / :  P -+ Q is called strict [5] iff every  
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morphism g : f/' -> Q which equalizes every pair  of  morphisms u, v : Q --> S equalized 
by ] factors through ], i.E., if U o ] ~ V o [ always implies u o g = v o g then there 
exists an h : T ~-> P such tha t  g ~ [ o h. An  object  in a ca tegory  will be called strictly 
injective iff it satisfies the usual inject ivi ty condition with respect to strict mono- 
morphisms. 

Lenlm~ 2. A morphi~m ] : P --> Q is an embedding i][ it is a strict monomorphism. 

P r o  o f. Let  [: P --> Q be an embedding ; then it is a monomorphism,  and it remains 
to be shown tha t  it is strict. For  this, take any  g : f/' --> Q which equalizes every pair  
of morphisms f rom Q equalized by  [, and assume tha t  g (;/') ~ [ (P). Then, by  the proof  
of Lemma 1, there exists a part ial ly ordered set S and u, v: Q--> S which differ 
only at one point  a in g(T),  not  in [(P).  Hence, u o [ = v o ] whereas u o g .  v o g, 
a contradiction.  I t  thus  follows t h a t  g(T)  C [(P),  and h ~ j o g, j the inverse of  ] 
on ] (p), provides the factorization. 

Conversely, let ]:  P --> Q be a strict monomorphism,  and take any  a, b a P with 
[ (a) < [ (b). Then, let T be the part ial ly ordered subset of  Q determined by  {] (a), ] (b)}, 
and g : T -~ Q the natura l  embedding. Now, clearly, g equalizes any  pair  u, v : Q --> S 
equalized by  [, hence there exists an h: T --> P such t h a t  g : [ o h. Since g (] (a)) = 
~- [(a), one has h([(a)) = a, and  the same for b, and ](a) < [(b) then implies a < b. 
This shows t h a t  [ is an embedding.  

We shall eat la  monomorph ism ] : P --> E essential iff it is strict,  and  if any  morphism 
g: E --> Q such tha t  9 o ] is a strict  monomorphism is itself a strict  monomorphism.  
An extension E of  P will, analogously, be called essential iff the natura l  embedding 
P --> E is essential. Note  tha t  in the category of all left modules over a ring, all 
monomorphisms are strict, and hence the counterpar t  of  the not ion of  essential 
extension defined here coincides with what  one usually means by  essential extension 
of a module. 

Essential extensions of  essential extensions are again essential extensions, and 
essential extensions are again essential extensions of  any  smaller extension. This is 
readily proved in general, a l though here it becomes obvious in view of  the  following 
characterizat ion of  essential extensions. 

Lemma 3, A n  extension E o] a partially ordered set P is essential i][ it is both, meet 
and loin dense. 

P r o o f .  Le t  E be a meet  and join dense extension of  P ,  and ]:  E --> Q such tha t  
[ I P is a strict  monomorphism,  i.e., an embedding.  Now, tbr any  a, b �9 E such t h a t  
a ~ b there then exists an x ~< a, such tha t  x ~ b and x e P (join density) and hence 
also a y ~ b such t h a t  y ~ x and y �9 P (meet density).  Now, ] I P being an embedding, 
one has ](x) ~ [(y), and this implies ](a) ~= ](b) singe ](x) ~ [(a) and [(b) <= [(y). 
~?hus [ is an embedding.  

Conversely, assume t h a t  E fails to be, say, a join dense extension of P .  Then there 
exists an a �9 E which is not  the join of  all x ~ a, x �9 P ,  and hence there exists a 
b ~ a in E such tha t  every lower bound  of a in P is also a lower bound of  b. Now let 
M ~ E be any  completion of  E, and consider [:  E--> M defined by  / (x) = ~ p  (x ~ p �9 P}. 

25* 
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Then /] P is the natura l  embedding P --> M, b u t / ( b )  ~ / ( a )  and hence / is not  an 
embedding. The dual  case works out  dually. 

3. Inj ectivity. The injective part ial ly ordered sets tu rn  out  to be neat ly  characterized, 
bo th  by  certain categorical conditions resembling the si tuat ion in other  categories, 
and by  internal properties. 

Proposition 1. The ]ollowing are equivalent/or a partially ordered set P: 

(l) P is complete, 

(2) P is strictly injective, 

(3) P is a retract o/ every extension, 

(4) P has no proper essential extensions. 

P r o o f .  (1) ~ (2). Given a homomorphism [:  A -~ P and any  strict  monomorph ism 
g: A --> B. Then  define h: B --> P by  

h(b)= \ /  l(a). 
g ( a )  < ~  a ~ A 

This is clearly a morphism, and for b ~- g (ao), ao e A, one has h (b) ~- /(a0) since 
g (a) ~ g (a0) implies a ~_ a0 and hence ] (a) ~ /(a0). Thus / = h o g. 

(2) ~ (3). I f  P is injeetive with respect to strict  monomorphisms  and E ~ P any  
extension of P then,  the natura l  embedding j : P -~ E being a strict monomorphism,  
there exists a n / :  E -~ P such tha t  / o ~' is the ident i ty  on P.  

(3) ~ (4). I f  E ~ P is an essential extension and, by  hypothesis  on P ,  ]:  E --> P 
a re t ract ion then,  for the natura l  injection ?': P --> E,  / o ?" is the ident i ty  on P,  thus  
a strict morphism, and the same holds then for / by  hypothesis  on E.  Therefore, / is 
one-to-one, bu t  since it is also a re t ract ion one has E - -  P .  

(4) ~ (1). By  L e m m a  3, the MacNeille completions of  P are essential extensions, 
and if no proper  such extension of  P exists then P is a l ready complete. 

Corollary. Any  retract o / a  complete partially ordered set is complete. 

P r o o f .  I t  is evident  t ha t  retracts  of strict  injectives are strict injectives ; trance t h e  
assertion. 

R e m a r k .  I n  (2), the restriction to strict monomorphisms  cannot  be dropped,  as 
the following consideration shows: Let  A, B, and P have the same underlying set, 
A discrete, B arbi trary,  and P complete (e. g. well-ordered with last element) ; then,  
take /:  A --> P and g : A --> B to be given by  the ident i ty  mapping  of the underlying 
set. Clearly, any  h: B --> P such t h a t  / = h o g mus t  also be given by  the ident i ty  
mapping,  and B may  obviously be chosen in such a way  tha t  the latter fails to 
determine a morphism. 

4. MaeNeille completions. We recall t h a t  a MacNeille completion M of a part ial ly 
ordered set P is a complete extension o f / )  which is both  meet  and join dense, the 
existence of  such extensions being given by  the well-known construct ion of MACNEILLE 
[2], [8]. 
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I)roposition 2. The/ol lowing are equivalent/or an extension E o/ a partially ordered 
set 10: 

(1) E is a MaeNe~lle completion o/ P :  
(2) E is an essential, strictly in]ective extension o / P ;  
(3) E is a strictly injective extension o I P not containi~q any  properly smaller such 

extension o/ P;  
(4) E is an essential extension o I P not contained in any properly larger such extension 

o/ P.  

P r o o f .  (1) ~ (2). This follows directly from the definition, in view of Lemma 3 
and Proposition l. 

(2) ~ (3). Let E '  C E be another strictly injective extension of P, ]: E '  -+ E the 
~atural embedding, and g: E'--> E '  the identity morphism. Then, tllere exists 
h: E - ~  E '  such that  h o / =  g, i. e., h is a retraction. Now, E is also an essential 
extension of E' ,  and hence h is an embedding. I t  follows from this that  E '  = E. 

(3) ~ (4). I f  E '  ~ P is an essential extension of P such that  E '  ~ E then E '  is also 
an essential extension of E, and by Proposition 1 E '  = E. To see that  E is itself an 
essential extension, consider a MacNeflle completion M of P. The natural embedding 
P --> E then extends to a mapping / : M ~+ E which must be an embedding since M 
is an essential extension of P by (2) ; by hypothesis on E and, again, (2) it follows that 
](M)  ~ E,  i.e.,  ] is an isomorphism, and therefore E an essential extension. 

(4) ~ (1). Consider a MacNeille completion M of E;  since E is an essential extension 
of p,  M is also an essential extension of P, and hence M ---- E. This shows E is complete 
and therefore a MaeNeille completion of P. 

In  the above proof, only the existence of MacNeille completions was used but no 
more about them; since strict m0nomorphisms which are epimorphisms are in fact 
isomorphisms here one has: 

(~orollary. A n y  two MacNei~Ze completions o1 a partially ordered set P are isomorphic 
over P.  

Condition (3) in Proposition 2 might be expressed by saying that  E is a minimal  
strictly injective extension of P. A formally different condition would be that  E 
is a least such extension in the sense that  it can be embedded, over P, in any other 
strictly injective extension of P. These two conditions are, however, also equivalent: 
I f  E is minimal and E'  ~ P any strictly injective extension then the fact that  E is 
an essential extension already implies it can be embedded in E'  over P. Conversely, 
if E is least, then it can be embedded over P in a MacNeiile completion of P and must 
then be isomorphic to it. 

In  a similar way, (4) states that  E is a maximal  essential extension of P, and this 
turns out to be equivalent to being a largest essential extension of P in the sense 
that  any other essential extension of P can be embedded in it. I f  E is maximal and 
E'  any essential extension of P then the strict injectivity of E shows that  E '  can be 
embedded in E over P. Conversely, i f E  is largest then any MacNeille completion can 
be embedded in E over P,  and E must then be equu~ to the image, hence isomorphic 
to it. 
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The characterizations which arise from (3) and (4) by replacing strict injectivity 
by completeness and essential extension by meet and join dense extension were 
first given in I13]. 

Since strict injcctivity is the same as injectivity in the category of all left modules 
over a ring, the MacNeille completions of partially ordered sets correspond exactly 
to the injcctive bulls of modules. There are, however, aspects in which these two 
concepts do differ: Both categories admit products, and for modules, the product 
of injective hulls of two modules A and B is an injective hull of A • B, but the 
analogous statement for MacNeillc completions of partially ordered sets is false. For 
instance, the closed unit interval is a MaeNeille completion of the open unit interval 
[0, 1[, but (lO, II • IO, 1[) k) {(0, 0), (1, l)} is a MacNeille completion of ]0, 1[ • ]0, 1[, 
which is not the closed unit square. 

5. Boolean lattices. The MaeNeille completions of a Boolean lattice B are, as is well 
known, again Boolean lattices [211, characterized as the complete Boolean lattices C 
containing B as Boolean sublattiec and as join (or, equivalently, meet) dense subset. 
i t  therefore seems natural to investigate whether they have categorical properties 
analogous to those of the MacNeille completions of partially ordered sets. Some 

results on injective Boolean lattices are given in [6], [7], but the relation between 
these and essential extensions is not discussed there. Our considerations here closely 
parallel those of the preceding sections, with completely analogous results, and we 
therefore restrict ourselves to a more condensed presentation. 

In  the following, .~ denotes the category of Boolean lattices and Boolean lattice 
homomorphisms. The same type of notation as before is used in the present context. 

Lamina 4. The epimorphisms in ~ are exactly the onto homomorphisms, and the mono- 
morphisms in .~ exactly the one-to.one homomorphisms; moreover, all monomorphisms are 
embeddings. 

P r o o f .  That  onto homomorphisms are epimorphisms is, as usual, clear. In  order 
to prove the converse it is sufficient to show that, ibr any Boolean lattice B and a 
proper Boolean sublattice -4 of B, there exist two distinct Boolean lattice homo- 
morphisms from B into a two-element Boolean lattice which coincide on A, and this 
amounts to saying that  there exist distinct ultrafilters U, V C B such that  U (~ A ---- 
~- V n _4. In order to see this, let B be the field of all open-closed subsets of a 
compact, zero-dimensional, Hausdorff space ~ ,  and assume that  every ultrafitter 
in A is contained in only one ultrafilter in ]~. Now, take any ~ e Q and consider the 
ultrafilter W C _4 of all members of A containing ~. Since IV is contained in only 
one ultrafilter in B, it follows that  the intersection of all members of W is (~}, and 
by a well-known theorem about compact spaces, W is therefore a basis for the 
neighbourhood filter of ~. This shows that .4 is a basis for the topology of Q. Hence 
every member of B is the union of members of -4, but  then, by compactness, also 
the union of finitely many members of-4, and therefore B ---- .4, a contradiction. 

Next, let ]: _4-~ B be a monomorphism, but ] ( a ) ~ / ( c )  for two distinct a, 
c c ,4. Then, a Boolean lattice with two free generators can be used here in the same 
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way a discretely ordered two-element  set was used in the proof  of Lemma 1 to 
obtain the dcsh.ed contradiction.  The converse is, again, obvious. 

Finally, to see t h a t  every  monomorph ism ]:  A --> B is an embedding, let / (a) G [ (c) 
for any  a, c a A. Then  i(a) = [(a) A ](c) = ](a  A e), hence a = a A c, and thus 

Re  m a r k .  The above s ta tement  about  epimorphisms and monomorphisms is given 
in [10] bu t  wi thout  proof. 

We now t u r n  to  the concept  of  essential extension, formally defined as before, bu t  
the condition of  strictness of  the monomorphisms may,  of  course, be dropped in view 
of  Lemma 4. 

Lemma 5. A n  extension E o / a  Boolean lattice B is essential i~  it is join dense. 

I ) roo f .  Let  E be join dense a n d / :  E ~ C such tha t  ] 1B  is one-to-one. I n  order to 
show t h a t  ] itself is one-to-one it suffices to show tha t  ] (x) ~ 0 implies x - -  0 for 
any  x a E .  Given [(x) ~ 0 one has t h a t / ( b )  = 0 for all b ~ x i n / ~  and hence b = 0 
for these b ; since x is the join of  these b this implies x = 0. 

Conversely, assume tha t  the extension E of  B is not  join dense. Then, as is easily 
seen, there exist elements y < x in E which have the same lower bounds  in B. 

Now consider the ideal J ~ [0, x --  y] in E. I f  b ~ x ~ y, b E B, then b ~ x and 
b ~ ~ y, bu t  also b ~ y, and hence b = 0. Thus J r A is zero, and this implies 
tha t  the na tura l  homomorph i sm E -+ E / J  is one-to-one on A whereas it is no t  so on 
E since y < x. I t  fbllows tha t  E is not  an essential extension of  B. 

Concenmlg injectivi ty,  the si tuation here is exact ly analogous to that, in the case 
of" part ial ly ordered sets: 

Proposition 3. The [ollowing are equivalent [or a Boolean lattice B: 

(I) B is complete, 

(2) B is injective, 

(3) B is a retract o] every extension, 

(4) B has no proper essential extension8. 

The equivalence of  (1), (2), and (3) was shown in [6], and the implications (3) ~ (4) 
and (4) ~ (1) are obtained in the  same way  as their  counterpar ts  in Proposit ion 3, 
(4) ~ (1) in view of  L e m m a  5. 

Finally, we have the following characterizat ion of  the MacNeille completions of  
Boolean latt ices:  

Proposition 4. The ]ollowing are equivalent ]or an extension E o] a Boolean lattice B: 

(1) E is a MacNeil le  completion o/ B, 

(2) E is an essential, in]ective extension of B,  

(3) E is an in~ective extews.ion of B not containing any properly smaller such exten- 
sion o / B ,  

(4) E is an essential extension o] B not contained in any properly larger such exter~- 
sion o / B .  
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The p r o o f  of this proceeds almost verbatim like that  of Proposition 2, and there 
is no need for giving it here. The same applies to the remark following Proposition 2 
regarding minimal versus least injective extensions and maximal versus largest 
essential extensions. 

6. Concluding remarks. In  closing this paper it may be of interest to contrast the 
situation found here with that  in some other categories which are, in some sense, 
not too far removed from the categories discussed here. 

Thus, the category ~ of compact zero-dimensional Hausdorff spaces and con- 
tinuous mappings is dually isomorphic to ~ ,  but in ~ f  the following is known to hold 
(or easy to prove): The two-point spaces and hence their products are injective; 
therefore, every X ~ 9~ can be embedded ( ~  mapped by a monomorphism) into 
an injective Y e ~f,  and 3C thus has a large supply of injectives. On the other hand, 
however, no X E ~ has non-trivial essential extensions. 

Now, for the category ~f of all the lattices and lattice homomorphisms (for which, 
of course, ~ __C .~f __C ~ )  the proof of Lemma 2 shows that  all join-meet dense exten- 
sions are essential, and thus there are many essential extensions in ~f. Itowever, 
.~f has no non-tr ivial  injectives: Take a lattice K of the type 

e 

//] \,\ 
X"  y "  Z" 

e.g. the lattice of all subgroups of the Klein four-group, and let K0 be the sublattice 
{0, x, y, e} of K. Then there exists, for a n y  lattice L with more than one element, 
a lattice homomorphism/0 : K0 --> L which cannot be extended to a lattice homo- 
morphism/ :  K --> L. To see this, let a, b e L be distinct and assume, which may be 
done, that  a < b. Then put/0(0) = / o ( x )  = a and ]o(y) = ]o(e) = b. Now, i f / :  K-->L  
were a lattice homomorphism extending/0 one would have a ~ /(z) ~ b, and hence 
b =- /(e)  = / ( x  V z) -~ / (x )  V / (z)  -= /(z) ,  but also a - - - - / ( 0 ) - - - - / ( y A z ) = / ( y ) A  
A /(z) = ] (z), a contradiction. 

By similar, though somewhat more extensive arguments, we can prove that  every 
lattice containing at least two elements has arbitrarily large essential extensions which 
is stronger since it implies the above result. 
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