All convex invariant functions of hermitian matrices¹)

By CHANDLER DAVIS in New York

Let \mathfrak{H}_n denote the real linear space of all $n \times n$ hermitian matrices A, B, C, Consider functions f defined on \mathfrak{H}_n with values in a partly-ordered real vector space $\mathfrak{B}(\mathfrak{B}% _{+})$ might be the real numbers, for example, or \mathfrak{H}_{m}). Such *f* is called *convex* provided it satisfies identically

(1)
$$
f((1-t)A+tB) \le (1-t)f(A) + tf(B) \text{ for } t \in [0,1]
$$

Also f is called invariant provided $f(U^{-1}A U) = f(A)$ for any $A \in \mathfrak{H}_n$ and any $n \times n$. unitary U . It has proved useful in the past to know that a real-valued function is convex invariant -- for example, the f defined by letting $f(A)$ be the largest eigenvalue of A . This paper finds all convex invariant f .

The problem has not been studied before even in the real-valued case. In that case, however, it is related to a recent theorem of M. D. MARCUS, as explained below.

If f is invariant, $f(A)$ depends only on the set of eigenvalues of A (counted according to their multiplicity), an unordered n -tuple of reals; because this set is a complete set of unitary invariants for A. Therefore f corresponds to a function of n real variables, with values in \mathfrak{B} ; this function will again be denoted by f; it is symmetric, in the sense that $f(\lambda_1, ..., \lambda_n) = f(\mu_1, ..., \mu_n)$ whenever $(\mu_1, ..., \mu_n)$ is just $(\lambda_1, ..., \lambda_n)$ rearranged. Suppose in addition f is convex as a function from \mathfrak{D}_n to \mathfrak{B}_n , and consider diagonal matrices $A = \text{diag}(\alpha_1, \ldots, \alpha_n)$, $B = \text{diag}(\beta_1, \ldots, \beta_n)$, $C = \text{diag}(\gamma_1, \ldots, \gamma_n)$ with $\gamma_i=(1-t)\alpha_i+t\beta_i, 0\leq t\leq 1, i=1,\ldots,n$. By (1),

$$
f(\gamma_1,\ldots,\gamma_n)\leq (1-t)f(\alpha_1,\ldots,\alpha_n)+tf(\beta_1,\ldots,\beta_n).
$$

This proves half of the following theorem.

Theorem. A unitary-invariant function from $n \times n$ hermitian matrices to a partly*ordered real vector space is convex if and only if the corresponding symmetric function o/n real variables is convex.*

Here is the non-trivial half of the proof.

Suppose f symmetric and convex as a function of n real variables. Let again $C = (1 - t) A + t B$, $0 \le t \le 1$, but now let A, B be arbitrary in \mathfrak{H}_n . Because f is invariant, there is no loss in generality in assuming C diagonalized. If A_C represents the matrix whose diagonal elements are the same as those of A but whose off-diagonal elements are zero, and B_C similarly, then $C = (1 - t) A_C + t B_C$ for the same t. (But of course $A_C + A$ and $B_C + B$ in general – necessarily whenever $A B + B A$.)

¹⁾ Presented to the American Mathematical Society, February 23, 1957.

The hypothesis on f implies that $f(C) \leq (1-t) f(A_C) + tf(B_C)$, for C, A_C , and B_C are simultaneously diagonalized. If it was known that $f(A_C) \leq f(A)$ and $f(B_C) \leq f(B)$ substitution would yield (1).

This will now be shown. The proof is almost exactly the same as one by M. D. MAR-CUS [3]; see also [4], [2]. The idea is to regard $f(A_C)$, for fixed A, as a function of C -more exactly, as a function of S defined below. Let x_1, \ldots, x_n be orthonormal eigenvectors of A: for all u, $Au = \sum_{i} \alpha_i (u x_i) x_i$. Let z_1, \ldots, z_n be orthonormal eigenvectors of C and of A_C : for all $u, A_C u = \sum_{i=1}^n \alpha'_i (u z_i) z_i$. By invariance, $f(A)$ $j=1$ depends only on $\alpha_1, \ldots, \alpha_n$, and $f(A_C)$ only on $\alpha'_1, \ldots, \alpha'_n$. Now

$$
\alpha'_{i} = (A_{C} z_{i}, z_{i}) = (A z_{i}, z_{i}) = \left(\sum_{j=1}^{n} \alpha_{j} (z_{i}, x_{j}) x_{j}, z_{i}\right) = \sum_{j=1}^{n} \alpha_{j} |(x_{j}, z_{i})|^{2} = \sum_{j} S_{ij} \alpha_{j}.
$$

The matrix S here, defined by $S_{ij} = |(x_j, z_i)|^2$, is *doubly stochastic*; that is, $S_{ij} \geq 0$, $\sum S_{ij} = \sum S_{ij} = 1$. A permutation matrix is a doubly stochastic matrix each $l=1$ $i=1$ element of which equals either 0 or 1. It is a theorem of G. BIRKHOFF [1] that every $n \times n$ doubly stochastic matrix is a convex combination of the $n \times n$ permutation matrices Pk, so write $S = \sum_{k=1}^{n} \mu_k P^k$, $\mu_k \geq 0$, $\sum_{k=1}^{n} \mu_k = 1$. Using these facts, and the $k=1$ $k=1$ convexity hypothesis on f ,

$$
f(A_C) = f(\alpha'_1, ..., \alpha'_n) = f\left(\sum_k \mu_k \sum_j P_{1j}^k \alpha_j, ..., \sum_k \mu_k \sum_j P_{nj}^k \alpha_j\right) \le
$$

$$
\leq \sum_k \mu_k f\left(\sum_j P_{1j}^k \alpha_j, ..., \sum_j P_{nj}^k \alpha_j\right) = \sum_k \mu_k f(\beta_1^k, ..., \beta_n^k).
$$

But for each k, since Pk is a permutation matrix, $(\beta_1^k, \ldots, \beta_n^k)$ is just $(\alpha_1, \ldots, \alpha_n)$ rearranged; so by the symmetry of *f*, $f(\beta_1^k, \ldots, \beta_n^k) = f(\alpha_1, \ldots, \alpha_n) = f(A)$. Making this substitution, $f(A_C) \leq \sum \mu_k f(A) = f(A)$. The theorem is proved. k

If \mathfrak{B} , the range of *f*, is the real numbers, $f(Ac) \leq f(A)$ is just a specialization of MARCUS's theorem $[3]$ in a different notation. But his proof does not apply as it is to non-simply-ordered \mathcal{X} because a convex function defined on doubly stochastic matrices with values in \mathcal{X} need not assume any maximum. Here is a trivial example in which the function g is even linear: let \mathcal{X} be real diagonal 2×2 matrices with the usual ordering, and $g \begin{pmatrix} a & 1 & -a \\ 1-a & a \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 1-a \end{pmatrix}$ for $0 \le a \le 1$.

Corollary 1. The theorem is also true for orthogonal-invariant functions of real sym*metric matrices.*

Corollary 2. The theorem and Corollary 1 remain true if the functions are defined only for matrices whose spectra are restricted to a given finite or infinite interval.

These modifications can be made without changing the proof.

ReTerences

- [1] G. BIRKHOFF, Three observations on linear algebra. Univ. nac. Tucumán, Revista, Ser. A, 5, 147--151 (1946). (In Spanish.)
- 12] A. HORN, Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math. 76, 620--630 (1954).
- [3] M. D. MARCUS, Convex functions of quadratic forms. To appear.
- [4] J. SCHUR, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsberichte der Berliner Mathematischen Gesellschaft 22, 9-20 (1923).

Eingcgangen am 22.6. 1957