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O n  C o m m o n  T r a n s v e r s a l s  

By B. GRfiNBAUM in Jerusalem 

1, Let ~ denote a family of subsets of the plane. We shall say that  ~ has the 
property T (n), n a natural number, if any n members of ~ have a common transversal 
(i.e. are intersectable by a suitable straight line) ; we shall say that  ~ has property T, 
if all members of ~ have a common transversal. 

With these definitions we have the following theorem : 

Theorem 1..Let ?~ be a ]amily o] disjoint translates o] a parallelogram. Then, i/ ?~ 
has property T(5), it has property T. 

P r o o f .  There is no loss of generality if we assume that the members of ~ are 
squares. For simplicity of expression we shall call the directions determined by the 
edges of the squares horizontal resp. vertical. 

We find it convenient to distinguish two possible cases. 

Case 1. There exists a horizontal line H and g 
a vertical one V, and two squares PI,  P2 E ~, 
such that  P1 and P2 ~re contained in different 
quadrants of a pair of opposite quadrants deter- I I mined by H and V. Without restriction of ge- /r 
nerality, we may assume the case represented 
schematically in Fig. 1. Then any straight line f l  intersecting both P1 and P2 is an "ascending" 
line, i. e. a line which is either parallel to H or 
V, or is contained in quadrants I and I I I  except 
possibly for a finite interval. Therefore T(5) im- Fig. 1. 
plies that  any 3 members of ~ may be intersect- 
ed by an ascending line. Theorem 1 is then a consequence of the following corollary 
of tIELLY'S theorem, due to H~DWIGER and DEBRCN~R [3] : 

Gwen any /amily o] parallelograms with parallel edges, such that any three can be 
intersected by an ascending line, there exists an ascending line intersecting all the par- 
allelograms. 

I t  may be mentioned parenthetically that  this result of HADWIGER and DEBRgZeN~R 
obviously implies the following theorem due to SA~TAL6 [4], which thus becomes 
a direct consequence of HELLY's theorem: 

For any ]amily o/parallelograms with parallel edges, T(6) implies T. 

Case 2. Now we may assume that  for any two squares of ~ there exists a horizontal, 
or a vertical, line intersecting both, and therefore (since they are disjoint) a vertical, 
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resp. horizontal, line separating them. Since ~ contains at  least 6 members*), it follows 
that  there are at  least three squares which are separated in pairs by parallel lines, 
either vertical or horizontal. Obviously, we may  for definiteness assume the former 
case. 

Let ~ *  denote a subset of ~,  maximal with respect to the proper ty  tha t  any  two 
members of ~*  may  be separated by a vertical line. I f  ~ *  - -  ~,  Theorem 1 follows 
from well-known results on common transversals of sets separated by parallel lines 
(see, e.g., HADWlG]~R-D~BRU~R [3]). There remains therefore the case ~ *  ~= ~. 
Using the assumptions we made, it is immediate tha t  only the three cases represented 
schematically in Figs. 2- -4  (and those derived from them by symmetry)  are possible ; 

z 

I I 
Fig. 2. 

l l l l   lp-- . . . . . . .  

V- ......... 
Fig. 3. Fig. 4. 

all the members of ~ not shown in Figs. 2--4,  intersect the dotted par t  of the line L. 
Let  us call the two, three, resp. four, squares of 9~ corresponding to those of the 
schemes in Figs. 2--4,  the principal squares of ~. 

Let  A(D) denote the ascending (descending) straight line intersecting all the 
principal squares of ~ and enclosing a minimal angle with L. Obviously, if ascending 
(descending) lines intersecting the principal squares exist at  all, A (D) exists; one of 
them surely exists by T (5). 

I f  only one of the lines A and D exists, it must  intersect also all the non-principal 
squares of ~,  since they inteisect L and T (5) holds. 

Thus we may  assume tha t  both A and D exist. In  eases represented by Figs. 2 
and 3 we may  establish the theorem as follows: Any non-principal square must, as 
above, intersect either A, or D, or both. I f  one of them does not meet A (or D), it 
must  meet D (resp. A) and therefore T(5) implies tha t  any other such square is also 
intersected by D (resp. A); and ff all the non-principal squares are intersected by 
both A and D, there is obviously nothing to be proved. 

*) In view of SA~TOL6'S result cited above, we could obviously assume that ~ contains exactly 
6 members. We refrain from this assumption, since it would not simplify our proof, 
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Therefore, there remains only the case represented by  Fig. 4. Now, A is obviously 
determined by P1 and Ps, while D is determined by  a pair of squares which is different 
from the pair P2, P4. Thus both A and D are determined by  only three of the four 
principal squares, and therefore the reasoning applied above establishes that  at least 
one of A, D intersects all the members of ~.  

This ends the proof of Theorem 1. 

9,. Remarks. T(4) can not be substituted for T(5) in Theorem 1, as is shown by  
the 5 central squares in Fig. 5. Moreover, for any natural  k > 4 it  is possible to 
construct similar examples, containing k squares, by modifying slightly the example 
of Fig. 5 (two additional squares are shown in Fig. 5). This may  be cont ras ted  with 
a result of HADWICWR [2]: :For infinite families of disjoint, congruent convex bodies 
in the plane, T(3) implies T. (See also below, section 3.) 

Fig. 5. 

The other conditions of Theorem 1 do not seem to be equally necessary, although 
we were unable to weaken them. The following points seem worth mentioning: 

(i) Theorem 1 probably holds also if ~ denotes a family of disjoint translates of 
any  convex set. 

(ii) If, instead of disjoint translates of a set, families of congruent, disjoint sets 
are considered, T(5) is not sufficient in order to ascertain T, as is shown by the 
example in Fig. 6 (obviously, suitable parallelograms or other sets may  be sub- 
stituted for the segments). I t  is possible tha t  T(6) implies T for any such family, 
and it seems very probable tha t  T (5) implies T for any family of congruent, disjoint 
squares. 

(iii) The condition tha t  the squares are dis- 
joint may perhaps be dropped. The Theorem 
of SACRAL6 cited above implies tha t  T is a con- 
sequence of T (6) even in a more general situa- 
tion. But  the condition is necessary if rotations 
are allowed; indeed, if  squares are constructed 
on the segments of Fig. 6, T (5) holds while T 
does not hold. 

3. In  a recent paper  DANZER [1] proved tha t  
T(5) implies T for families of congruent, dis- 
joint circles. For such families T(4) does not Fig. 6. 
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imply T as is shown by the example in Fig. 7 (due to HADWIOER-DEBRUI~NER [3], 
where also other relevant examples may be found). 

Nevertheless, in contrast to the situation in case of parallelograms, we have: 
Theorem 2. For ]amilies o/disjoint, congruent circles containing at least six members, 

T(4) implies T. 
In  view of DANZEtt'S result, Theorem 2 is obviously a consequence of the following: 
Given a /ami ly  ~ o/five disjoint, congruent circles, satis/ying T(4) but not T(5), it 

is impossible to enlarge it by a sixth circle, congruent to those o/ (~ and disjoined ]rom 
them, in such a way that T (4) holds in the enlarged/amily. 

We sketch here the proof of the last statement.  
Let  C1 and Ga denote two members of ~ which: are at  maximal distance. Let  A 

and B denote the two closed segments contained in the boundary of the convex hull 
of C1 u Ca. Discarding the other a priori possible cases it is easily shown that,  with 
suitable notations, we must  have A nC2 * ~ ,  B c h C 4 .  ~ and B ~ C 5  ~= ~ .  A com- 
pletely elementary (but somewhat lengthy and tedious) examination of the possible 
types of families, differing in the order in which quadruples of circles are intersected 

Fig. 7. 

by straight lines, reveals tha t  in each of 
the cases no sixth circle may  be added to the 

Fig. 8. 

family under the assumed conditions. (Figs. 7 and 8 represent two of the possible 
types;  in fact, these are the two extremal types, the other being intermediate bet- 
ween them. I t  is obvious tha t  only relatively small changes in the mutual  positions 
of the circles are possible.) This proves  our assertion, and with it Theorem 2. 

Ng. 9. 

R e m a r k .  For finite families of congruent, disjoint circles, T (3) does not imply T. 
The example in Fig. 9 may  obviously be modified in such a way as to contain any  
given number  of circles. 
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Added in proo/. Remark (iii) on p. 467 may be sharpened as follows: Without  the assump- 
tion that  the sets are disjoint, T(5) does not, imply T even if only families of translates of a 
given parallelogram are considered. This follows from the following example: 

Let ~ consist of 6 squares with sides of length 20 parallel to the coordinate axes, and centers 
(--22;  4), (0; --15), (12; 11), (22;4), (12; --  11) and (0; 15), respectively. Then T(5) holds but  T 
does not hold; obviously the size of the family may be increased to any number > 6. 

Similarly, if  the sets are disjoint but  instead of translations only we allow translations and 
homotheties of the given parallelogram, T(5) does not  imply T. Examples to that  effect, con- 
taining any number of sets, are easily constructed. 

Eingegangcn am 23. 4. 1958 


