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BOOLEAN SKEW ALGEBRAS 

By 
W. H. CORNISH (Adelaide) 

1. Introduction 

In this paper we introduce a class of skew lattices which generalizes relatively 
complemented distributive lattices with a smallest element. A member (-4; A, V, 0) 
of this class can be considered as an algebra of type (2, 2, 0) satisfying the iden- 
tities: aAa=a, ah(bhe)=(ahb)Ae, aA(bVc)=(ahb)V(aAc), (bVe)Aa= 
:(bAa)V(cAa), (bAa)Va=a, and the condition: for all a, bCA, there exists c~A 
such that a=(aAb)Ve and cAb=O. The element c in this last condition is uni- 
quely determined by a and b and is denoted by r(a, b). In this way, the class gives 
rise to a variety of algebras (A; A, V, r, 0) of type (2, 2, 2, 0); we call it the variety 
of Boolean skew algebras. Consequences of our axioms are the identities 
aV a=a, aV (b V c)=(aV b) V c, a=aV (aAb)=(aAb) V a=aA (aV b)=aA (b V a)=(b V a) A 
Aa, (bAc)Va:(bVa)A(cVa), a A 0 = 0 = 0 A a ,  and aVO=a=OVa. Thus, we reallyare 
considering a class of skew lattices and it turns out that each of the identities: 
aAb=bAa, aVb:bVa,  a=aV(bAa), a=(aVb)Aa, and aV(bAe):(aVb)A(aVc), 
defines the same proper subvariety. 

On any Boolean skew algebra, the maps x-~xVa and x-,-xAa are actually 
endomorphisms. Using this observation it turns out that, up to isomorphism, there 
are two subdirectly irreducible Boolean skew algebras, viz. 3={0, 1, 2: 1A2=1, 
2A1=2, 1V2=2, 2V1=1 are the non-trivial relations}, which is the cogenerator 
of the variety, and its subalgebra 2 = {0, 1 ; A, V, 0}, which is the two element 
lattice considered as a relatively complemented distributive lattice. Thus, the lattice 
of subvarieties of Boolean skew algebras is the three-chain. 

In the last section of the paper, we show how Boolean skew algebras arise 
from rings which possess central idempotent covers and from quasiprimal varieties 
of universal algebras. 

2. Fundamentals 

A Boolean skew lattice is an algebra (.4; A, V, 0) of type (2, 2, 0) satisfying 
the identities 

(2.1) aAa = a, 

(2.2) aA(bAc) = (aA b)Ac, 

(2.3) aA(b V c) = (aAb)V (aAc), 

(2.4) (b V c) A a :- (b Aa) V (cA a), 

(2.5) (bAa)Va = a, 
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and the first order sentence 

(2.6) for all a, bCA, there exists cCA such that a=(aAb)Vc and cAb=0.  

The laws (2.1) and (2.2) say that (A; A) is a band (idempotent semigroup). 
In section 3 we will see that the V-operation is associative so that a Boolean 

skew lattice is in effect a special type of semiring, i.e. an algebra ( A ; . ,  +)  such 
that both (A; .) and (A; +) are semigroups and �9 distributes over + from both 
the left and the right. The skew lattice nature is indicated only by the vital absorp- 
tion law (2.5). The precise relation of our algebras to skew lattices is considered in 
the next section; in the present section, we consider the properties of the A-operation 
and the role of the element 0. 

PROPOSITION 2.1 A Boolean skew lattice satisfies the identities: aV a=a; aA0= 
= 0 = 0 A a ;  aVO=a=OVa. 

PROOF. Because of identities (2.1) and (2.5), aVa=(aAa)Va=a. By (2.6) 
a=(aAa)Vt for some t such that tAa=0. Hence, a=aAa=(aVt)Aa=(aAa)V 
V(tAa), by 2.4, and so a = a V 0 .  Also, O=(OAa)Vz for some z such that zAa=0.  
Hence, OAa=(zAa)Aa-=zAa=O. This leads to OVa=(OAa)Va=a via (2.5). 
Finally, aA0=(aA0)V0=0.  

Thus, (A; A, 0) is a band with 0 as its zero element. In this connection we 
have the important: 

LEMMA 2.2. In a band (A; A, 0) with zero, aAb=0 f and only if bAa=0.  
Also, aAb=0 implies aAxAb=O for any xCA. 

PROPOSITION 2.3. For any elements a and b in a Boolean skew lattice (A ; A, V, 0), 
the element e such that a=(aAb)Vc and c a b = 0 ,  arising from (2.6), is unique 
and is denoted by r(a, b). 

PROOF. Suppose a=(aAb)Vc---(aAb)Vd and eAb=O=dAb. Using (2.3) 
and Proposition 2.1, and Lemma 2.2, cAa=(eAaAb)V(eAe)=OVe=c. But eAa= 
=cA((aAb)Vd)=(cAaAb)V(cAd)=cAd. Also, aAd=(aAbAd)V(dhd):d and 
aAd=(aAbAd)V(cAd)=cAd. Hence, e=cAa=eAd=aAd=d, as required. 

Because of the proposition, we can introduce a new binary operation r on 
any Boolean skew lattice, obtain a variety and vet not affect homomorphisms and 
congruences. More precisely, a Boolean skew algebra (A; A, V, r, 0) is an algebra 
of type (2, 2, 2, 0) such that the reduct (A; A, V, 0) satisfies the identities (2.1)-- 
(2.5) and (2.6) is replaced by the identities 

(2.6)' a = (a A b) V r (a, b), r (a, b) A b = 6. 

Also, if (A1; A, V, r, 0) and (A2; A, V, r, 0) are Boolean skew algebras and 
f:  (A1; A, V, 0)-~(A~; A, V, 0) is a homomorphism between the underlying Boolean 
skew lattices then for any a, bEAt, f (a)=f ((aAb) V r(a, b))=( f (a) A f (b))V f(r(a, b)) 
and f(r(a, b))Af(b)=f(r(a,b)Ab)=f(O)=O. By Proposition 2.3, f(r(a, b))= 
=r(f(a), f(b)) and so f is a homomorphism of Boolean skew algebras. It follows 
that if (A; V, A, r, 0) is a Boolean skew algebra and O is a congruence on the 
underlying Boolean skew lattice (A; A, V, 0) then the quotient A/O is a Boolean 
skew algebra, O has the substitution property for the r-operation, and the assoc- 
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iated projection of A onto A/O is homomorphism of Boolean skew algebras. These 
observations will be used whenever we consider congruences and homomorphisms 
in the variety of Boolean skew algebras, which will be henceforth denoted by BSA. 
For the sake of brevity, we will refer to a Boolean skew algebra as a BSA-algebra. 

The next result summarizes the most  important  properties of the A-operation. 

PROPOSITION 2.4. Any BSA-algebra satisfies the identities: 

(i) aAbAa=aAb,  (ii) (aAb)hc~(aAc)A(bAc), (iii) aAbAc=aheAb,  

(iv) cA(aAb) = (cAa)A(cAb), (v) (aAb)A(cAcO = (aAc)A(bAd). 

PROOF. (i) aAb A a--  (aA b) A ((aA b) V r (a' b)) = ((aA b) A (aAb)) V ((aA b)A r (a, b)) = 
aAb, by Proposition 2.1 and Lemma 2.2. 

(i i) a=(aAc)Vr(a, c) and so aA(bA c)=((aAc)A(bAc))V(r(a, c)AbAc)=(aAc)A 
A(bAc), by Lemma 2.2. 

(iii) aAbAc=aAbAcAb (by (i))=(aAb)A(cAb)=(aA(cAb))A((bA(cAb)) (by 
(ii)) = a A (c A b) A b A (cA b) = a A (c A b) A b (by (i)) = a A c A b. 

( iv)  c A (a A b) = c A (b A a) (by (iii)) = cA (b A a) A c (by (i)) = (cA (c A b)) A (a A c) = 
=(chaAc)A(chb) (by (iii))=(cha)h(cAb) (by (i)). 

(v) (aAb)A(cAcO=(aAbAc)Ad=(aAcAb)Ad (by (iii))=(aAc)A(bAd). 

It may be worthwhile to make some remarks about  the above identities. Firstly, 
a band (A; A) satisfying the identity (iii) of Proposition 2.4 necessarily satisfies 
(i) and (ii) and hence all of the identities of the proposition. Moreover, it is not  
hard to see that  if the law aAbAa=aAb holds on (A;A) then the laws (ii), (iii) 
and (v) are equivalent. Bands satisfying (iii) and (v) have been studied extensively 
by semigroup theorists, see PETRICH [9] for detailed information. The identity 
aAbAa=aAb holds in any skew lattice (A; A, V), see for example JORDAN [6] 
and GERnARDTS [4]; the role of (iii) was also considered by JORDAN in the same 
paper and GERHARDTS in another paper [5]. 

3. Skew lattices 

Here we will take implicit advantage of  the results of  the previous section. 

PROPOSITION 3.1. Any BSA-algebra satisfies the identities: 

(i) aV(ahb)= a, (ii) (aAb)Va =a, (iii) aA(aVb)= a, (iv) aA(bVa)=a. 

PROOF. Clearly (i) and (iii) are equivalent, as are (ii) and (iv). 

(iii) aA(aVb) = ((aAb)Vr(a, b))A(aVb) = (aAbA(aVb))V(r(a, b)A(aVb)) = 

= ((a A bA a)V (a A b))A ((r(a, b)A a)V (r (a, b)A b)) = ((a A b)A (a A b))V ((r (a, b)A a)V 

V0) = (aA b)V(r(a, b)Aa) = (aAbAa)V (r(a, b)Aa) = ((aAb)Vr(a, b))Aa --- aAa = a. 

(iv) a A (b V a) = ((a A b) V r (a, b)) A (b V a) = ((a A b) A (b V a)) V (r (a, b)A (b V a)) = 

= (aAbAb)V(aAbAa)V(r(a, b)Aa) = (aAb)V((r(a, b)Aa) = a, as above. 
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PROPOSITION 3.2. Any BSA-ylgebra satisfies the associative law: 

aV(bVc) = (aVb)Vc. 

PROOF. Let x=aV(bVc) and y=(aVb)Vc. Then, xAc=(aAc)V((bVc)Ae)= 
=(aAc)Vc=c, by repeated application .of the identity (2.5). Hence, x=cVr(x, c). 
Also, yAc=c, by (2.5) and (2.4) and so y=cVr(y, c). 

But xAr(x, c)=r(x, c) i.e. (aV(bVc))Ar(x, c)=r(x, c). Expanding and 
simplifying, we obtain (aVb)Ar(x, c)=r(x, c). 

Also, aAx=aA(aV(bVc))=a and bAx=bA(aV(bVc))=(bAa)Vb=b, by 
the previous proposition. Hence, (aVb)Ax=aVb. Using the previous paragraphs, 
we obtain: aVb=(aVb)Ax=(aVb)A(cVr(x, c))=((aVb)Ac)V((aVb)Ar(x, c))= 
=((aVb)Ac)Vr(x, c). 

On the other hand, yAr(y, c)-~r(y, c), i.e. ((aVb)Vc)Ar(y, c)=r(y, c) and 
hence (aVb)Ar(y, c)=r(y, c). 

But (aV b) Ay= (aV b) A ((aV b) V c)= aV b, by Proposition 3.1. Thus aV b = (aV b) A 
Ay=(aVb)A((yAc)Vr(y, c))=(aVb)A(cVr(y, c))=((aVb)Ac)V((aVb)Ar(y, c))= 
=((aV b)Ac)V r(y, c). 

Hence, aVb=((aVb)Ac)Vr(x, c)=((aVb)Ac)Vr(y, c) and r(x,c)Ac=O= 
=r(y,  c)Ac. By Proposition 2.3, r(x, c)=r(y, c). Thus, x=cVr(x, c)--cV 
V r(y, c)= y, as required. 

PROPOSITION 3.3. A BSA-algebra satisfies the distributive law: 

(b Ac)V a = (bV a)A(cV a). 

PRooF. (bVa)A(cVa)=(bA(cVa))V(aA(cVa))=((bAc)V(bAa))Va (by Pro- 
position 3.1) = (b A c) V ((b A a) V a) (by Proposition 3.2) = (b A c) V a (by identity (2.5). 

We are finally in a position to describe BSA-algebras as skew lattices. 
According to GERrIAROTS [4] and SLAVlK [10], [11], a skew lattice is an algebra 

(A; A, V) of type (2, 2) satisfying the identities: 

(3.1) aA(bAc) = (aAb)Ac and aV(bVc) = (aVb)Vc, 

(3.2) aA(bVa) = a and (aAb)Va = a 

(3.3) aA(aVb) = a and (bAa)Va = a. 

It should be noted that with these identities, the usual lattice-duality between 
�9 A and V is extended by the dualities: aAb~bVa and aVb~bAa. This duality 

was built into the subject by its founder P. JOgDAN, see [6] for an extensive biblio- 
graphy. According to GEgHARDTS [4] a skew lattice (A; A, V) is distributive if the 
dual identities 

(3.4) (aVb)Ac = (aAc)V(bAc) and aV(bAc) = (aVb)A(aVc), 

are satisfied. Also, in [10], [11], SLAVm gives the necessary and sufficient condition 
for the reflection (maximal homomorphic image) of a skew lattice in the variety 
of lattices to be a distributive lattice; it is the satisfaction of the identity (aA (bV c))A 
A((aAb)V(aAc))=aA(bVc). Thus, when it comes to distributivity, it is not clear 
what the appropriate notion of a "distributive skew lattice" should be; certainly, 
our identities (2.3) and (2.4) offer an alternative which is consistent with the work 
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of Slavik even if they do not conform with Jordan's  inbuilt notion of  duality. Bearing 
in mind (3.1)--(3.3) and our propositions so far, we can summarize as follows: 

THEOREM 3.4. Let (A; A, V, r, 0) be a Boolean skew algebra. Then, (A; A, V) 
is a skew lattice satisfying: 

(i) the additional absorption law aA(aVb)=a, and 
(ii) the distributive laws (aVb)Ac=(ahc)V(bAc),aA(bVc)=(aAb)V(aAc), 

(aAb)V c=(aV c)A(bV c). 

Of all possible absorption laws and distributive laws, we are missing: aV (b A a) = 
=a=(aVb)Aa and aV(bAc)=(aVb)A(aVc); we shall decide their occurrence 
in the next section. 

4. Lattice of subvarieties 

We begin this section with a technical result; of course, the associativity of 
the V-operation is presumed from now on. 

LEMMA 4.1. In any BSA-algebra, d A b = 0  implies aVb=bVa. In particular, 
a=r(a,b)V(aAb) is an identity on any BSA-algebra. More generally, bVa= 
=aVbV(aAb) is an identity. 

PROOF. Suppose d A b : 0 .  Then, (aVb)A(bVa)=((aVb)Ab)V((aVb)Aa)= 
=bVa (by identities 2.4, 2.5 and Lemma 2.2). Because of Lemma 2.2, we may 
validly interchange the roles of  a and b to obtain (bVa)A(aVb)=aVb. But Pro- 
position 2.4(i) implies that (aVb)A(bVa)=(aVb)A((bVa)A(aVb)), and so (aVb)A 
A(bVa)=(aVb)A(aVb)=aVb. Hence, aVb=bVa. 

Now a=(aAb)Vr(a, b) and so bVa=bV((aAb)Vr(a,b))=bV(aAb)Vr(a,b). 
In addition aVb=((aAb)Vr(a, b))Vb=(aAb)VbVr(a,b) (as r(a,b)Ab=O)= 
=bVr(a, b). Hence, bVa=bV(r(a,b)V(aAb))=(bVr(a,b))V(aAb)=(aVb)V(ahb)= 
=aVbV(aAb), as required. 

We also need a welt-known consequence of  Theorem 3.4: 

L E ~  4.2. In any skew lattice, aVb=bVaVb is an identity. 

I~ooF. bVaVb=bV(aVb)=(bA(aVb))V(aVb) (by identity (3.2), of  Proposi- 
tion 3 .1)=aVb (by identity (3.3)). 

PROPOSITION 4.3. The following conditions on any two fixed elements a and b 
of a BSA-algebra are equivalent. 

(i) dAb=bAd, 
(ii) aVb=bVa, 

(iii) aVb=aVbVa, 
(iv) bVa=bVaVb, 
(v) aV(bAa)=a and bV(aAb)=b, 
(vi) (aVb)Aa=a and (bVa)Ab=b. 

PROOF. (i)::~(ii) By (i) and Lemma 4.1, aVb=bVaV(bAa)=bVaV(aAb)= 
=bV(aV(aAb))=bVa. 

(ii)=~(iii) By (iii) aVb=aVbVa. But aVbVa=bVa due to Lemma 4.2~ 
Hence (ii) holds. 
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(iv)=~(ii) follows in a similar fashion. 
Of course, (v) and (vi) axe equivalent and it is easy to see that (ii) implies (v). 
It remains to establish (v)=~(i). Assume that aV(bha)=a and bV(aAb)=b. 

Hence, (aV(bAa))Ab=aAb, i.e. (aAb)V(bAa):aAb. Also, (bV(aAb))Aa=bAa, 
i.e. (bAa)V(aAb)=bAa. By Lemma 4.2, aAb=(aAb)V(bAa):((bAa)V(aAb))V 
V(bAa)=(bAa)V(bAa)---(bAa), as required. 

From this we obtain 

THEOREM 4.4. Each of the following identities defines the same subvariety of 
the variety BSA 

(i) aAb=bAa 
(ii) aVb=bVa 

(iii) aVb=aVbVa 
(iv) aV(bAa)==a 
(v) (aVb)Aa=a 

(vi) aV(bhc)---(aVb)A(aV c) 
(vii) aV (bV c) = (aV b)V (aV c). 

PROOF. Because of Proposition 4.3, we can assume that (i)--(v) are equivalent. 
Of course, (ii) =, (vii). But (vii) implies (iii). Indeed, in (vii) put c=0,  to obtain 

aVb=aVbVa. 
Due to Proposition 3.3, (ii) implies (vi). But (vi) implies (iv). Indeed, put c = 0  

in (vi) to obtain a=aVO-=-(aVb)Aa. 
The subvaxiety defined by Theorem 4.4 is nothing more than the variety of 

generalized Boolean algebras (relatively complemented distributive lattices with 0), 
wherein the relative complement of aAb in the interval [0, a] is taken as a funda- 
mental operation, namely r(a, b). In this context, we may also describe Boolean 
algebras. 

COROLLARY 4.5. Let (A; A, V, r, 0) be a BSA-algebra and suppose there exists 
an element 1CA such that 1Aa=a for each aCA. Then, 1 V a = a  for all a~A, both 
/~ and V are commutative, and (A; A, V, ', 0, 1) is a Boolean algebra, wherein 
a'=r(1, a) and r(a, b)=aAb" for all a, bCA. 

PROOF. Firstly, 1Va=IV(1Aa)=I. Secondly, aV(bAa)=(1Aa)V(bAa)= 
=(1Vb)Aa=lAa=a. The remainder follows from Theorem 4.4. 

As a contrast to (vii) of  Theorem 4.4, we have the following positive conse- 
quence of Lemma 4.1. 

PROROSITION 4.6. Any skew lattice satisfies the identity (bV c)V a:(bV a)V (cV a). 

PROOF. This is an easy consequence of Lemma 4.2. 
Combining this proposition with (ii) of  Proposition 2.4 and Proposition 3.3, 

we are led to the following important results. 

T~IEOV, eM 4.7. Let a be a fixed element of a BSA-algebra (A; A, V, r, 0). Then, 
the maps x-~xVa and x ~ x A a  are endomorphisms of the algebra. Moreover, if 
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Oa and T, denote the respective associated congruences, whereby for x, y(  A 

x=y(O~) if and only if xVa=yVa, and 

x=-y(T~) if and only if xAa=yAa, 

then 0~(~ Ta-=~o, the smallest congruence on A and O J T , = z ,  the largest con- 
gruence on A. 

PROOF. It remains to prove our claims about the congruences. 
Let x ,y (A  be arbitrary. Then, x~xAa  and yAa-~y(T,). Also, (xAa)Va= 

=a=(yAa)Va so that xAa:-yAa(O,). It follows that x~y(O,VT,)  and 
O.V T,=~. 

Let c, dEA be such that c=-d(O, NTa). In other words cVa=dVa and 
cAa=dAa. Then (cVa)Ar(c, a)=(dVa)Ar(d, a) and so cAr(c, a)=dAr(c, a). 
But, cAr(c, a)=r(e, a) and so r(e, a)=dAr(c, a)=((dAa)Vr(d, a))Ar(c, a)= 
=r(d, a)Ar(c, a). Similarly, r(d, a)=r(c, a)Ar(d, a). Hence, r(d, a)=r(c, a)A 
Ar(d, a)=(r(d, a)Ar(e, a))Ar(d, a)=r(d, a)Ar(e, a) (by Proposition 2.40) ) =r(e, a), 
i.e. r(c, a)=r(d,  a). Then, c=(cAa)Vr(c, a)=(dAa)Vr(d, a)=d. Hence, Oa(~ To=co. 

We are now in a position to determine the subdirectly irreducible members 
of BSA. To do this, we introduce an important subclass of BSA-algebras and 
briefly study them. 

Let B be any non-empty set and 0 be an element which is not in B. Put 
A=BU{0} and endow A with the operations A, V and r defined as follows: 

if b # O  ff b # O  r(a,b)= 
aAb= if b = 0 ,  aVb= if b = 0 ,  if b = 0 .  

Also, treat 0 as the constant associated with a nullary operation on A. Then, it is 
readily verifiable that (A; A, V, r, 0) is a BSA-algebra; it will be called the smooth 
BSA-algebra generated by the set B--A\{0}. 

LEM~ 4.8. Let (A; A, V, r, 0) be a smooth BSA-algebra generated by the set 
B=A\{0} .  Then, 

i. for bl, be(B with bl#b2, the smallest congruence on A which identifies bl 
and b2 is given by x-y(O(bl ,  bD)(x, y(A) if and only if x=y or {x, y}={b~, be}; 
in other words, O(b~, bD is the smallest equivalence relation on A which identi- 
fies bl and be," 

ii. for b(B, i.e. b#O, the smallest congruence on A which identifies b and 0 
is O(b, 0)=z; 

iii. the congruence lattice of A is isomorphic to the lattice of equivalence rela- 
tions of the set B=A\{0} ,  together with a new largest element l = O ( b ,  0) for 
any b( B, adjoined. 

PROOF. (i) An examination of the possibilities shows that whenever 
x=-y(O(bl, b2)), where O(b~, be) is as claimed, xAt -yA t ,  tAx-rAy,  x V t - y V t  
and tVx=-tVy(O(bl, be)) for any tCA. It follows that 0@1, bO is a congruence, 
and it must have the desired properties. 

(ii) Let aEA and b#0 .  As b:-O(O(b,O)),a=aAb=-aAO=O(O(b,O)). It 
follows that O (b, 0) =l. 
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(iii) is an immediate consequence of (i) and (ii). 
Because of Theorem 1 of WHITMAN [12], any lattice is isomorphic to a sub- 

lattice of the lattice of equivalence relations on a suitable chosen set. Hence, part 
(iii) of Lemma 4.8 shows 

COROLLARY 4.9. The congruence lattices of all (smooth) BSA-algebras do not 
satisfy any particular lattice-identity. 

On the other hand, we have 

TIaEOREM 4.10. Up to isomorphism, the only subdireetly irreducible BSA-algebras 
are the two-element and three-element smooth algebras 2 and 3, described in Section 1. 

PROOF. Suppose (A; A, V, r, 0) is subdirectly irreducible. Let bEA be such 
that b#0 .  As OVb=b=bVb, O=-b(6)b) and so Oh#o). Because of Theorem4.7, 
Tb=co. But for any aEA, aAb=-a(Tb) and consequently aAb=a. By absorption, 
aVb=(aAb)Vb=b. Also, r(a,b)Ab=O, so r(a,b)=O. When b = 0 ,  the results 
aAb=O=b, aVb=aVO=a and a=(aAb)Vr(a, b)=OVr(a, b)=r(a, b) are forced. 
Hence, (A; A, V, r, 0) is smooth and generated by B = A \ { 0 } ;  B is not empty 
as (A; A, V, r, 0) is subdirectly irreducible and so A has at least two elements. 
But, if B possessed at least three distinct elements bl, b.~ and b3, Lemma 4.8 (i) 
would produce the impossibility 6)(bl, b~)h6)(bl, b3)=co, yet O(bl, b~)#co# 

O (b~, b3). Thus, there are at most two non-zero elements; an easy computation 
shows that 2 and 3 are subdirectly irreducible. 

COROLLARY 4.11. The lattice of varieties of BSA-algebras is the three-chain. 
The only non-trivial variety of BSA-algebras is the variety of generalised Boolean 
algebras, which is described by any of the identities of Theorem 4.4. 

5. The occurrence of Boolean skew lattices 

(1) Rings with a central idempotent covers 

Let  R be an associative ring. Let E(R) be its generalized Boolean algebra of 
central idempotents. The order on E(R) is given by: e<=f (e, fEE(R)) if and only 
if e=ef.  The infimnm and supremum of e, fEE(R) are eAf=ef  and eVf= 
=e+f -e f ,  respectively. Moreover, r(e, f ) = e - e f  for any e, fEE(R). An element 
e~E(R) is called a central idempotent cover of aER if a=ae and e is the smallest 
element in E(R) with this property, i.e. if a=af for fEE(R) also, then e<=f. A 
ring R is a ring with central idempotent covers, or more briefly a C-ring if each ele- 
ment a~R possesses a central idempotent cover denoted by C(a). This class of rings 
was briefly considered by the author in Section 4.1.2 of [3]. However, PENNING [8] 
seems to have been the first to have explicitly discussed these rings; they are his 
"minimal duplicator rings". 

LEMMA 5.1. In any C-ring R both C(C(a)b)=C(a)C(b) and C(a+b-aC(b))= 
=C(a)VC(b)(=C(a)+C(b)-C(a)C(b)) hold for any a, bER. 

PROOF. The first assertion is well known and vital to the study of C-rings; 
it is Lemma 2.13 of PENNING [8]. However, we will include a proof. 
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Firstly, if eEE(R)and xe=O then C(x)e=O. Indeed, x(C(x)-C(x)e)=x 
and C(x)-C(x)eEE(R) and so C(x)<=C(x)-C(x)e, i.e. C(x)(C(x)-C(x)e)= 
=C(x)-C(x)e,  and so C(x)e=O. 

Secondly, let xER and eEE(R) be arbitrary. Then, x(e-eC(ex))=O and 
e--C (ex)E E(R). From the previous paragraph, we can infer that C (x)(e-eC (ex))= O. 
Hence, C(x)e=eC(ex). But eEE(R)and (ex)e=ex so C(ex)<=e. Hence, C(x)e= 
=eC(ex)=C(ex). Finally, for any a, bER, C(a)EE(R) and so C(C(a)b)= 
=C(C(a))C(b)=C(a)C(b), as required. 

We now turn to the second identity. Now, (a+b-aC(b))(C(a)VC(b))= 
= a ( c  (a) v c (b)) + b (C (a) V C ( @  - aC (b) (C (.a) V C (b)) = a + b -  aC (b) since C (a), 
C(b)<=C(a)VC(b). Hence, C(a+b-aC(b))<=C(a)VC(b). 

On the other hand, let eEE(R) be any central idempotent such that 
(a+b-aC(b))e=a+b-aC(b).  Multiply both sides by C(b) and simplify to obtain 
be=b. Then, we must have C(b)e=C(b). But ae+be-aC(b)e=a+b-aC(b). 
Hence, ae+b-aC(b)=a+b-aC(b) and so a=ae and C(a)<-_e. But we already 
know that C(b)<-e. Hence, C(a)VC(b)<-e. It now follows that C(a+b-aC(b))= 
=C(a)VC(b). 

Using the first identity of Lemma 5.1 it is not hard to see that by introducing 
a new unary operation C, it is possible to turn the class of  C-rings into a quasi- 
variety of algebras. It is the quasivariety CR of algebras (R; + ,  - , . ,  0, c) of  type 
(2, 1, 2, 0, 1), whose defining relations are 

(i) the identities saying that the reduct (R; + ,  - ,  -, 0) is a ring, 
(ii) the identities C(a)b=bC(a), aC(a)=a, C(C(a)b):C(a)C(b), and 

(iii) the quasi-identity (universal Horn sentence) 

(a 2 = a)&(ab = ba) :* a = C(a). 

We now turn to the relationship with Boolean skew algebra. 

THEOREM 5.2. Let (R; + , - - , . ,  O, C) be member of the quasivariety CR of 
C-rings. Then, the algebra (R; A, V, r, 0), whose operations are defined by: 

aAb = aC(b), aV b = a+b-aC(b), r(a, b) = a-aC(b) 

is a Boolean skew algebra. Moreover, the map a++C(a) is a BSA-retraction of 
(R; A, V, r, 0) onto the generalized Boolean algebra (E(R); A, V, r, 0) of central 
idempotents of the ring (R; + , - , . ,  0). 

PROOV. Identity (2.1) holds as aC(a)=a. Identity (2.5) holds because C(a)2= 
=C(a) .  Identities (2.2) and (2.4) are easy consequences of  C(C(a)b)=C(a)C(b). 
Identity (2.3) holds because of C(aVb)=C(a)VC(b) (the second identity of  
Lemma 5.1). As C(b) (a-aC(b))=0, C(b) C(a-aC(b))=0. Hence (aAb)C(r(a, b)) = 
=aC(b)C(a-aC(b))=O. It follows that a=(aAb)Vr(a, b). Of course, r(a, b)Ab= 
=(a-aC(b))C(b)=O, so the identity (2.6) also holds. The final assertion is clear. 

Of course, Theorem 5.2 yields a faithful functor ~ ' :  C R ~ B S A  which pre- 
serves products. If  Z2 and Z~ denote the fields with two and three elements, respect- 
ively, viewed as CR-algebras then the subdirectly irreducible Boolean skew algebras 
are 2=F(Z2)  and 3=F(Zz) .  Hence, Theorem 4.10 says that each BSA-algebra 
is isomorphic to a BSA-subalgebra of  F(R) for some suitable C-ring R. 
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(2) Quasiprimal algebras 

Let A be a non-empty set. Then, the functions t: AZ~A and q: A4~A,  de- 
fined by 

{ :  if a # b  {~ if a = b  
t(a, b, c) = if a = b, q(a, b, c, d) = if a # b 

are respectively called the ternary and quaternary discriminators on A. These func- 
tions are related by 

t(a, b, c)=q(a, b, c, a) and q(a, b, c, d)=t(t(a, b, c), t(a, b, d), d). 

A universal algebra A is called quasiprimal if it is finite, not trivial and the 
ternary (quaternary) discriminator on the underlying set is a polynomial over A. 
A variety V of universal algebras is called quasiprimal if it is generated by a finite 
set of  quasiprimal algebras such the ternary (quaternary) discriminator is re- 
presented by a common polynomial on each of these generators. Quasiprimal 
varieties abound; an excellent survey is contained in BULMAN-FLEMING arm 
W~RNER [2]. 

Let A be a set with at least two elements, 0 be any element of A and B = A \ { 0 } .  
In terms of the discriminator functions on A, we may define binary operations by 

aA b = q(O, b, O, a) = t(O, tO, b, a), a.), a V b = q(O, b, a, b) = t(b, O, a) 
and 

r(a, b) = qO, b, a, 0) = t(O, b, a). 

Then, the resulting algebra (A; A, V, r, 0) is nothing more than the smooth BSA- 
algebra generated by B. From this it follows that there is a faithful functor from any 
quasiprimal variety into the variety of Boolean skew algebras. 

It should be mentioned that on page 64 of [7], KEIMEL and WER~,rZR define 
the derived operations A, V, and r (their notation for r(a, b) is a \b )  on any algebra 
in a quasiprimal variety. Thus, our remarks provide a characterization of their 
derived algebra. 

On any non-empty set A it is possible to define other functions of interest be- 
sides t, q, A, V, and r. Some authors, e.g. KEIMEL and WERNER [7] and BIGNALL [1] 
prefer to replace t by the function d: A~-*A, defined by 

d ( a , b , c ) =  ff b = c .  

It is a matter of choice; the two functions are related by t(a, b, c)=d(c, b, a). 
In [1], BIGNALL introduced the function /: A2--~A given by 

if  
a/b = d(O, a, b)= q(a, b, O, b)= if d # b .  

Here, as before, 0 is a fixed element of A. Of course, each of A, V, r and / are 
given in terms of d '(and t and q). The importance of / is that d can be put in terms 
of A, V and /. Bignall's equation is d(a,b, c)=((aAb)/a)V(aAc)V(b/c). Notice 
also that r(a, b)=b/(aVb). In this way Bignall showed that the variety of algebras 
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(B: d, 0) of type (3, 0) generated by any algebra (.4; d, 0) where A is an infinite 
set  and d is the above discriminator on A is definitionally equivalent to a variety 
(his variety of quasi-Boolean skew lattices or QBSL's) of algebras (B; V, A,/,  0) 
of type (2, 2, 2, 0), where (B; A, V) is a certain skew lattice. His work has im- 
portant applications to quasiprimal varieties and is to be published elsewhere. His 
equational base for QBSL contains twelve identities which we will not state ex- 
plicitly. As each QBSL yields a derived Boolean skew algebra, some of his axioms 
are redundant, for example it follows that there is no need to postulate the associativ- 
ity of the V-operation. In this way, we obtain applications of our work, which 
needless to say was greatly inspired by my student Bignall. 
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